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We derive lower bounds on the variance of estimators in quantum metrology by choosing test
observables that define constraints on the unbiasedness of the estimator. The quantum bounds are obtained
by analytical optimization over all possible quantum measurements and estimators that satisfy the given
constraints. We obtain hierarchies of increasingly tight bounds that include the quantum Cramér-Rao bound
at the lowest order. In the opposite limit, the quantum Barankin bound is the variance of the locally best
unbiased estimator in quantum metrology. Our results reveal generalizations of the quantum Fisher
information that are able to avoid regularity conditions and identify threshold behavior in quantum
measurements with mixed states, caused by finite data.
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Introduction.—Quantum metrology provides the theory
foundation for identifying precision limits and developing
quantum-enhanced strategies in quantummeasurements [1–
6]. Today, quantum sensing and metrology represent some
of the most advanced quantum technologies with applica-
tions ranging fromgravitationalwave detection [7] to atomic
clocks and interferometers [6]. The cornerstone of frequent-
ist quantum metrology, the quantum Cramér-Rao bound
(QCRB), identifies a lower bound on the variance of an
estimator for a parameter encoded in a quantum state [8].
The inverse of the QCRB is a measure for the quantum
state’s sensitivity under small variations of a parameter,
known as the quantumFisher information (QFI). Nowadays,
the QFI is used, far beyond its original purpose in quantum
metrology, as an extremely powerful and versatile tool in
quantum information theory. For instance, it efficiently de-
tects multipartite entanglement [9,10], Einstein-Podolsky-
Rosen steering [11], quantum phase transitions [12–14],
non-Markovian open-system evolutions [15], and allows us
to sharpen uncertainty relations [16,17], quantum speed
limits [18], and the quantum Zeno effect [19].
The QCRB can be understood as the natural quantization

of the classical CRB by analytical optimization over all
possible quantum measurements [8]. As such, the QCRB
inherits many properties from its classical counterpart,
including its shortcomings. For instance, the CRB is
undefined for estimation problems that do not satisfy certain
regularity conditions. Furthermore, saturation of the CRB
typically only occurs in the asymptotic limit of many
repeated measurements, i.e., when the signal-to-noise ratio
is large.Consequently, theQCRBprovides only very limited
information about the achievable precision in few-shot
scenarios. To realistically identify limits on the variance
of unbiased estimators, tighter bounds are required that

generalize the QCRB for low signal-to-noise ratio. In
quantum metrology, the unattainability of the QCRB has
been pointed out using Bayesian approaches that involve
some form of prior information [20–22]. This so-called
threshold behavior has been studied in classical information
theory within the frequentist paradigm, to which the CRB
belongs, through comparison with tighter bounds [23–27].
Generalizations of the CRB appeared already in its

contemporary literature,most notably the families of bounds
by Bhattacharyya [28] and Barankin [29]. Both families
consist of hierarchies of bounds that impose increasingly
demanding conditions on the unbiasedness of an estimator.
The Bhattacharyya bounds compare the estimator to the
identity function in a neighborhood of the unknown param-
eter’s true value by means of a Taylor-like expansion
involving higher-order derivatives. The Barankin bounds
impose unbiasedness of the estimator at an increasing
number of n test points within the range of possible values
for the unknown parameter. In the limit n → ∞, the
Barankin bounds identify the variance of the locally best
unbiased estimator [29]. By avoiding derivatives altogether,
the Barankin bounds circumvent the regularity conditions of
the CRB and, more generally, the Bhattacharyya bounds.
The Abel bounds [30] combine the ideas of Bhattacharyya
and Barankin and involve a combination of test points and
higher-order derivatives. In all cases, these approaches
produce hierarchies of bounds that are tighter than the
CRB, which in turn is recovered at the respective low-
est order.
In this Letter, we derive a hierarchy of increasingly tight

