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We show that at N ¼ ∞ and below its upper critical dimension, d < dup, the critical and tetracritical
behaviors of the OðNÞ models are associated with the same renormalization group fixed point (FP)
potential. Only their derivatives make them different with the subtleties that taking their N → ∞ limit and
deriving them do not commute and that two relevant eigenperturbations show singularities. This invalidates
both the ϵ—and the 1=N—expansions. We also show how the Bardeen-Moshe-Bander line of tetracritical
FPs at N ¼ ∞ and d ¼ dup can be understood from a finite-N analysis.
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Field theories sometimes exhibit nonperturbative fea-
tures such as confinement [1], presence of bound states [2],
or exotic excitations [3], fixed points (FPs) of the renorm-
alization group (RG) flows that are nonperturbative as
in the Kardar-Parisi-Zhang equation [4], divergence of
the perturbative RG flow at a finite RG scale [5], and
the presence of a cusp in the FP potential as in the random
field Ising model [6], to cite but a few. Very often, these
nonperturbative effects are assumed either to occur in rather
complicated theories such as gauge and string theories or in
highly nontrivial statistical models.
OðNÞ models, which are the simplest scalar field

theories, are often implicitly considered to be immune to
these complex phenomena. Perturbative methods are there-
fore assumed to work almost all the time for these models,
the exception to the rule being the Bardeen-Moshe-Bander
(BMB) phenomenon [7], related to the existence of a line of
tricritical FPs at N ¼ ∞ and d ¼ 3, which requires non-
perturbative FPs to be fully understood from a large-N
analysis [8]. From this viewpoint, the enormous success of
the ϵ ¼ 4 − d expansion for the perturbative calculation of
the critical exponents associated with the Wilson-Fisher
(WF) FP [9] could let us believe that the critical physics of
the OðNÞ models is fully understood for any N and d,
especially since it is corroborated by the 1=N and ϵ ¼ d − 2
expansions [9].
Our goal in this Letter is to show instead that although

the critical physics of the OðNÞ models, described by the
WF FP, is fully under perturbative control at both finite and
infinite N, the tetracritical physics of these models at
N ¼ ∞—and probably of infinitely many multicritical
behaviors—is not. We show below (i) that at N ¼ ∞, it
is also associated with theWF FP, which is unexpected, and
(ii) that it nonetheless shows nonperturbative features that

are beyond the reach of the standard implementation of
both the large-N and ϵ- expansions. We show in particular a
very intriguing phenomenon related to the large-N limit of
the tetracritical FP of the OðNÞ models: from the second
order, the derivatives of the N ¼ ∞ tetracritical FP poten-
tial, that is, of the WF FP potential, are not identical to the
limit of the derivatives of the finite-N tetracritical FP
potentials when N → ∞. This turns out to be crucial for
understanding the large-N limit of tetracritical phenomena
and shows that this limit is much less trivial than what is
usually said [9–11].
The perturbative tetracritical FP corresponds to the

massless ðφ2Þ4 theory, the upper critical dimension of
which is dup ¼ 8=3. It is found in perturbation theory in
ϵ ¼ 8=3 − d for all N ≥ 1, and it is 3 times infrared
unstable [12]. Calling λ=ð384N3Þ the coupling in front
of the dimensionless ðφ2Þ4 term, the large-N perturbative
flow equation for λ reads as [13]

∂tλ ¼ −3ϵλþ 9λ2

4N
þ OðN−2Þ: ð1Þ

From Eq. (1), we find that at leading order in N, the
nontrivial FP solution is λ̃ ¼ 4ϵN=3 from which follows
that perturbation theory does not allow for a control of the
large-N limit of the tetracritical FP at fixed ϵ. Only the
double limit N → ∞ and ϵ → 0 such that the product ϵN
remains finite can possibly be under control. We come back
on this point in the following.
Let us recall that in generic dimensions d < 4, the only

nontrivial FP found in the standard large-N analysis of the
OðNÞmodels is the WF FP [14]. Thus, no tetracritical FP is
found at N ¼ ∞ and d < 8=3 which is paradoxical
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considering that it is perturbatively found for all N < ∞
and ϵ > 0.
We show below that the solution to the paradox above

lies in the field dependence of the tetracritical FP potential
whereas it cannot be obtained from its field expansion and
in particular from λ̃. The recourse to functional RGmethods
is therefore mandatory.
The best way to implement functional RG is to consider

