
Time-Resolved Statistics of Snippets as General Framework for Model-Free
Entropy Estimators

Jann van der Meer ,* Julius Degünther ,* and Udo Seifert
II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany

(Received 30 November 2022; revised 20 February 2023; accepted 7 June 2023; published 23 June 2023)

Irreversibility is commonly quantified by entropy production. An external observer can estimate it
through measuring an observable that is antisymmetric under time reversal like a current. We introduce
a general framework that allows us to infer a lower bound on entropy production through measuring the
time-resolved statistics of events with any symmetry under time reversal, in particular, time-symmetric
instantaneous events. We emphasize Markovianity as a property of certain events rather than of the full
system and introduce an operationally accessible criterion for this weakened Markov property.
Conceptually, the approach is based on snippets as particular sections of trajectories between two
Markovian events, for which a generalized detailed balance relation is discussed.
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Introduction and illustration of main result.—
Thermodynamic equilibrium is characterized by the
absence of dissipative and irreversible processes. While
dissipation is observed as heat production in the environ-
ment, the related concept of irreversibility is often sum-
marized under the notion of an “arrow of time.” Therefore,
thermodynamic features like heat or entropy production
can be revealed by applying inference and estimation
methods to time series of appropriate observables.
The most prominent class of entropy estimators is based

on simply measuring a time-asymmetric quantity like a
steady-state current. This concept has been developed into
methods as varied as the thermodynamic uncertainty
relation (TUR) [1–3], apparent entropy production rates
[4], and, in the paradigmatic case of Markov networks,
fluctuation theorems for incomplete, effective descriptions
[5–7]. These methods are closely related to a second
category of estimators that are based on first identifying
a coarse-grained model, on which time-asymmetric cur-
rents are then identified in a second step. Whereas older
work mainly focuses on lumping Markov states together
into coarse-grained ones, see, e.g., [8,9], much richer and
more accurate descriptions are obtained by including
waiting times and milestoning in semi-Markov models
[10–14]. Thermodynamic consistency of the resulting
entropy estimators is ensured through information-theoretic
[15] reasoning, which has already found its way into
stochastic thermodynamics [16] and, in particular, into
entropy estimation [17–19].
Further estimation techniques are applicable by pre-

suming a particular underlying model or equation of
motion. If, for example, a master equation describes the
system on some underlying level, this insight can be
utilized in, e.g., minimization [20,21] and decimation [22]

methods or by analyzing the communication between
subsystems [23]. More generally, not only the mean but
also the distribution of fluctuating entropy production is
estimated and studied through application of a variety of
mathematical tools including, e.g., large deviation theory
[24–26], fluctuation-response relations [27–29], and mar-
tingale and decision theory [30–32].
From a broader perspective, “thermodynamic inference”

[33] is not limited to the estimation of a single quantity like
entropy production. Ranging from linear systems [34] over
active particles [35–41] to living systems [42,43], even
qualitatively distinguishing nonequilibrium from equilib-
rium can be challenging. In contrast, concepts like the TUR
or, more recently, waiting and first passage time distribu-
tions are not only able to infer entropy production, but also
driving affinities of thermodynamic cycles [13,44,45] or
topological features of transition paths [46,47].
The methods described above fall short of sufficient

generality and versatility to give a nontrivial result in a
model system that is as simple as the three-state network
shown in Fig. 1(a) with its coarse-grained version in
Fig. 1(b). The coarse-grained model cannot sustain any
steady-state current, as it consists of two objects, 1 and G,
of which only the former, 1, is a state. Since G is not
Markovian, we cannot employ any of the methods derived
for Markov networks. Moreover, merely distinguishing
between residing in state 1 or outside is not sufficient to
infer irreversibility, even if the respective waiting times
are included [34].
In this Letter, we introduce a framework to obtain a more

general and flexible estimator for the mean entropy
production rate hσi. It remains agnostic of the underlying
model and can be applied to any conceivable coarse
graining of some dynamics described by a path weight,
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e.g., a Langevin or a master equation dynamics. In
particular, the estimator is able to exploit data consisting
of time-symmetric instantaneous non-Markovian events
like the observation of a (nondirected) transition. For the
model shown in Fig. 1, the general entropy estimator
derived below becomes

hσ̂i ¼ 1

hti
X
k≥1

�Yk
j¼1

Z
∞

0

dtj

�
ψðt1;…; tkÞ ln

ψðt1;…; tkÞ
ψðtk;…; t1Þ

;