bounds for quantum parameter estimation that include the
QCRB as a special case at the lowest order. Like the QCRB,
all generalized quantum bounds are obtained from classical
frequentist bounds by an analytical optimization over all
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possible quantum measurements. Each bound is deter-
mined by a choice of test observables that reflect gener-
alized unbiasedness conditions on the estimator. In the limit
of pure states, the hierarchy collapses and all bounds
reproduce the QCRB. As relevant applications, we show
how our approach naturally quantizes the bounds by
Bhattacharyya [28], Barankin [29], Hammersley [31],
Chapman and Robbins [32], and Abel [30]. We provide
explicit expressions for the bounds and the quantum
information functions, i.e., generalizations of the QFI based
on the Bures metric, that are defined by their inverses. We
illustrate our results with an analysis of threshold behavior
in quantum phase estimation with a qubit.
Hierarchy of quantum bounds.—We consider an esti-

mator θestðxÞ for θ that is a function of the obtained
measurement results x. For a fixed measurement setting,
described by the positive operator-valued measure (POVM)
Ex ≥ 0, with

P
x Ex ¼ I, the probability to obtain the result

x when the parameter of interest takes on the value θ is
given by pðxjθÞ ¼ TrfExρðθÞg, where ρðθÞ is the quantum
state of the system. In the following, we describe the state
of the measurement apparatus with a generic (single-copy)
density matrix ρðθÞ. Them-shot scenario is included in this
description by replacing ρðθÞ with ρðθÞ⊗m.
The quantity of central interest is the variance of the

estimator,

ðΔθestÞ2 ¼
X
x

pðxjθÞ½θestðxÞ − hθestiθ�2; ð1Þ

with the average value hθestiθ ¼
P

x pðxjθÞθestðxÞ. We are
interested in the locally best estimators, i.e., those that
minimize the variance when the unknown parameter takes
on the value θ. We consider estimators that are unbiased
over the range Θ ⊂ R of possible parameter values, i.e.,
hθestiθ0 ¼ θ0 for all θ0 ∈ Θ. The starting point for our
derivation of lower bounds on (1) is the choice of a family
of test observables G ¼ ðG1;…; GnÞ⊤. Each Gk is a
Hermitian operator on the same Hilbert space as ρðθÞ.
Typically, Gk will be a linear function of ρðθkÞ where
θk ∈ Θ. In the following, we derive generalized quantum
bounds for any choice of the Gk, and further below, we
show how suitable choices for the Gk lead to a hierarchy of
bounds that generalize the QCRB. The number n of
different test observables Gk determines the order of the
bound. Each Gk allows us to impose an unbiasedness
constraint λk on the estimator θest.
In combination with a measurement of the POVM

element Ex, the test observables give rise to the classical
functions gkðxÞ ¼ TrfExGkg. We first derive classical
bounds that hold for any choice of the test functions gðxÞ ¼
½g1ðxÞ;…; gnðxÞ�⊤ and in a second step optimize these
bounds over all choices of POVMs. The bounds are based
on linear combinations of the test functions of the form
a⊤gðxÞ ¼ P

n
k¼1 akgkðxÞ, where a ¼ ða1;…; anÞ⊤ ∈ Rn is

a vector of coefficients. We find that ðΔθestÞ2 ≥ ðΔθestÞ2C,
with [33]

ðΔθestÞ2C ¼ sup
a

ða⊤λÞ2
a⊤Ca

¼ λ⊤C−1λ; ð2Þ

where the second equality holds when C is invertible. We
have introduced the bias conditions λ ¼ ðλ1;…; λnÞ⊤ with

λk ¼
X
x∈Xþ

gkðxÞðθestðxÞ − hθestiθÞ; ð3Þ

and C is a real, symmetric n × n classical information
matrix with elements

Ckl ¼
X
x∈Xþ

gkðxÞglðxÞ
pðxjθÞ : ð4Þ

The sums are restricted to those events x ∈ Xþ that occur
with nonzero probability pðxjθÞ > 0.
To obtain the corresponding quantum bounds, we now

minimize the right-hand side of Eq. (2) over all POVMs
fExg. We assume that the λk are fixed properties of the
estimator that characterize the bias. Thus, each test observ-
able Gk imposes another constraint (3) on the unbiasedness
of θest. The analytical optimization over all POVMs yields
ðΔθestÞ2 ≥ ðΔθestÞ2C ≥ ðΔθestÞ2Q with [33]

