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The recently developed ab initio many-body theory of positron molecule binding [J. Hofierka et al.,
Many-body theory of positron binding to polyatomic molecules, Nature (London) 606, 688 (2022)] is
combined with the shifted pseudostates method [A. R. Swann and G. F. Gribakin, Model-potential
calculations of positron binding, scattering, and annihilation for atoms and small molecules using a
Gaussian basis, Phys. Rev. A 101, 022702 (2020)] to calculate positron scattering and annihilation rates on
small molecules, namely H2, N2, and CH4. The important effects of positron-molecule correlations are
delineated. The method provides uniformly good results for annihilation rates on all the targets, from the
simplest (H2, for which only a sole previous calculation agrees with experiment), to larger targets, where
high-quality calculations have not been available.
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Developing fundamental knowledge of positron scatter-
ing and annihilation in molecules is essential to, e.g.,
realize antimatter-based molecular spectroscopy [1–3] and
next-generation antimatter traps [4–7], elucidate the proc-
ess of molecular fragmentation [8–11], and properly under-
stand how positrons propagate in and can act as probes of
living tissue (relating to DNA damage and dosimetry in
PET [12–17]), the Galaxy (e.g., to understand the galactic-
center annihilation signal [18,19] and dark matter [20]), and
materials [21–23].
The positron-molecule system is, however, characterized

by strong positron-molecule correlations that are nonlocal
and act over different length scales [24], and for molecules
that bind the positron, spectacular resonance effects due to
coupled electronic and vibrational dynamics [1]. They make
the theoretical and computational description a challenging
many-body problem. For positron scattering, R-matrix
[25–29], Schwinger multichannel [30–37], Kohn variational
[38–42], model potential [43,44], and convergent close
coupling (CCC) [45,46] methods have been applied with
considerable success to small molecules, including H2, CH4,
N2, CO2, CO, allene, formamide, and pyrazine (see also
[47]). Calculation of the positron-molecule annihilation
rate—of chief interest in this Letter—is however, strikingly
more difficult. For a gas of number density ng the positron

annihilation rate is parametrized as λ ¼ πr20cngZeff ,
where r0 is the classical electron radius, c is the speed of
light, and Zeff is the effective number of electrons that
participate in the annihilation process. Formally, Zeff is
equal to the electron density at the positron, Zeff ¼R PNe

i¼1 δðr − riÞjΨkðr1;…; rNe
; rÞj2dr1…drNe

dr, where
Ψk is the total wave function of the system, with electron
coordinates ri and positron coordinate r [48]. It describes the
scatteringofapositronofmomentumkby themolecule, and is
normalized asymptotically to the product of the ground-state
target molecular wave function and positron plane wave.
Accurate calculation of Zeff thus requires proper account of
the scattering dynamics and positron-molecule correlations,
including short-range electron-positron interactions. Even for
the simplest molecule, H2, calculations of Zeff via sophisti-
cated methods, including R-matrix [27] and the Kohn
variational [41,49] and Schwinger multichannel methods
[50], disagree, all substantially underestimating experiment
[51–53] (by ∼15% − 50%), to which only a stochastic
variational method (SVM) calculation [54] is compatible.
For N2, used ubiquitously as a buffer gas in positron traps
[4,5], the Schwinger multichannel method (the only ab initio
calculation we are aware of) underestimates experiment by a
factor of > 3. Moreover, these methods cannot be easily
scaled to larger molecules. Theoretical developments are
demanded.
Many-body theory (MBT) is a powerful method that can

accurately account for strong positron and electron correla-
tions with atoms, molecules, and ions (see, e.g., [22,55–69]).
For atoms, a B-spline implementation provided a complete
ab initio description of positron scattering, annihilation, and
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cooling [64,65,69–71] and positronium (Ps) “pickoff” anni-
hilation [72] in (noble gas) atoms. Most recently, we
developed and successfully applied a multicentered Bethe-
Salpeter Gaussian-orbital-based many-body approach to
positron binding in molecules, implemented in our
EXCITONþ code [24].
Here, we extend the approach beyond binding, combin-

ing it with the recently devised shifted-pseudostate-
normalization method of [44] to perform fixed-nuclei
[73] calculations of low-energy positron scattering and
annihilation rates on the same footing for the small
molecules H2, N2, and CH4. We quantify the effects of
positron-molecule correlations, including positron-induced
polarization, screening, and virtual-positronium (virtual-
Ps) and positron-hole interactions, and compare with
experiment and theory where available. For the annihilation
rates, we find excellent agreement with the benchmark
SVM calculation [54,74] and experiment for H2, providing
a consensus, and overall good agreement with experiment
for N2 and CH4.
Theory and numerical implementation.—The positron