ð1Þ

where the time-resolved statistics is expressed via the
waiting time distribution ψðt1;…; tkÞ associated with
observing k − 1 transitions along edge G with waiting
times

1⟶
t1 G⟶

t2 � � �⟶tk−1 G⟶tk 1 ð2Þ

between two visits of state 1. A nontrivial estimator hσ̂i is
equivalent to ψðt1;…; tkÞ − ψðtk;…; t1Þ ≠ 0 for at least
some t1;…; tk, which could be understood as an analog of a
steady-state current. The time conversion factor 1=hti
measures the rate of visits to state 1 during a long trajectory.
Wewill prove that the estimator hσ̂i provides a lower bound
on the total entropy production,

hσi ≥ hσ̂i ≥ 0: ð3Þ

General setup.—In the general setup, we consider
coarse-grained trajectories Γ that may contain measure-
ments of any kind, which we will refer to as events.
Figure 1(d) shows an example. These events can be
instantaneous, like G and F, or last for a certain duration,
as for I0, H, and I1. Possible events include observations
whose microscopic origin cannot be identified, like a
transition whose direction is not resolved as in Fig. 1(a)
or, more generally, “lumped transitions,” where different
pathways cannot be distinguished. This class comprises
situations in which, e.g., the passage of a particle (or
molecule) through a certain point (or volume) in space
can be detected, whereas no further information about its
directionality or other internal mechanisms is available.
Moreover, we distinguish between two classes of mea-

surements, which we denote by Markovian and non-
Markovian events. If registering the event determines the
state of the underlying fundamental system completely,
data prior to the measurement do not contain any signifi-
cant information anymore and can be disregarded. In this
sense, we understand these events as Markovian. Two
simple examples are the observation of a directed transition
[13,14] or a state in a Markov network. Markovian events
allow us to cut the trajectory into smaller sections without
loss of information. A section that starts and ends at a
Markovian event contains the same information regardless
of the remaining trajectory it is embedded in. We denote the
sections that result from cutting a trajectory at every such
Markovian event as “trajectory snippets” Γs. These snippets

FIG. 1. Entropy estimation based on time-resolved statistics. (a) Paradigmatic three-state Markov network. We assume that only
state 1 and transitions along the edge G, but not their direction, can be observed, i.e., transitions 2 → 3 and 3 → 2 are observable but
indistinguishable. (b) Effective network of the coarse-grained description in which G is not a state. (c) Time series of observed events
showing two possible trajectory snippets with corresponding waiting times. (d) A trajectory snippet from a network with multiple types
of measurements, which can be instantaneous (G, F) or extended in time (H), and corresponding time series. (e) Scatter plot of the
quality of the estimator Q ¼ hσ̂i=hσi for the network from (a). The rates were parametrized as kij ¼ κijeAij=2 with κij ¼ κji and
Aij ¼ −Aji. A sample of 106 sets of rate amplitudes κij is drawn from a uniform distribution on [0.01, 10]; the affinity is fixed as
Aiiþ1 ¼ 1. A measure of the asymmetry of the network is s ¼ hðκij − hκijiÞ2i=hκiji2 where the averages are taken over the three links.
For the dots, only the first two terms in the sum in Eq. (1) are considered. The Xmarkers show the improvement if the first four terms in
the sum in Eq. (1) are considered. The dashed line shows the average quality factor as a function of s.
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are a crucial concept of our approach and can be identified
if at least one recurring Markovian event is observed.
The time-series data obtained by observing such a

coarse-grained trajectory consist of snippets, of which
we illustrate one in the lower part of Fig. 1(d). Along its
way from the initial Markovian event I0 to the final one I1,
the snippet contains the events G, H, and F with corre-
sponding waiting times t1;…; t5. We use the term “waiting
times” in a more general way to include both genuine
waiting times between consecutive events as well as
residence times for events of finite duration.
Derivation of main result.—For a stationary process, the