ðΔθestÞ2Q ¼ min
fExg

ðΔθestÞ2C ¼ sup
a

ða⊤λÞ2
a⊤Qa

¼ λ⊤Q−1λ; ð5Þ

where, again, the final equality in Eq. (5) holds for Q
invertible, and we obtain the real, symmetric n × n quan-
tum information matrix Q with elements

Qkl ¼ TrfGkΩρðθÞðGlÞg: ð6Þ

The operator ΩAðXÞ is defined by the property

X ¼ AΩAðXÞ þ ΩAðXÞA
2

: ð7Þ

Intuitively, ΩAðXÞ describes a symmetric “division” of X
by the operator A. Furthermore, the bound (5) is saturated
by an optimal projective measurement whose elements Ex

are the projectors onto the eigenstates of ΩρðθÞða⊤GÞ. The
optimal coefficient vector a achieves the supremum in
Eq. (5) and is given by a ¼ αQ−1λ when Q−1 exists, with
α ∈ R a normalization constant.
The bound (5) and definition (7) apply to test observ-

ables that satisfy Π⊥GkΠ⊥ ¼ 0 for all k, where Π⊥ is the
projector onto the eigenspace of ρðθÞ with eigenvalue 0.
This condition can always be satisfied by adding ϵI to ρðθÞ
with ϵ ≪ 1. A discussion of technical details and saturation
conditions is provided in Ref. [33].
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To illustrate our approach, consider the simple scenario of
a single test observable (n ¼ 1) chosen asG1 ¼ ∂ρðθÞ=∂θ. It
is easy to see that the bound (2) yields the classical CRBwith
bias condition λ1 ¼ ð∂=∂θÞhθestiθ and the Fisher informa-
tionC. The associated quantum bound (5) is thewell-known
QCRB, i.e., Q yields the quantum Fisher information
FQ½ρðθÞ�. More general choices of the test observables
reveal a rich variety of quantum bounds that provide more
realistic estimates of the smallest achievable variance of
unbiased estimators than the QCRB. The result (5) also
includes special cases that are discussed in Ref. [34].
Quantum Barankin bounds.—Consider the family of test

observables Gk ¼ ρðθkÞ, representing the density matrix at
different values of the parameter θ within the range of
possible parameters, called test points θk ∈ Θ. We are
interested in estimators that are unbiased at the true value θ
and at each of these test points, hθestiθk ¼ θk, which in (3)
yield λk ¼ θk − θ.
Classical bounds for estimators that are unbiased at n

arbitrary test points within the range Θ were first derived
by Barankin in 1949 [29]. The Barankin bound (BaB) of
order n is recovered from Eq. (2) for the choice G ¼
½ρðθ1Þ;…; ρðθnÞ�⊤, after a maximization over the choice
of test points λk, and reads ðΔθestÞ2CBa

¼ supλλ⊤C−1
Baλ, with

the Barankin information matrix

ðCBaÞkl ¼
X
x∈Xþ

pðxjθÞLðxjθ þ λk; θÞLðxjθ þ λl; θÞ; ð8Þ

and Lðxjθ þ λk; θÞ ¼ pðxjθ þ λkÞ=pðxjθÞ is the likelihood
ratio. Barankin further showed that an additional opti-
mization of all BaBs over the number n of test points (or
equivalently n → ∞) yields the variance of the locally
best unbiased estimator, which is unique [29]. The
Barankin bound is typically hard to determine but has
the advantage of avoiding the regularity conditions of the
CRB. Efficient approximations of the Barankin bound
based on small n have proven to be useful to highlight the
limitations of the CRB at small signal-to-noise ratio
[23–25,27].
We identify the quantum Barankin bounds (QBaBs) by

optimizing over all possible POVMs, which according to
Eq. (5) yields minfExgðΔθestÞ2CBa