Wilson’s RG, as it is inherently functional [15]. We
recall below the take-away philosophy of the modern
version of Wilson’s RG known as the nonperturbative—
or functional—renormalization group (NPRG).
NPRG is based on the idea of integrating fluctuations

step by step [16]. It is implemented on the Gibbs free
energy Γ [17–23] of a model defined by a Hamiltonian (or
Euclidean action) H and a partition function Z. To this
model is associated a one-parameter family of models with
Hamiltonians Hk ¼ H þ ΔHk and partition functions Zk,
where k is a momentum scale. In Hk, ΔHk is chosen such
that only the rapid fluctuations in the original model, those
with wave numbers jqj > k, are summed over in the
partition function Zk. Thus, the slow modes (jqj < k) need
to be decoupled inZk, and this is achieved by giving them a
mass of order k, that is, by taking for ΔHk a quadratic
(masslike) term, which is nonvanishing only for the slow
modes:

Zk½J� ¼
Z

Dφi expð−H½φ� − ΔHk½φ� þ J · φÞ ð2Þ

with ΔHk½φ� ¼ 1
2

R
q Rkðq2ÞφiðqÞφið−qÞ, where, for in-

stance, Rkðq2Þ ¼ ðk2 − q2Þθðk2 − q2Þ and J · φ ¼ R
x JiðxÞ

φiðxÞ. The k-dependent Gibbs free energy Γk½ϕ� is defined
as the (slightly modified) Legendre transform of logZk½J�:

Γk½ϕ�þ logZk½J�¼J ·ϕ−
1

2

Z
q
Rkðq2ÞϕiðqÞϕið−qÞ ð3Þ

with
R
q ¼

R
ddq=ð2πÞd. With the choice of regulator func-

tion Rk above, Γk½ϕ� interpolates between the Hamiltonian
H when k is of order of the ultraviolet cutoffΛ of the theory:
ΓΛ ∼H, and the Gibbs free energy Γ of the original model
when k ¼ 0: Γk¼0 ¼ Γ. The exact RG flow equation of Γk
gives the evolution of Γk with k between these two limiting
cases. It is known as the Wetterich equation. It reads as [18]

∂tΓk½ϕ� ¼
1

2
Tr(∂tRkðq2ÞfΓð2Þ

k ½q;−q;ϕ� þRkðqÞg−1); ð4Þ

where t ¼ logðk=ΛÞ, Tr stands for an integral over q and a

trace over group indices, and Γð2Þ
k ½q;−q;ϕ� is the matrix of

the Fourier transforms of δ2Γk=δϕiðxÞδϕjðyÞ.
In most cases, Eq. (4) cannot be solved exactly, and

approximations are mandatory. The best known approxi-
mation consists of expanding Γk in powers of the

derivatives of ϕi and to truncate the expansion at a given
finite order [24–32]. The approximation at lowest order is
dubbed the local potential approximation (LPA). For the
OðNÞ model it consists of approximating Γk by

Γk½ϕ� ¼
Z
x

�
1

2
ð∇ϕiÞ2 þ UkðϕÞ

�
ð5Þ

where ϕ ¼ ffiffiffiffiffiffiffiffiffi
ϕiϕi

p
. Fixed points are found only for

dimensionless quantities and the standard large-N limit
by rescaling the field and the potential by factors N−1=2

and N−1 respectively. Thus, we define the dimensionless

and rescaled field ϕ̄ and potential Ūk as ϕ̄ ¼ v−ð1=2Þd

kð2−dÞ=2N−1=2ϕ and Ūkðϕ̄Þ ¼ v−1d k−dN−1UkðϕÞ with
v−1d ¼ 2d−1dπd=2Γðd=2Þ. The LPA flow of Ūk then reads as