entropy production rate in the long time limit takes the form
of a Kullback-Leibler divergence after averaging [17,19],

hσi ¼ lim
T→∞

hSi=T ¼ 1

T

X
ζ

P½ζ� ln ðP½ζ�=P½ζ̃�Þ; ð4Þ

where h·i denotes the average over many realizations ζ. The
time-reversal operation ζ ↦ ζ̃ is an involution whose exact
form must be justified by the underlying physical mech-
anisms. A coarse-grained trajectory Γ is the result of a
many-to-one mapping ζ ↦ ΓðζÞ. This mapping determines
the time-reversal operation on the coarse-grained level in
terms of the underlying one, since coarse graining respects
ζ̃ ↦ Γ̃. Thus, a coarse-grained entropy production rate hσ̂i
can be defined, which provides an estimator for the actual
entropy production in the sense that

hσi ≥ hσ̂i≡ 1

T

X
Γ
P½Γ� lnP½Γ�

P½Γ̃� ≥ 0: ð5Þ

This result can be derived from the log-sum inequality,
which is well known in information theory [15,18,19,33].
In this abstract form, the estimator hσ̂i is both simple and
universal, but often not practical, since a statistically
significant amount of long trajectories with negative
entropy production is needed to determine P½Γ� and P½Γ̃�.
Instead, it is more feasible to cut Γ into trajectory

snippets of shorter length and collect the statistics of these
smaller snippets. If the first (second,…) part of the
trajectory Γ is denoted by Γ1 (Γ2;…), the path weight
P½Γk� of each individual section can be conditioned on its
past in the form

P½Γ� ¼ P½Γ1�P½Γ2jΓ1� � � �P½ΓnjΓn−1;Γn−2;…�: ð6Þ

If we can cut the full trajectory in such a way that the
coarse-grained initial state Ik−1 of a trajectory section Γk
suffices to determine the state of the system on the
fundamental level, the path weight factorizes into the
contributions from the individual snippets in the form

P½Γ� ¼ P½Γs
1�P½Γs

2jI1� � � �P½Γs
njIn−1�: ð7Þ

This condition is satisfied if we can observe at least one
recurring Markovian event, say I, which we define via the
Markov property

P½Γðt > sÞjI;Γðt < sÞ� ¼ P½Γðt > sÞjI�; ð8Þ

formulated for a trajectory ΓðtÞ where the Markovian event
I is observed at time s. This time instant s can then be used
as a cutting locus to study individual trajectory snippets Γs

k.
Being able to consider shorter parts of the trajectories
individually also emphasizes the major practical advan-
tages that the concept of snippets offers. Note that,
technically, continued residence within a time-symmetric
Markovian event, e.g., within a Markov state, gives rise to
infinitely many trivial snippets inside the state that can be
discarded, as they do not contain information about the
irreversibility of the process.
In general, a snippet Γs is a section of the full coarse-

grained trajectory Γ. As a small trajectory on its own, a
snippet is characterized by an initial Markovian event I,
final Markovian event J, duration t, and possibly additional
observations including events and waiting times, summa-
rized under the symbol O. The probability distribution
ψ I→Jðt;OÞ to observe a coarse-grained trajectory Γs of this
form is given by the sum over all contributing microscopic
trajectories γ denoted by γI→Jðt;OÞ, i.e.,

ψ I→Jðt;OÞ≡ P½ΓsjI� ¼
X

γI→Jðt;OÞ
P½γI→Jðt;OÞjI�: ð9Þ

These probability distributions can be interpreted as gen-
eralized waiting time distributions, whose normalization is
written as