(quasiparticle) wave function ψε in the field of a
many-electron target is found from the following Dyson
equation [24,75]:

ðHð0Þ þ Σ̂εÞψεðrÞ ¼ εψεðrÞ: ð1Þ
Here, Hð0Þ is the zeroth-order Hamiltonian, which we take
to be that of the positron in the Hartree-Fock (HF) field of
the ground-state molecule, and Σ̂ε is the nonlocal, energy-
dependent correlation potential (self-energy, an optical
potential for elastic scattering [76]). In practice we calculate
the matrix elements of Σ via its diagrammatic expansion in
the residual electron-electron and electron-positron inter-
actions [77]. See Ref. [24] for full details. Briefly, we
include three classes of infinite series in the expansion:
Fig. 1(a), the “GW” diagram [the product of the positron
Green’s function G and the screened Coulomb interaction
W, which we calculate at the Bethe-Salpeter equation
(BSE) level], describes the positron-induced polarization
of the molecular electron cloud, the screening of it by the
molecular electrons, and electron-hole attractions; Fig. 1(b),
the electron-positron ladder series (“Γ block”), describes the

nonperturbative virtual-Ps formation process; and Fig. 1(c),
the positron-hole ladder series (“Λ block”).
We expand the electron and positron states in Gaussian

basis sets (see below), transforming Eq. (1) into a linear
matrix equation. For a target that has no bound states for the
positron, its solution yields a set of n discrete positron
continuum pseudostates and their corresponding energies εn
(n ¼ 1; 2;…). These pseudostates decay exponentially
rather than oscillate at large positron-target separations,
and are normalized to unity instead of to an asymptotic
plane wave as required by a true continuum state. Moreover,
the lack of spherical symmetry of the multicentered target
means that the orbital angular momentum is not conserved.
However, at low positron momenta (kRa ≪ 1, where Ra is
the radius of the target), the mixing between partial waves
due to the noncentral nature of the potential is small or
negligible, and one can identify (approximately) states with
eigenvalues of the squared orbital angular momentum
operator L2 close to zero (s states), which are expected to
dominate the scattering and annihilation. In this case we can
obtain the appropriate normalization following [44], com-
paring the energies of (approximate) s states against corre-

sponding free positron pseudostate energies εð0Þn (found by
setting H0 equal to the positron kinetic energy). We thus
calculate the s-wave phase shift for a positron of energy εn as
δ0 ¼ ½n − f−1ðεnÞ�π, where n is the number of the s-wave
pseudostate, and fðnÞ is a function of a continuous variable

n satisfying fðnÞ ¼ εð0Þn [44]. We use the same procedure for
p and d waves. Moreover, we make use of the shifted
energies to approximate the annihilation rate as Zeff ¼
4πδepA−2, with normalization A2¼ð2lþ1Þ−12 ffiffiffiffiffi

2ϵ
p

dϵ=dn

[44], where l is the angular momenta, and δep ¼
2
PNe=2

i¼1 γi
R jφiðrÞj2jψðrÞj2dτ is the annihilation contact

density summed over all occupied electronic molecular
orbitals (MOs) φi, including vertex enhancement factors
(in a.u.) γi ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1.31=jεij
p þ ð0.834=jεijÞ2.15 for MO i

with energy εi that account for short-range electron-positron
attraction [65,69].
We implement the above in our EXCITONþ Gaussian-

basis code [24] using aug-cc-pVXZ (X ¼ T or Q) basis sets
on the atoms of the molecule and up to 20 “ghost” centers
away from the molecule to describe virtual-Ps formation,
and a 19s17p16d15f even-tempered set on the molecular
center to help describe the long-range interactions; we
assessed convergence and sensitivity to bond lengths [see
Supplemental Material (SM) for full details [78] ].
Results: Effect of many-body correlations.—Figure 2

shows the phase shifts and normalized annihilation rate Zeff
for H2 (representative of the three molecules considered)
calculated at the HF, Σð2Þ, GW, GW þ Γ, and GW þ Γþ Λ
level for the correlation potential (see Fig. 1). At the HF
level the positron-molecule interaction is repulsive (corre-
sponding to a negative phase shift, and small electron-
positron overlap and thus annihilation rate); including the