¼ supλλ⊤Q−1
Baλ with the

quantum Barankin information (QBaI) matrix

ðQBaÞkl ¼ Trfρðθ þ λkÞΩρðθÞðρðθ þ λlÞÞg: ð9Þ

The QBaBs can be improved at no additional computa-
tional cost by adding ρðθ0Þ ¼ ρðθÞ to the set G [23], with
the corresponding bias constraint λ0 ¼ 0, leading to [33]

ðΔθestÞ2QBa
¼ sup

λ
λ⊤ðQBa − ee⊤Þ−1λ; ð10Þ

where e ¼ ð1;…; 1Þ⊤ ∈ Rn.

At its lowest order, n ¼ 1, the classical BaB reduces to the
Hammersley-Chapman-Robbins bound (HCRB) [31,32],
which reads

ðΔθestÞ2CHCRB
¼ sup

λ

λ2

χ2½pð·jθ þ λÞ; pð·jθÞ� : ð11Þ

Here, χ2½pð·jθþλÞ;pð·jθÞ�¼P
x∈XþpðxjθþλÞ2=pðxjθÞ−1

is the χ2 divergence of pð·jθ þ λÞ with respect to pð·jθÞ.
The quantum Hammersley-Chapman-Robbins bound
(QHCRB), ðΔθestÞ2QHCRB

¼ minfExgðΔθestÞ2CHCRB
, i.e., the

QBaB (10) at n ¼ 1 reads

ðΔθestÞ2QHCRB
¼ sup

λ

λ2

Trfρðθþ λÞΩρðθÞ½ρðθþ λÞ�g− 1
: ð12Þ

The denominator indeed coincides with the quantum χ2 di-
vergence χ2Q½ρðθþλÞ;ρðθÞ�¼maxfExgχ

2½pð·jθþλÞ;pð·jθÞ�¼
TrfρðθþλÞΩρðθÞðρðθþλÞÞg−1 [35].
Already at this lowest order, the QBaBs generalize the

QCRB: If ρðθÞ is differentiable, we recover the QCRB from
the right-hand side of Eq. (12) by replacing the supremum
with the limit λ → 0 [33,35]. Generally, however, the
QHCRB is tighter, ðΔθestÞ2QHCRB

≥ðΔθestÞ2QCRB
¼FQ½ρðθÞ�−1,

and applicable to a wider range of problems.
Quantum Bhattacharyya bounds.—Let us consider the

test observables Gk ¼ ∂
kρðθÞ=∂θk, assuming that these

derivatives exist. The bias conditions (3) here identify λk ¼
ð∂k=∂θkÞhθestiθ for k > 0 as fixed properties of the esti-
mator. Unbiased estimators satisfy λ1 ¼ 1 and λk ¼ 0 for
all k > 1.
Choosing the family of test functions G ¼

f∂ρðθÞ=∂θ;…; ∂nρðθÞ=∂θng⊤ with corresponding bias
conditions (3) λ ¼ ð1; 0;…; 0Þ⊤ leads in Eq. (2) to the
Bhattacharyya bound (BhB) of order n [28], ðΔθestÞ2CBh

¼
λ⊤C−1

Bhλ, with the Bhattacharyya information matrix

ðCBhÞkl ¼
X
x∈Xþ

1

pðxjθÞ
�
∂
kpðxjθÞ
∂θk

��
∂
lpðxjθÞ
∂θl

�
: ð13Þ

Conceptually, the BhBs account for the unbiasedness of θest
in an increasingly large region around the true value θ by
adding constraints on the higher-order terms of a Taylor
expansion.
ThequantumBhattacharyyabounds(QBhBs)ðΔθestÞ2QBh