P
J;O

R
∞
0 dtψ I→Jðt;OÞ ¼ 1. If the additional

observations O contain continuous degrees of freedom,
e.g., position in continuous space or further waiting times,
the sum over O has to be replaced by an appropriate
integral.
Up to boundary terms, using (7), the coarse-grained

entropy production rate (5) becomes a steady-state average

Thσ̂i ¼
�
ln
P½Γs

1jI0�
P½Γ̃s

1jeI1� þ � � � þ ln
P½Γs

njIn−1�
P½Γ̃s

njĨn�
�
; ð10Þ

where n is the number of snippets. Denoting the probability
that a random snippet begins with I by PðIÞ, we use
P½Γs

k� ¼ PðIk−1ÞP½Γs
kjIk−1� to calculate (10) as

hσ̂i ¼
X
I

nPðIÞ
T

�X
Γs

P½ΓsjI� ln P½Γ
sjI�

P½Γ̃sjJ̃�
�

ð11Þ

for a long, stationary trajectory. To simplify, we define
hti≡ T=n, which measures the average waiting time
between two events that initialize a snippet. After using
Eq. (9) to express the path weights in terms of the waiting
time distribution, we obtain our main result
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hσ̂i ¼ 1

hti
X
IJ;O

Z
∞

0

dtπIψ I→Jðt;OÞ lnψ I→Jðt;OÞ
ψ J̃→Ĩðt; ÕÞ ; ð12Þ

with πI ≡ PðIÞ and the transformations I ↦ Ĩ, J ↦ J̃, and
O ↦ Õ under time reversal. As long as this behavior is
known, O may contain any kind of events, even time-
symmetric ones. In this sense, Eq. (12) provides a model-
free estimator without relying on particular classes of
dynamics, events, or model systems. We first illustrate
how to apply the general Eq. (12) to the paradigmatic
example of Fig. 1, which exclusively contains time-sym-
metric events.
Paradigmatic example.—In the model of Fig. 1, the

coarse-grained description includes transitions along the
edge G, whose direction is not resolved, as instantaneous
non-Markovian events and a single observed Markov state
I ¼ 1. Thus, each snippet starts as soon as the system exits
state 1 and is terminated as soon the system revisits this
state. The observationsO along a generic trajectory snippet
consist of k − 1 transitions along the observed edge G and
the waiting times t1;…; tk as defined by the trajectory
snippet (2). The associated waiting time distribution is
given by ψ1→1ðt;OÞ ¼ ψðt1;…; tkÞ, with t implicitly fixed
via t ¼ P

k
i¼1 ti. Since both the transition G and the state 1

are even under time reversal, the reversed trajectory is
obtained by simply reading the trajectory snippet (2)
backward and hence is associated with the waiting time
distribution ψðtk;…; t1Þ. Therefore, the general result (12)
reduces to Eq. (1).
From a practical point of view, generating sufficient

statistics for all waiting time distributions might not be
feasible. Since each term in the sum in Eq. (1) has a non-
negative contribution to hσ̂i, considering only snippets that
contain a maximum of k − 1 transitions along the observed
edge G already results in a nontrivial estimator. The scatter
plot in Fig. 1(e) illustrates this procedure. For the blue dots,
only snippets with k ≤ 2, i.e., ψðtÞ and ψðt1; t2Þ, were
considered. The black dots denote a random selection from
these, for which we have also calculated the improvements
of hσ̂i when going to k ≤ 4, shown by the corresponding
black X markers. As Fig. 1(e) also shows, the estimator
inherently benefits from asymmetries in the network, which
tend to produce time series with more distinct forward and
backward directions.
Snippets as dressed transitions.—The time-resolved

statistics is condensed in a generalized waiting time
distribution ψ I→Jðt;OÞ that can be interpreted on the level
of individual transitions I → J dressed with t and O as
additional information. We introduce

aI→Jðt;OÞ≡ ln
πIψ I→Jðt;OÞ
πJ̃ψ J̃→Ĩðt; ÕÞ ; ð13Þ

which vanishes identically under the condition of appar-
ent detailed balance on the coarse-grained level, defined