∂tŪkðϕ̄Þ ¼ −dŪkðϕ̄Þ þ
1

2
ðd − 2Þϕ̄Ūk

0ðϕ̄Þ

þ
�
1 −

1

N

�
ϕ̄

ϕ̄þ Ūk
0ðϕ̄Þ þ

1

N
1

1þ Ūk
00ðϕ̄Þ ð6Þ

with ∂t ¼ k∂k. The standard large-N limit of the LPA
flow equation above is obtained by (i) replacing the factor
1 − 1=N by 1 and (ii) dropping the last term in Eq. (6)
because it is assumed to be subleading [33]. As a
consequence of the two steps above, the explicit depend-
ence in N in Eq. (6) disappears in the large-N limit.
The crucial point of the large-N limit is that assuming

point (ii) above, the resulting LPA flow equation on Ūk can
be shown to be exact in the limit N → ∞ [34]. Under this
assumption, all FPs of the OðNÞ models have been found
exactly at N ¼ ∞ [14,33–36]. The result is the following:
In a generic dimension d < 4 there is only one non-
Gaussian FP at N ¼ ∞ which is the usual WF FP. The
exceptions to the rule above are the BMB lines of FPs
[7,14,37–39] existing in dimensions d ¼ 2þ 2=p with p
an integer larger than 1.
We now show that the procedure described above is too

restrictive to study the large-N limit of the tetracritical FPs.
As said above, the standard large-N analysis consists of
neglecting the last term in Eq. (6). However, this term is
negligible only if ½1þ Ū00

kðϕ̄Þ�−1 does not counterbalance at
large N its 1=N prefactor for some finite values of ϕ̄. We
now show that because of singularities in the third
derivative of Ūkðϕ̄Þ, the contribution of the last term in
Eq. (6) cannot be neglected in the FP equation of Ūk

00ðϕ̄Þ
obtained by differentiating Eq. (6) twice [see discussion
below Eq. (8) for more detail]. This turns out to be
sufficient to invalidate the standard large-N limit in the
tetracritical case.
We have numerically solved Eq. (6) and have found for

several values of N and d < 8=3 the perturbative tetracrit-
ical FP that we call T3ðN; dÞ. As expected, T3 bifurcates
from the Gaussian FP in d ¼ 8=3−. We have followed it
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down to d ¼ 2.6; see Figs. 1 and 3 of the Supplemental
Material [40]. The FP potential of T3, (i) shows as expected
two maxima, one of which being located at ϕ̄ ¼ 0 and
another one at ϕ̄2 > 0, and two minima at ϕ̄1 and ϕ̄3 such
that ϕ̄3 > ϕ̄2 > ϕ̄1 > 0 (see Fig. 1); (ii) can be continu-
ously followed up to arbitrarily large values of N at fixed
d < 8=3; and (iii) has its three extrema ϕ̄1; ϕ̄2; ϕ̄3

approaching each other when N is increased at fixed d.
These extrema tend to a common value ϕ̄0 when N → ∞
which is the minimum of the FP potential; see Figs. 1 and 4
of the Supplemental Material [40]. Point (ii) above is
paradoxical because it seems to contradict the standard
large-N approach where only the WF FP is found in a
generic dimension d < 8=3 at N ¼ ∞. We now show that
the WF FP potential at N ¼ ∞ is in fact the limit when
N → ∞ of the potential of T3 for d < 8=3. This solves the
above paradox because it explains why on one hand there
exists a nontrivial tetracritical FP at N ¼ ∞ and d < 8=3
and on the other hand there is no other nontrivial and
smooth solution of Eq. (6) at N ¼ ∞ than the WF FP
potential. However, this creates a new paradox since
obviously the critical and tetracritical universal behaviors
cannot be the same since the two FPs do not have the same
number of unstable eigendirections. We now explain in
detail this new paradox.
We can see in Fig. 1 that the FP potentials found in

d ¼ 2.6 for large values of N are extremely flat in the
region ϕ̄ ∈ ½ϕ̄1; ϕ̄3� because the three extrema are very
close and the height of the barrier between the two minima
very small. We have numerically found that the height of
the barrier scales as N−1 and the distance between the two
minima as N−1=2 so that the curvatures Ū00ðϕ̄iÞ at the three
extrema approach constant values as N → ∞; see Fig. 4 of
the Supplemental Material [40]. This suggests that Ū00ðϕ̄Þ
while being well behaved everywhere but between the three
extrema, changes very rapidly within a boundary layer

around ϕ̄0 of typical width N−1=2, making divergent
Ū000ðϕ̄0Þ when N → ∞.
It is not common in physics to encounter this kind of

situation where a sequence of functions fnðxÞ tends to a
smooth function f∞ðxÞ whereas from a certain order p,

