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The statistics of noise emitted by ultrathin crumpled sheets is measured while they exhibit logarithmic
relaxations under load. We find that the logarithmic relaxation advanced via a series of discrete, audible,
micromechanical events that are log-Poisson distributed (i.e., the process becomes a Poisson process when
time stamps are replaced by their logarithms). The analysis places constraints on the possible mechanisms
underlying the glasslike slow relaxation and memory retention in these systems.
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Introduction.—Studying the characteristics of noise
emitted by a dynamic system has long been used as a tool
to gain insights into the system’s properties and ongoing
physical processes [1]. For instance, careful measurements
of shot noise in electronic devices has been used as an
indicator for fractional charge and exotic phases in certain
electronic systems [2], and the study of 1/f noise in
structural glasses has similarly led to fruitful insights
regarding the nature of the two-level systems postulated
to be present in this system [3].

Here we use noise measurements to gain insight into the
mechanisms underlying slow relaxation, aging, and
memory effects, which are some of the hallmark behaviors
of out-of-equilibrium disordered systems. These behaviors
are exhibited by a wide range of systems, such as structural
and electron glass [4], frictional interfaces [5], and colloidal
systems [6], as well as disordered mechanical systems such
as granular piles [7]. Slow mechanical relaxations under
constant load are also referred to as “creep” [8], including
strain relaxation under a constant load of ice [9], metals
[10], and rock [11], as well as the silk threads used by
Weber in his pioneering experiments on magnetism [12].

One system that exhibits these behaviors is a large, thin
sheet of Mylar that has been crumpled many times into a
ball [14]. When placed under constant uniaxial load, the
system’s volume exhibits an ever-slowing relaxation proc-
ess that spans many timescales—from fractions of a second
to weeks, without showing any signs of reaching equilib-
rium. This behavior is reproduced in Fig. 1(a), as explained
below. Similar phenomena are observed in the normal force
exerted by a crumpled thin sheet when it is placed under
constant strain [13,15]. Previously, we have shown that
when this system is subjected to a two-step protocol in
which after a controlled waiting time ¢,,, the applied load or
strain is abruptly changed to another, lower, fixed value,
the ensuing relaxation, while still slow, exhibits clear
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nonmonotonic features. In particular, under constant con-
ditions, a macroscopic observable (volume or normal force)
increases slowly over timescales ranging from seconds to
hours, comes to a halt, and then decreases, converging to a
logarithmic relaxation [13]. This nonmonotonic memory
dynamics is similar to the celebrated Kovacs effect that
has been observed in a range of glassy systems such as
polymer melts [16,17], metallic glasses [18], and granular
systems [19].

Here, we analyze the acoustic emissions emitted by
crumpled thin sheets during logarithmic volume relaxation
under load, and use the results to constrain the possible
mechanisms leading to slow relaxation and memory reten-
tion in this system. Earlier experiments also noted that
crumpled thin sheets emit crackling noise when strained
[20,21]. However, so far these measurements were per-
formed only during manual manipulation and were focused
on the statistics of the intensities of the acoustic emissions.
In this work, we show that the crackling patterns measured
during logarithmic relaxation of crumpled sheets under
load are consistent with a stochastic version of the model
introduced in Ref. [13] to explain relaxation and memory in
these systems.

Experiments.—A thin sheet of Mylar, 500 by 500
millimeters in size and 12 micrometers in thickness was
crumpled more than 50 times into a ball and then placed
under a load of 200 grams. The height of the system was
measured using a magnetic displacement sensor, sampled
at 22 KHz using a data acquisition card for over six hours.
The displacement data were averaged off-line to a rate of
5 Hz, to reduce the measurement noise. The results indicate
a nearly perfect logarithmic relaxation spanning more than
four decades in time, as shown in Fig. 1(a). As the system
relaxes under the load, it emits audible crackling sounds,
which are recorded using an amplified microphone and a
1 KHz high-pass filter in a noise-isolated chamber, at a rate
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of 22 KHz (the spectra of the crackling sounds emitted by
the crumpled sheets in the experiments are typically
centered around 2 KHz). An example of an acoustic
recording is attached.

A small sample of the obtained acoustic emission signal
is shown in the inset of Fig. 1(b), revealing a series of
discrete pulses. Each pulse has a typical duration of about
2 milliseconds, and a central frequency of about 2000 Hz,
and is easily detected in the large raw data files. During a
typical experiment we detect more than 2000 acoustic
emission events, as shown in Fig. 1.