¼
minfExgðΔθestÞ2CBh

¼ λ⊤Q−1
Bhλ follow from Eq. (5) with the

quantum Bhattacharyya information (QBhI) matrix

ðQBhÞkl ¼ Tr

�
∂
kρðθÞ
∂θk

ΩρðθÞ

�
∂
lρðθÞ
∂θl

��
: ð14Þ

It is easy to see that at n ¼ 1, the QBhB coincides with the
QCRB, while for higher orders, it is generally tighter.
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Compared to the QBaBs, the QBhBs require stronger regu-
larity conditions, since all higher-order derivatives must exist.
In contrast, the QBhBs avoid the optimization over the
parameters λ of the QBaBs, which can be computationally
expensive. Since higher-order derivatives can be recovered
from the differences of infinitesimally separated test points,
the QBaBs include the QBhBs as special cases [29].
Quantum Abel bounds.—The bounds of Barankin and

Bhattacharyya can be combined into hybrid bounds by
considering a combination of test observables that contain
both ρðθ þ λkÞ and ∂

lρðθÞ=∂θl. Such bounds were first
discussed by Abel in 1993 [30]. We obtain the classical
Abel bounds of order ðr; sÞ, ðΔθestÞ2CA

, as well as the corres-
ponding quantum Abel bounds (QABs) by considering the
family of rþ s test observables G ¼ fρðθ þ λ1Þ;…; ρðθ þ
λrÞ; ∂ρðθÞ=∂θ;…; ∂sρðθÞ=∂θsg⊤ in Eqs. (2) and (5), respec-
tively. The QABs read [33]

ðΔθestÞ2QA
¼min

fExg
ðΔθestÞ2CA

¼ sup
λ1;…;λr

λ⊤ðQA− f f⊤Þ−1λ; ð15Þ

where λ¼ ðλ1;…;λr;1;0;…;0Þ∈Rrþs combines the unbia-
sedness conditions of the Barankin and Bhattacharyya
bounds and f ¼ e ⊕ 0 ∈ Rrþs, where 0 ∈ Rs is the zero
vector. The ðrþ sÞ × ðrþ sÞ quantum Abel information
(QAI) matrix

QA ¼
�
QBa QH

Q⊤
H QBh

�
ð16Þ

contains the r × r QBaI matrix QBa (9) and the s × s QBhI
matrix QBh (14), as well as the r × s hybrid matrix

ðQHÞkl ¼ Tr

�
ρðθ þ λkÞΩρðθÞ

�
∂
lρðθÞ
∂θl

��
: ð17Þ

Even more general bounds can be obtained by including
higher-order derivatives also at each of the test points θ þ λk,
see, e.g., [27].
Quantum phase estimation with a qubit.—Let us now

illustrate these bounds by applying them to the relevant
example of quantum phase estimation. Our goal is to
estimate the phase θ of a single qubit ρ ¼ 1

2
ðI þ r⊤σÞ with

Bloch vector r ¼ ð0; r; 0Þ⊤, which is imprinted by the
rotation UðθÞ ¼ e−iσzθ=2 as ρðθÞ ¼ UðθÞρUðθÞ†. To study
threshold behavior, we analytically determine and compare
the bounds QCRB ¼ QABð0;1Þ, QHCRB ¼ QABð1;0Þ and
the hybrid bound QABð1;1Þ for m independent copies of the
same qubit, ρðθÞ⊗m [33]. The results are shown in Fig. 1 for
up to m ¼ 7 qubits with entropy SðρÞ ¼ −Trfρ ln ρg ¼
0.6, corresponding to r ¼ jrj ≈ 0.42. For better compari-
son, all bounds are normalized with respect to the QCRB,
i.e., the plot shows ðΔθestÞ2Q=ðΔθestÞ2QCRB

with ðΔθestÞ2QCRB
¼

1=ðmr2Þ. We note that the QCRB is overly optimistic for

estimators that are unbiased in the range Θ ¼ ðπ; π� when m
is small. Both bounds QHCRB and QABð1;1Þ reveal thresh-
old behavior: They identify larger values on the lowest
possible variance of an unbiased estimator, but after suffi-
ciently many measurements, they approach the QCRB.
Since the bounds at small m are determined by the edge
of Θ, a smaller range Θ allows for smaller variances of
unbiased estimators. Furthermore, the threshold behavior is
more pronounced as the entropy of the qubit grows and it
disappears in the limit of pure states [33].
The constant value of mðΔθestÞ2QCRB