their derivatives fðpÞn ðxÞ do not tend to fðpÞ∞ ðxÞ. However, a
simple toy model explains trivially how this can occur.
Consider the sequence of functions fnðxÞ ¼ n−1 sinðn2xÞ.
Obviously, f∞ðxÞ≡ 0 which implies that f0∞ðxÞ≡ 0
whereas limn→∞ f0nð0Þ ¼ ∞.
In our case, at fixed d < 8=3, the limit of the T3

potentials when N → ∞ is a nontrivial and well-defined
function that therefore must be the WF FP potential. We
have checked that it is indeed the limit of T3 when N → ∞;
see Fig. 1. The difference between the critical and tetra-
critical behaviors is therefore not visible on the potentials
themselves but only on their derivatives as we now show.
Let us study the boundary layer around ϕ̄0. It is

convenient for what follows to change variables. Following
Ref. [41], we define VðμÞ ¼ UðϕÞ þ ðϕ −ΦÞ2=2 with
μ ¼ Φ2 and ϕ −Φ ¼ −2ΦV 0ðμÞ. As above, it is convenient
to rescale μ and VðμÞ: μ̄ ¼ μ=N, V̄ ¼ V=N. In terms of
these quantities, the FP equation for V̄ðμ̄Þ reads as

0 ¼ 1 − dV̄ þ ðd − 2Þμ̄V̄ 0 þ 4μ̄V̄ 02 − 2V̄ 0 −
4

N
μ̄V̄ 00: ð7Þ

Equation (7) has two remarkable features: (i) it is much
simpler than Eq. (6) because the nonlinearity comes only
from the ðV̄ 0Þ2 term, and (ii) it is the LPA equation obtained
from the Wilson-Polchinski (WP) version of the NPRG
[15,42,43]. Thus, V̄ðμ̄Þ is related to the potential Ūðϕ̄Þ of
the Wetterich version of the RG by the Legendre transform
of Eq. (3). The standard large-N analysis performed in this
version of the NPRG consists here again of neglecting the
last term in Eq. (7) because it is suppressed by a 1=N factor.
Under the assumption that this term is indeed negligible,
the resulting equation can be solved exactly in the large-N
limit [14,35]. However, at large N, it is clear in Eq. (7) that
we have to deal with singular perturbation theory since the
small parameter used in the 1=N expansion is in front of the
term of highest derivative, that is, V̄ 00. In this case, it is well
known that at large N a boundary layer can exist for a
particular value of μ̄ that becomes a singularity at N ¼ ∞,
making this term non-negligible [44].
The value of μ̄ corresponding to ϕ̄0 is called μ̄0 and is the

minimum of V̄ðμ̄Þ at N ¼ ∞. We find for V̄ðμ̄Þ the same
features about its three extrema μ̄i as for Ūðϕ̄Þ at ϕ̄i: The
three extrema μ̄i approach each other and to μ̄0 as N → ∞.
The distances between them scale as N−1=2 and the
curvatures V̄ 00ðμ̄iÞ as N0. Taking into account the scaling
around μ̄0 inside the boundary layer, we introduce another
scaled variable μ̃ ¼ N1=2ðμ̄ − μ̄0Þ. Since at N ¼ ∞, V̄ 0ðμ̄Þ
vanishes at μ̄ ¼ μ̄0, V̄ðμ̄0Þ should approach 1=d at leading

FIG. 1. d ¼ 2.6: Ūðϕ̄Þ for the T3 FP of Eq. (6). Green, red, blue
and black curves correspond to N ¼ 1500, 2250, 4500 and
42000. The orange dashed curve corresponds to the WF FP at
N ¼ ∞. Inset: Close view of Ūðϕ̄Þ around ϕ̄i.
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order in N−1=2. We therefore define a scaled boundary layer
by ṼNðμ̃Þ ¼ N½V̄ðμ̄0 þ N−1=2μ̃Þ − 1=dÞ� which implies
Ṽ 00
Nðμ̃Þ ¼ V̄ 00ðμ̄0 þ N−1=2μ̃Þ. We plot Ṽ 00

Nðμ̃Þ for several
values of N in Fig. 5 of the Supplemental Material [40].
By substituting ṼNðμ̃Þ with its value in Eq. (7) and

solving it at order OðN−1=2Þ, we find that μ̄0 ¼ 2=ðd − 2Þ.
At order OðN−1Þ, Eq. (7) becomes