FIG. 1. The main contributions to the positron-molecule self-
energy: (a) the GW diagram; (b), (c) the infinite ladder series of
electron-positron interactions (virtual-Ps formation “Γ block”)
and positron-hole interactions (“Λ block”). Lines labeled ν (μ) [n]
are excited positron (electron) [hole] propagators; a single
(double) wavy line denotes a bare (dressed) Coulomb interaction.
See text and extended data, Fig. 1 of [24], for full details.
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bare polarization Σð2Þ [85] produces an attractive interaction
at low momenta (turning the phase shift positive and
increasing the electron-positron overlap and thus Zeff ),
which is further enhanced by the inclusion of the dressed
ring diagrams of the GW@BSE, i.e., the intra-ring BSE
electron-hole attractions are larger than the repulsive
screening effects from the random-phase approximation
ring series. The additional inclusion of the virtual-Ps
contribution (GW þ Γ) further increases the attractive
potential substantially, causing a factor of ∼3 increase in
the phase shift maximum and a more than doubling of Zeff
at low momenta, but is tempered by the repulsive positron-
hole (Λ-block) contribution. See SM, Fig. 3, for the
corresponding graphs for N2 and CH4.
Scattering.—Figure 3 shows the calculated elastic cross

sections compared with other theory and measurements.

Also see SM, Table I, for calculated scattering lengths
determined from fits of the effective-range-theory expan-
sion to the phase shifts, and from the momentum depend-
ence of the annihilation rate. There is little consensus
between the various theory and experiment. For H2, for
which our calculated annihilation rate is in excellent
agreement with the SVM (see below), our calculated cross
section is noticeably larger than the CCC calculation [46]
(which is optimized for H2 and expected to be accurate) and
lies within the error bar of the Trento [86] and ANU [89]
measurements only around ∼2 − 5 eV. Our calculated
scattering length is, however, within ≲15% of the CCC
and SVM result, and to ≲5% as determined from the
momentum dependence of the annihilation rate (see
below). For N2 our result is in good agreement with the
model potential (s-wave) calculation of [44] at low energies
(which gives Zeff in good agreement with experiment), and
compatible with the measurements of Zecca et al. [87]
below ∼1 eV but noticeably larger beyond this. For CH4

our results are consistent with the measurements of Zecca
et al. [34] only at ∼1 eV, but are considerably larger at low
energies, where they are compatible with the model
potential result [44] that gives Zeff in agreement with
experiment.
Annihilation rate Zeff .—Of chief interest in this work is

the annihilation rate Zeff due to the challenge it poses for
theory and lack of accurate methods. Figure 4 shows our
normalized annihilation rate ZeffðkÞ as a function of positron
momentum calculated in our most sophisticated approxi-
mation (GW þ Γþ Λ self-energy and including vertex
enhancement factors). For the s wave, we show the discrete
data points calculated along with fits to the physically
motivated form [64] ZeffðkÞ ¼ F=ðκ2 þ k2 þ Ak4Þ þ B
where F, κ, A, and B are constants (see SM, Table II,
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FIG. 2. The effects of positron-molecule many-body correla-
tions shown via the calculated s-wave scattering phase shift (left)
and normalized annihilation rate Zeff (right) for H2 (representa-
tive of the three molecules considered in this Letter) in different
approximations to the positron-molecule self-energy (see Fig. 1):
HF (black dotted), bare polarization Σð2Þ (black dot-dashed), GW
(black dashed),GW þ Γ (black dot-dot-dashed), andGW þ Γþ Λ
(solid line).
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FIG. 3. MBT calculated scattering cross sections for H2, N2, and CH4: s wave (thin dashed black line), p wave (thin dash-dotted black
line), and sþ pþ d total (thick solid black line) for bond lengths of R ¼ 1.45, 2.014, and 2.06 a.u. for H2, N2, and the C─H bond in
CH4. Also shown are measurements by Zecca et al. [34,86,87] (green triangles) and Charlton et al. [88] (orange triangles), and recent
model potential calculations of Swann and Gribakin [44] (blue solid line) for each molecule; and additionally for H2 the measurements
of Machacek et al. (purple triangles) [89], Schwinger multichannel [90] (orange line), Kohn variational [40] (blue diamonds),
convergent close coupling [46] (red filled circles) calculations, and modified-effective-range-theory fit of measured cross sections [91]
(red squares); for N2, the Schwinger multichannel [32] (orange line), local-complex-potential [92] (plus symbols), and correlation-
polarization-model [93] (dashed red) calculations; and for CH4, correlation-polarization-model-potential calculations of Franz [94]
(orange dashed line), Jain and Gianturco [95] (blue dashed line), and Dibyendu et al. [96] (magenta dashed line), Schwinger
multichannel [34] (turquoise dashed), and measurements of Sueoka and Mori [97] (blue triangle) and Dababneh et al. [98]
(red diamonds).
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for their values). We also show the calculated room-
temperature Maxwellian average (open circle) Z̄eff ¼
ð2πkBTÞ−3=2