is due to the
additivity of the QFI: This reflects the asymptotic limit,
where each additional measurement adds as much infor-
mation as the previous one. This is not the case at low data,
as is shown by the more general bounds that do not satisfy
additivity. As a consequence, saturation of these bounds in
the m-shot scenario typically requires joint measurements
on all m copies.
General properties.—The quantum information matrixQ

is closely related to the Bures metric [36], which stands out
as the smallest among the family of metrics that contract
under quantum channels [37,38]. When the Gk are linear
functions of ρð·Þ, the quantum information function
Ia;λ½ρð·Þ�¼ða⊤QaÞ=ða⊤λÞ2¼Trfða⊤GÞΩρðθÞða⊤GÞg=ða⊤λÞ2
is convex in the quantum state ρð·Þ as a consequence of the

FIG. 1. Bounds on the variance of an unbiased estimator
in the interval Θ ¼ ð−π; π� for m independent measurements
on a noisy qubit with entropy SðρÞ ¼ 0.6. The plots show
ðΔθestÞ2QA

=ðΔθestÞ2QCRB for the QABs of order (1,1), ð1; 0Þ ¼
QHCRB and ð0; 1Þ ¼ QCRB. The QAB bounds (1,0) and (1,1)
are obtained by maximizing over the single free parameter λ in
(15) and the dependence is shown in (a) and (b), respectively.
Lighter colors indicate larger values of m ¼ 1;…; 7. Below the
threshold value m ¼ 3, the maximum appears at the edge of the
parameter range Θ at λmax ¼ π and the QHCRB is larger than the
QCRB (c). For m ≥ 3, the edge value (dashed orange line) is
smaller than the one obtained at λmax → 0, see also (a). In this
case, the QHCRB coincides with the QCRB. The hybrid
QABð1;1Þ always takes on its maximum at λmax ¼ π and con-
verges to the QCRB from above in the limit of large m.
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joint convexity of the Bures inner product [33,38–40]. The
bounds (5) are furthermore bounded from below by the
QCRB and therefore subject to the same separability limits
that were derived using the QFI [9,10]. We show in Ref. [33]
that in the limit of pure states, all QABs converge to the
QCRB. We further provide explicit expressions for Q from
the spectral decomposition of ρðθÞ, from matrix vectoriza-
tion techniques, and from the Bloch vector in the case of
two-level systems. In the following we present an equivalent
formulation of these bounds as optimization problems with
constraints.
Locally best unbiased quantum parameter estimation.—

The bounds (5) are tight in the sense that they identify the
minimum variance at θ by optimization over all measure-
ments and over all estimators that satisfy the unbiasedness
constraints determined by G and λ. In other words, the
bound (5) is the solution to [33]

min
fExg

min
θest

ðΔθestÞ2;

s:t:
X
x∈Xþ

TrfExGgðθestðxÞ − hθestiθÞ ¼ λ: ð18Þ

Moreover, the estimator that achieves the second minimum
is unique. For estimators that are unbiased throughout Θ,
the locally best variance is identified by the quantum
Barankin bound in the limit n → ∞, which demands
unbiasedness at all points in Θ. All other bounds discussed
here are approximations of this limit. This extends
Barankin’s result [29,41] to the quantum realm by opti-
mization over all measurements.
Conclusions.—We derived hierarchies of generalized

quantum bounds on the variance of unbiased estimators
in quantum metrology from unbiasedness constraints. The
bounds converge towards the QCRB from above in two
limits: When large amounts of data, i.e., many copies of the
state, are available, and when the state becomes pure. For
few-shot measurements with mixed states, the more general
bounds reveal tighter constraints on the precision of
unbiased quantum parameter estimation than the QCRB.
We identify the optimal measurement observable and the
estimator that achieves the smallest variance, given a set of
unbiasedness constraints. Besides leading to important
generalizations of the QFI and the QCRB, these bounds
are useful to study threshold behavior in quantum mea-
surements and to identify error bounds when regularity
assumptions of the QCRB cannot be fulfilled.
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