Figure 1(b) shows the time gaps between each two
consecutive acoustic emission events. Three important
observations can be made from this plot. First, the average
time gap between consecutive events increases linearly
with the age of the experiment: while in the first seconds of
the experiment the typical time gap is about 10 millisec-
onds, this number increases to about 500 seconds by the
end of the experiment. Second, most of the events are
concentrated in a narrow band which retains a width of
about one decade throughout the experiment. Third, occa-
sionally many events happen during a short time, with time
gaps between consecutive events that quickly drop to the
lower temporal detection limit. One such avalanche is
marked by a red dotted rectangle in Fig. 1(b). The
accumulated number of acoustic events corresponds clearly
to the height relaxation, from the slight curvature of the plot
down to small details, as shown in Fig. 1(a). In particular,
the avalanches detected in the acoustic emission measure-
ments manifest in a sharp step in the height relaxation
curve, as highlighted for the same avalanche in Figs. 1(a)
and 1(b).

The statistics of time gaps between consecutive acoustic
emission events is shown in Fig. 1(c). The inset shows a
histogram of the time gaps, each divided by the time since
the beginning of the experiment, to normalize out the linear
slowing down of the process. The result is an approximate
exponential distribution of the normalized time gaps,
indicative of an approximate log-Poisson statistics for
the time gaps themselves. The autocorrelation function
for the sequence of normalized time gaps indicates a weak
correlation that reduced to noise after about 20 events, as
shown in Fig. 1(c). This short-time correlation, as well as
the first point in the histogram, is mainly a result of the rare
avalanches.

The experimental observations indicate that the mechani-
cal relaxation of the crumpled sheet is accompanied by a
sequence of discrete, audible, micromechanical events,
suggesting that each event is releasing some of the internal
stress and contributing to the overall displacement of the
system. The sensitivity of height measurement in our
logarithmic relaxation experiment is not sufficient to detect
the height decrease due to any single event. However, the
comparison between the curves, averaged over 15 repeti-
tions of the experiment performed with the same sheet
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FIG. 1. Acoustic emission during logarithmic relaxation of

crumpled sheets. (a) Measurements of the height of a ball of
crumpled thin sheet under load as a function of time, showing
logarithmic relaxation (blue line) and the accumulated number of
acoustic events during the relaxation (orange). (b) Log-log plot of
the time gaps between consecutive acoustic emissions, on the
same time axis as the experiment. Inset: example of the measured
acoustic signal. Note the appearance of avalanches (red dotted
rectangle) that correlated with intermittent features in the relax-
ation curve. (c) Measured autocorrelation of time gaps between
consecutive acoustic emission, normalized by the time passed
since the beginning of the experiment. Inset: histogram of
normalized time gaps, showing approximate log-Poisson
statistics.

yields an average displacement of 5.5 & 0.8 microns per
acoustic event. The robust ratio between the number of
events and the displacement (either across measurement or
due to an avalanche) is indicative that this sequence of
micromechanical events is indeed related to the process by
which the system relaxes.
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Continuous model.—Our starting point is a model we
introduced previously to account for logarithmic relaxation
and Kovacs-like memory response in crumpled sheets [13].
We have shown, experimentally, that when subjected to a
constant (uniaxial) strain, the force exerted by a crumpled
thin sheet decays logarithmically over many decades in
time, in line with earlier measurements on a similar
protocol where a constant force is applied to the sheet
and the strain changes logarithmically [14]. Moreover, we
used a two-step protocol to demonstrate that the system
exhibits clear aging behavior: the applied strain was E; for
a duration ¢,, and then switched to a lower strain E,, and the
resulting slow relaxations depended explicitly on both ¢,
and the measurement time ¢. The function F(1,,, f) provides
important information regarding the physical mechanisms
underlying slow relaxations. Intriguingly, despite the com-
plexity of this system we found that the function F' showed
nonmonotonic relaxations with a peak at time 7, scaling
linearly with t,,.

This simple result was consistent with a model in which
the relaxations are a superposition of many exponential
relaxations, drawn from the distribution of relaxation rates
P() « 1/ (with lower and upper cutoffs). Moreover, this
formalism captured the logarithmic form of the relaxations.
In fact, this distribution was derived originally within a mean-
field model for slow relaxations in electron glasses. There,
linearization of the equations governing the system dynamics
led to [22] (dv/dt) = Av with ¥ a high-dimensional vector
corresponding to all degrees of freedom of the system, and A
a matrix whose (negative) eigenvalues correspond to the
relaxation rates, and whose spectrum was later shown to
follow the aforementioned 1/4 distribution [23]. This model
was used to predict the aging dynamics in electron glasses
[24]. Note that within this interpretation, the amplitude
associated with each eigenmode decays exponentially—
and smoothly.