R
∞
0 ZeffðkÞexpð−k2=2kBTÞ4πk2dk. Table I

gives the values of Z̄eff : for H2 and N2 (CH4), we
found it to be < 1% (10%) larger than ZeffðkÞ at thermal
k ∼ 0.05 a.u.

Considering comparison with other theory and experi-
ment, for H2 a number of sophisticated calculations of Zeff ,
namely the Schwinger variational (7.7),R-matrix (10.4), and
Kohn variational (12.6), are in considerable disagreement,
and moreover, all substantially underestimated experiment
(14.6–16 [51–53,99], with 16 the recommended value [53]).
The only compatible calculation to date is the SVM
calculation of Zhang and Mitroy [54] (14.6 for a bond
length of R ¼ 1.4 a:u:, and 15.7 for a bond length of
R ¼ 1.45 a:u:). Our respective results of 14.5 and 15.5
are in excellent agreement with this and experiment, provid-
ing a consensus, and demonstrate that the MBT accurately
describes the correlations. The scattering length determined
fromZeffðkÞ asa ∼ 1=2κ ¼ −2.73 a:u: agrees to≲3% of the
CCC and SVM calculations (see SM, Table I).
For N2, the only ab initio calculation we are aware of is

the Schwinger multichannel calculation, which finds Zeff ¼
8.96 [32,50], compared to the recommended measured
value of 30.8� 0.2 [53]. In contrast, our calculated value of
30.6 is in excellent agreement with experiment, indicating
proper account of the correlations that act to enhance Zeff ,
and with the recent model potential calculation [44]. We
found that a 2% increase in the bond length leads to a ∼5%
increase of Z̄eff . We found that the fractional contribution to
the s-wave Zeff from the highest 5 MOs a1ga2ua1g2eu of HF
ionization energies 40.67 eV, 20.91 eV, 17.34 eV, 17.10 eV,
and 17.10 eV to be 0.06, 0.24, 0.28, 0.21, and 0.21,
respectively, i.e., a non-negligible fraction of annihilation
occurs on MOs below the HOMO due to their favorable
overlap with the positron wave function that is maximum

FIG. 4. MBT calculated annihilation rate ZeffðkÞ for H2, N2, and CH4: s wave (thin dashed black line), p wave (thin dashed-dotted),
d wave (dotted), and total sþ pþ d (thick solid black line). Results are shown for bond lengths of R ¼ 1.4, 2.014, and 2.06 a.u. for H2,
N2, and the C-H bond in CH4. Also shown are the room-temperature Maxwellian averaged Z̄eff from our calculation (black open circle;
for H2 black triangle up is for R ¼ 1.45 a:u: for comparison) and experiment (red triangles) for H2 [51,52,99], N2 [53], and CH4 [53],
along with energy-resolved measurements for CH4 [100] (red diamonds), the recent model potential calculations of [44] (solid blue
line). Additionally for H2, the calculated room-temperature values from the Kohn variational method (blue diamonds) [41,49,101],
molecular R-matrix (magenta square) [27], and SVM at bond length of R ¼ 1.4 a:u: (green triangle down) and R ¼ 1.45 a:u: (green
triangle up) [74], and the Schwinger multichannel method at k ¼ 0.05 a:u: (orange squares) [32,50]. The latter is also shown for N2.
For CH4 we also show the individual s-wave contributions from the 2a1 and one of the triply degenerate t2 highest
occupied molecular orbitals (HOMOs).

TABLE I. Maxwellian-averaged annihilation rate Z̄eff .