−
8Ṽ 00

∞ðμ̃Þ
d − 2

þ 8Ṽ 0
∞ðμ̃Þ2
d − 2

þ ðd − 2Þμ̃Ṽ 0
∞ðμ̃Þ − dṼ∞ðμ̃Þ ¼ 0;

ð8Þ

which is clearly invariant under μ̃ → −μ̃ from which it
follows that Ṽ 0

∞ð0Þ ¼ 0. However this term is indispen-
sable to describe the boundary layer of Ū00ðϕ̄Þ or V̄ 00ðμ̄Þ. At
μ̃ ¼ ∞, Ṽ 00

∞ðμ̃Þ should tend to a finite value that matches
with V̄ 00ðμÞ at μ̄þ0 . This implies that the solution of Eq. (8)
should be quadratic when μ̃ → ∞. Substituting Ṽ∞ðμ̃Þ
with Ṽ 00

∞ðμ̃ ¼ ∞Þμ̃2=2 in Eq. (8) and balancing the leading
terms as μ̃ → ∞, we find that Ṽ00

∞ðμ̃ ¼ ∞Þ ¼
−ðd − 2Þðd − 4Þ=16. We note that Ṽ 00

∞ðμ̃ ¼ ∞Þ does not
vanish in the range 2 < d < 8=3 where we analyze T3,
which validates the above argument at leading order.
Imposing the two boundary conditions found above
at μ̃ ¼ 0 and μ̃ ¼ ∞ selects a unique and globally
defined solution Ṽ 00

∞ðμ̃Þ of Eq. (8) shown in Fig. 5 of
the Supplemental Material [40]. We find V̄ 00ðμ̄þ0 Þ ¼
V̄ 00
WFðμ̄0Þ ¼ Ṽ 00

∞ðμ̃ ¼ ∞Þ which proves the matching at
N ¼ ∞ between the boundary layer and the potential
outside of the layer; see Fig. 2. We have shown in
Fig. 6 of the Supplemental Material [40] the boundary
layer for Ū00ðϕ̄Þ analogous to that of V̄ 00ðμ̄Þ. Note that the
first term in Eq. (8) comes from the last term in Eq. (6) or
Eq. (7), which is formally proportional to N−1 and
neglected in the usual large-N analysis. However this term
is indispensable to describe the boundary layer of Ū00ðϕ̄Þ or
V̄ 00ðμ̄Þ. To conclude, we have proven that for d < 8=3, a
boundary layer develops at large N for the second deriva-
tive of the T3 potential that becomes a singularity when
N → ∞. What remains to be understood is its physical
relevance.

At first sight, what we have obtained for T3 looks
paradoxical because we could think that its potential being
identical to the WF potential at N ¼ ∞, the linearized flow
around these two FPs should also be identical and thus the
same for all critical exponents. We now show that this naive
argument is wrong.
We have computed in d < 8=3 the relevant eigenvalues

of the RG flow around T3 and WF at finite and large N and
as expected we have found three for T3 and one for WF.
When N → ∞, one of the three eigenvalues at T3 tends as
expected to d − 2 which is the relevant eigenvalue ν−1 of
the critical WF FP at N ¼ ∞ [9,14]. The nontrivial point is
that the two other relevant eigenvalues at T3 have a well-
defined limit when N → ∞ although they do not play any
role for the critical behavior of the O(N ¼ ∞) model. The
solution to this paradox is that they are associated with
eigenperturbations that become singular when N → ∞.
That these two eigenperturbations become singular is clear
for one of them, called δV̄2, in Fig. 9 of the Supplemental
Material [40] As for the other one, δV̄1, its slope at μ̄0
diverges as N1=3 which implies that at N ¼ ∞, it becomes
discontinuous at μ̄0; see Figs. 9 and 10 of the Supplemental
Material [40]. For ordinary second order phase transitions,
these eigenperturbations are excluded which explains that
the associated relevant eigenvalues do not play any role.
This solves all the paradoxes associated with the tetracrit-
ical FPs at N ¼ ∞ and d < 8=3.
What remains to be studied is the particular case N ¼ ∞

and d ¼ 8=3 where a line, called the BMB line, of smooth
tetracritical FPs shows up. It is obtained in the WP version
of the RG by integrating Eq. (7) in which the last term,
proportional to 1=N, has been discarded. It is given by the
following implicit expression [14]:

μ̄� ¼ C
V̄ 0ð1 − 2V̄ 0Þ

� �2V̄ 0

1 − 2V̄ 0

�
4=3

þ 2fð4V̄ 0Þ; ð9Þ

where fðxÞ, which is analytic for x < 2, is given by

fðxÞ ¼ 3

2 − x
þ 4x

ð2 − xÞ7=3
Z

1

0

dz

�
2 − xz

z

�
1=3

ð10Þ

and μ̄� correspond to the two branches μ̄ > 3 and
μ̄ < 3, respectively. The derivative of the potential V̄ 0 is
positive (negative) on the former (latter) branch and C is a
non-negative integration constant. V̄ðμ̄Þ is analytic at
μ̄ ¼ μ̄0 ¼ 3 and V̄ 0ðμ̄ ¼ 3Þ ¼ 0. In Fig. 7 of the
Supplemental Material [40] different V̄ 0ðμ̄Þ corresponding
to different FPs of the BMB line are shown. All FPs along
the BMB line share the same critical exponents, that is, the
exponents of the Gaussian FP which is itself tetracritical.
Notice that the WF FP, which corresponds to C ¼ 0, is the
end point of this line and deserves special attention. We
come back on this point in the following.

FIG. 2. Second derivative of the WF and T3 FP potentials for
different values of N in d ¼ 2.6.
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From Eq. (1), we have seen that λ̃ remains constant at
leading order in 1=N along the hyperbola of constant
ϵN of the ðd;NÞ plane. This suggests that when the double
limits d → 8=3 and N → ∞ are taken at fixed α ¼ ϵN, T3

converges in d ¼ 8=3 to one of the FPs of the BMB line.
We have analytically and numerically checked this and
have derived analytically the relation between α and C:
α ¼ 162=C3; see the Supplemental Material [40] and
Fig. 11.
Two extreme cases are worth studying. First, the

Gaussian FP corresponds to the limit N → ∞ at fixed
dimension d ¼ 8=3, that is, at α ¼ 0. It corresponds to C ¼
∞ in Eq. (9). Second, α ¼ ∞, which implies C ¼ 0,
corresponds to taking the limit ϵ → 0 at fixed N ¼ ∞,
that is, to following the WF FP at N ¼ ∞ up to d ¼ 8=3.
However, at finite ϵ andN ¼ ∞, we know from the analysis
above that the last term in Eq. (7) cannot be neglected.
Consistently, the same occurs for the BMB line: the WF FP
potential is indeed the end point of the BMB line obtained
by taking the limit C → 0 in Eq. (9), but the derivatives of
this potential can only be studied by retaining the last term
in Eq. (7). Here again, this explains why the T3 FP in the
C → 0 limit is 3 times as unstable and not only once
unstable.
To conclude, we have solved the paradox of the apparent

absence of a nontrivial tetracritical FP at N ¼ ∞ and
d < 8=3 by showing that this FP does exist but is nothing
else than theWF FP up to the subtlety that the derivatives of
the tetracritical FP potential are not the derivatives of the
WF FP potential. This makes the large-N limit of the OðNÞ
model much less trivial than is usually advocated at least
for multicritical phenomena. The fact that the tetracritical
FP has two more unstable infrared directions than the WF
FP is related to this subtle point because they are associated
with singular eigenperturbations, a possibility which is
usually not considered. We conjecture that what has been
found above at large N and for d ≤ 8=3 is valid for all
multicritical points with an odd number of eigendirections
below or at their upper critical dimension because the BMB
lines for all of them terminate at the WF FP [14], a fact that
in itself is almost enough to imply everything else.
Let us finally point out that what we have found for the
tetracritical FP is very different from what was found
around d ¼ 3 at large-N in the tricritical case which
required the existence of new FPs to be fully understood
at finite N [45–48]. We also conjecture that this phenome-
non is not specific to the OðNÞ models but should rather be
generic.
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Delamotte, Phys. Rev. Lett. 92, 255703 (2004); L. Canet, B.
Delamotte, D. Mouhanna, and J. Vidal, Phys. Rev. D 67,
065004 (2003); L. Canet, H. Chaté, B. Delamotte, I.
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