Adopting this model for the crumpled sheets, this model
captures the nonmonotonic relaxations and quantitatively
explains the linear scaling between 7, and 7, and the
logarithmic relaxations, and thus seems to adequately
describe the dynamics of the system. Within this mean-
field approximation and due to the broad distribution of
eigenvalues, if one furthermore assumes that the external
perturbation is sufficiently small such that the eigenmodes
(and eigenvalues) are nearly identical in the presence and
absence of the perturbation, one finds a particular form of
aging of the form

f(t,t,) «log(t+t,) + Clog(1), (1)

where the constant C depends on the ratio of the external
fields E; and E,. When a field is switched on for a time ¢,
and then switched off, C = —1, and f collapses to the form
of “full” or “simple” aging f(¢,t,,) « log(1 + #,,/t), which
has been demonstrated to hold for several glasses [8,25].

Here, the reversibility of the modes played an important
role: the amplitude corresponding to each mode increases
when the perturbation is applied and thereafter relaxes
exponentially.

Nevertheless, the interpretation of the slow dynamics of
the crumpled sheets as arising from a superposition of
exponentially relaxing eigenmodes of the linearized
dynamics is incompatible with the experimental observa-
tion described above, showing that the relaxation advances
via a series of discrete, audible events. Next, we suggest a
simple model to reconcile the measured aging behavior
with the discrete nature of the noise. Moreover, the model
leads to approximate log-Poisson statistics of the discrete
relaxation events, which appears to be consistent with the
experiments.

A stochastic model.—As in the phenomenological theory
of relaxations in structural glasses, we consider an ensem-
ble of two-level-systems (TLS), each characterized by a
barrier U between the two states and a bias A correspond-
ing to the energy difference between the two states. As in
TLS theory, we assume that the energy U is uniformly
distributed within some interval of width W. We assume
that the rate of transition from the higher energy state to the
lower energy state is given by A = e~U/Ter where Ty < W
is a constant (which in thermally driven systems corre-
sponds to the temperature). For the relaxations in the
crumpled sheets we assume that the transitions are irre-
versible. We also assume that the application of a force
affects the value of A, such that a TLS which was
previously in its lowest state may be “destablized.” Such
a TLS will ultimately return to its ground state, albeit via a
stochastic process whose rate per unit time is 4. The
transition is assumed to lead to a strain relaxation by a
small but finite amount accompanied by a discernible
“click.” Section IV of the Supplemental Material [26]
provides a visual comparison of simulations of this model,
in contrast to the continuous one.

We comment that the memory and aging behavior within
this model are identical to the one discussed above. If we
consider all TLS with the same A, then after time ¢, the
fraction of those which remain in the higher energy
metastable state is e **—hence they will play the same
role as a single exponentially decaying eigenmode of that
relaxation rate. Nevertheless, note that within this model
the dynamics is stochastic, and it is only upon averaging
over all modes with the same A that one recovers the
aforementioned continuous picture.

Next, we proceed to find the statistics of the discrete
relaxation events generated by this model, in the one-step
protocol (in which a stress is applied to the system and
maintained). Note that in aforementioned aging experi-
ments rather than measuring the strain for a given stress the
opposite is done—the strain is fixed and the stress
relaxation quantified. We do not expect this to qualitatively
change any of the conclusions, and base our discussion on
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the former protocol, following Ref. [14], where this striking
phenomenon was first observed.

Comparing theoretical and experimental results.—
Consider the system at time f. The probability that an
unstable mode with relaxation rate 4 has not yet relaxed is
e~ Since these are independent and memoryless, the
distribution of times to the next relaxation event is
exponential, with a rate

A= 0= A " e P (2)da. )

Inourcase P(1) 1/, and we find A = ﬁ;a e~ d), where
Aminmax are the cutoffs of the relaxation rate distribution.
Under the assumption that the experimental timescales are far
from these cutoffs, we find A o 1/¢. This implies that at time
t the mean time to the next relaxation event is proportional to
the time ¢, and exponentially distributed:

P(At) = A8/, (3)

Moreover, the proportionality constant A will be inversely
proportional to the system size, since the number of TLS
must be extensive.

Equation (3) describes the slowing down of the system:
as time goes by the time between relaxation events
increases. If we rescale At by the measurement time ¢,
we find that it will follow Poisson statistics. This is very
similar (but not identical) to the log-Poisson statistics
discussed in the context of noise in other glassy systems
[27]:  For sufficiently large systems we have
(Af) = 1/A < t, in which case we may approximate:

Xppi1 — X, = log(t + Ar) —log(t) ~ At/t, (4)

where x; is the logarithm of the time of the ith click. Since
At/t is exponentially distributed, we conclude that the
logarithm of event times approximately follows Poisson
statistics. This is tested numerically in Fig. 2(b) (inset).

In Sec. I of the Supplemental Material [26], we also
derive the click statistics without invoking the approxima-
tion used in Eq. (4), distinct from the predictions of the
record statistics model of Ref. [27].