H2 N2 CH4

Present MBTa 14.5, 15.5b 30.6c 118d

SMCe [32,50] 7.70 8.96 � � �
R-matrix [27] 10.4 � � � � � �
Kohn var. [41,49] 12.6f � � � � � �
SVM [102] 14.6, 15.7b � � � � � �
Corr. pol. [103,104] � � � 44� 4 99.5g

LCAOh [105] 14.6 � � � � � �
Model pot. [44] 10.6 29.8 163
Experiment 14.7� 0.2 [99] 30.8�0.2 [53] 140�0.8 [53]

16.0�0.2 [51,53]i

14.6� 0.1 [52]
aPositron-molecule self-energyatGW þ ΓþΛ [Figs. 1(a)–1(c)].
bH2 calculation using bond lengths of R ¼ 1.40 a:u:,

R ¼ 1.45 a:u.
cN2 calculation using bond lengths of R ¼ 2.014 a:u.
dCH4 calculation using C─H bond length of R ¼ 2.06 a:u:
eSchwinger multichannel method at k ¼ 0.05 a:u.
fKohn variational “method of models” calculation.
gCorrelation polarization potential calculations.
hLinear combination of atomic orbital with correlation

adjustment factors.
iRef. [53] recommended value.
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around the N atoms. This pattern was observed for bound
states [24] and in the extensive fragmentation patterns
[8–11] of polyatomic molecules.
For CH4, we find good overall agreement with the

positron-momentum-dependent ZeffðkÞ measurements of
Marler et al. [100] across the full momentum range
including at k ∼ 0.4 a:u: where the p wave contributes,
except for the region around 0.17 a.u, which is close to two
vibrational modes [48].
Our thermalized value Z̄eff ¼ 118 is lower than the

measurement 140� 0.8 [51,53], and the model potential
calculation [44] (which uses adjustable parameters), espe-
cially at small k. We found the fractional contribution from
the 1a1, 2a1, and each of the t2 orbitals, of ionization
energies 304.92 eV, 25.66 eV, 14.83 eV, to be 0.0025, 0.15,
0.281. The large scattering length in CH4 makes Z̄eff very
sensitive to the correlation potential strength at low
momenta (since κ ∼ 1=2a ≪ 1). We assessed convergence
of the basis set, increasing from 12 to 20 ghosts, and from
aug-cc-pVTZ to aug-cc-pVQZ functions, finding only a 5%
increase (see SM, Fig. 2). We include angular momenta
functions up to l ¼ 4: while the basis functions from
different centers combine to provide effectively higher
angular momenta [106], this may be insufficient to con-
verge the virtual-Ps diagram [107]. Moreover, the annihi-
lation-vertex enhancement factors (determined from
ab initio calculations for atoms [65,69]) may underestimate
the true short-range enhancement for delocalized MOs,
especially since the positron can probe electron density in
interstitial regions where nuclear repulsion is reduced
[108]. Calculation of the vertex enhancement for molecules
is challenging, and beyond the scope of this work. Further
theoretical and experimental work on CH4 is warranted.
Summary and outlook.—The accurate ab initio calculation

of the positron-molecule annihilation rate has proven to be a
challenging problem, thwarting the efforts of quantum
chemistry methods for all but the simplest molecule, H2,
for which only a sole (SVM) calculation agrees with experi-
ment. In this work, many-body theory was developed and
applied to calculate positron scattering properties and anni-
hilation rates, on the same footing, in H2, N2, and CH4. The
effects of correlations were elucidated. For the annihilation
rates Zeff , for H2, the power of the approach was demon-
strated by the excellent agreement with the benchmark SVM
result, thus providing a consensus with experiment.
Moreover, overall good agreement with experiment was
found for N2 and CH4 (though further theoretical and
experimental work on the latter was called for).
Importantly, the method is systematically improvable via
the inclusion of additional higher-order diagrams or via
coupling of the diagrams in Fig. 1 [111], and/or by dressing
the electron propagators for a self-consistent determination of
the molecular properties. The positron-molecule correlation
potential the many-body approach provides can be incorpo-
rated in a T-matrix (see e.g., [59,112–115]) or Schwinger

multichannel [30–37] approach to enable calculations on
larger molecules, and should provide uniform accuracy.
Moreover, its calculation is an essential starting point to
enable amany-body description of annihilation γ spectra, and
of inelastic processes [59,116,117] relevant to resonant
interactions in positron-binding molecules [1].
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