Noise in the aging regime.—In the previous derivation,
the slowing down of the clicking rate scaled as 1/¢, which is
intuitive since the relaxation is logarithmic. If each click
corresponds to a release of a constant amount of energy, then
the rate of change of the potential energy is compatible with
the click statistics. One may therefore naively expect the time
derivative of the height to determine the click statistics.

This intuition is in fact incorrect. To appreciate the
problem, it is instructive to consider the rwo-step protocol
discussed above, which in previous works we and others
have found to provide more information and constrain the
possible model space. In the case 0 < E, < E;, the magni-
tude of the coefficient C of Eq. (1) is smaller than 1, and
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FIG. 2. Stochastic simulation of the crackling statistics assuming
abroad relaxation rate distribution (3000 modes with rates between
107 and 10). (a) The typical time gaps between consecutive events
increase linearly with time, as predicted theoretically. (b) Since the
model assumes transitions between independenttwo-level systems,
the autocorrelation of time gaps vanishes for nonzero lags. Inset:
uponrescaling time, the time gap distribution becomes exponential,
as shown analytically in the main text.

the relaxation curve is nonmonotonic—implying that the
sign of the signal derivative flips. Therefore clearly the noise
rate cannot be proportional to it.

In Sec. II of the Supplemental Material [26], we calculate
the noise in the aging regime, which makes for a clear
theoretical prediction; one obtains an exponential distribu-
tion for click statistics, p(AT) o e~"A" with parameter r(t):

2E,—E, E,—E,

r(1) = + (5)

t+1, t

Atlong times ¢ > t,, one recovers the (E3 — E )/t scaling—
as expected. Note that when the nonmonotonic relaxations
reach a peak, the click statistics are not expected to vanish—
at this point the two subpopulations have an identical
switching rate. These predictions are corroborated in
Sec. IIT of the Supplemental Material [26], where we find
good agreement between theory and experiments.

Discussion.—Here, we have studied, theoretically and
experimentally, the statistics of noise in a crumpled, thin
sheet undergoing slow relaxations of displacement under
constant load. By modifying the model previously pro-
posed for electron glasses, we reconcile the discrete nature
of the relaxation events manifested by short acoustic
emissions, with the logarithmic relaxations observed over
many decades in time: the statistics are interpreted to arise
due to stochastic transitions between metastable states,
resulting in a macroscopic description mathematically
equivalent to that of an ensemble of reversible two-
level-systems—a reversibility which played a key role in
explaining the aging behavior in this system in a previous
work, and in particular the emergence of nonmonotonic
relaxations. We also predict the noise statistics in this aging
regime, yet to be tested experimentally. Note that within
this study the system is always out of equilibrium: this is
distinct from previous studies showing that glasses with
logarithmic, slow relaxations will also exhibit 1/f noise in
their fluctuations around a metastable state [28].
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In fact, a variety of models was suggested over the years
to account for logarithmic relaxation in disordered systems,
including renewal processes [29] and record statistics [27].
The latter also predicts the log-Poisson statistics discussed
here and also observed experimentally in colloidal glasses
[30]. However, these mechanisms do not quantitatively
explain the particular aging results reported previously for
crumpled thin sheets [13]. Interestingly, there are parallels
between our results here and those observed for creep of
rocks under uniaxial stress, which also exhibit logarithmic
time dependence of strain. Reference [11] interpreted this
logarithmic relaxation by considering failure of local
regions, occurring with a rate that is Arrhenius (i.e.,
exponentially) dependent on the local parameters, assumed
to be inhomogeneous. This bears resemblance to the
phenomenological model we propose here, albeit with
the distinction that while in brittle rocks each region can
fail once and in an irreversible manner, the results of
Ref. [13] illustrate that for the crumpled sheets each “two-
level-system” must be able to respond in a reversible
manner—this behavior lies at the heart of the Kovacs-like,
nonmonotonic relaxations. The analogy with brittle rock
goes further, as, remarkably, Ref. [31] was able to record
the acoustic emissions associated with the logarithmic
creep, using high-precision accelerometers. Their findings
are parallel to the results of the crumpled sheet, finding that
acoustic emissions are localized in time, and that the rate of
these events falls off as 1/¢.

Future studies should determine the microscopic origin of
the phenomenological model discussed here—do the TLS
correspond to bistable mechanical configurations, recently
shown to underlie the mechanics of crumpled sheets [20,32]?
If so, what are their spatial extents, and how do they
mechanically interact with each other? Note that within
the current model, interactions were not included.
Furthermore, it is intriguing to find whether these phenom-
ena are related to recent work showing the evolution of
crease-formation in crumpled, thin sheets, where a logarith-
mic dependence of the total crease length with the number of
crumpling events was shown both experimentally [33] and
theoretically [34].
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