as πIψ I→Jðt;OÞ ¼ πJ̃ψ J̃→Ĩðt; ÕÞ. This suggests to use
aI→Jðt;OÞ as a thermodynamic measure of irreversibility
inherent to the dressed transition I → J. Indeed, if at least
one aI→Jðt;OÞ does not vanish, the system cannot be in
equilibrium. Moreover, the events I, J and those included
in O must be part of a thermodynamic cycle with
nonvanishing affinity if aI→Jðt;OÞ ≠ 0. Note that the
condition of apparent detailed balance does not imply
that the underlying system is in equilibrium, since,
depending on the observables, it is always possible to
miss hidden cycles with nonvanishing affinity.
Surprisingly, we are even able to infer hidden cycles

that do not necessarily include the observed events. We
illustrate this method in Fig. 2. We observe an explicit
time dependence of a1→Kðt;O ¼ =0Þ, i.e., broken local
detailed balance [33] in the trajectory snippets from 1 to
K, if and only if the affinity of the small cycle
containing the states 2,3,4 does not vanish. This broken
symmetry between forward and backward transitions

FIG. 2. Illustrative example with a hidden cycle. We assume
that the Markov state 1, the directed transitions K ¼ ð56Þ and
K̃ ¼ ð65Þ, and the non-Markovian event H can be observed.
Generically, a1→Kðt;O ¼ =0Þ depends on time, which allows us to
infer the existence of a hidden cycle, here formed by 2, 3, and 4.
Similarly, we detect a hidden cycle withinH by studying the time
dependence of a1→K̃ðt;OÞ for snippets containing H.

FIG. 3. Demonstration of the systematic bias in the entropy
estimator if the trajectory is cut at a non-Markovian state H. The
inset shows the full (a) and coarse-grained (b) network. QnH ≡
hσ̂nH i=hσi results from cutting the trajectory at every nHth
occurrence of H. For nH → ∞ it converges to the estimator
obtained by cutting the trajectory at the Markov states 1 and 3.
The rates are k12 ¼ 3, k21 ¼ 1, k23 ¼ 9, k32 ¼ 3, k34 ¼ 27,
k43 ¼ 9, k41 ¼ 81, and k14 ¼ 27.
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generalizes extant discussions for Markov networks
[48] and Langevin dynamics [49].
“Non-Markovian” snippets.—So far, a Markov property

in the form of Eq. (8) has turned out to be crucial. What
happens if we cut a trajectory into snippets at, say, a hidden
compound state where the factorization (7) is not valid? For
such snippets with non-Markovian cut loci, here dubbed
non-Markovian snippets, our main result cannot be applied.
Nevertheless, the limit T → ∞ in (4) suggests asymptotic
consistency of an entropy estimator of the form (12) if the
length t of such non-Markovian snippets becomes suffi-
ciently large on average. Conditioning the waiting time
distribution ψH→Jðt;OÞ on a non-Markovian eventH while
still disregarding the past of the trajectories introduces a
systematic bias. This bias can be used as an operationally
verifiable, model-independent criterion for Markovianity of
some measured event H. If the observed trajectory Γ is cut
at, say, every nHth occurrence of H rather than every
occurrence of H, the implied entropy estimator hσ̂nHi is
independent of nH if and only if the factorization (7) can be
applied, i.e., ifH qualifies as a cut locus for snippets. As an
example, Fig. 3 shows a four-state Markov network where
states 2 and 4 form a compound state H. Non-Markovian
snippets obtained by cutting at every nHth occurrence of H
lead to an estimator that depends on nH and improves
for nH → ∞.
Thus, shorter non-Markovian snippets reduce the stat-

istical error of finite sample sizes at the cost of introducing
systematic bias. As the example in Fig. 4 shows, this
systematic bias may even overestimate hσi, i.e., the error is
qualitatively different from merely disregarding informa-
tion, which always decreases entropy production.
Concluding perspective.—This Letter has established a

framework for constructing entropy estimators based on
coarse-grained data, which may include any kind of
measurement whose behavior under time reversal is known

and the associated time-resolved statistics. While we have
assumed a stationary process, i.e., a nonequilibrium steady
state, the underlying concepts are sufficiently general so
that future work can adapt this approach to time-dependent
situations like periodic driving.
Moreover, we want to emphasize the shift in focus

regarding the Markov property. While Markovianity is
usually understood as a system property, e.g., in the case of
overdamped Langevin dynamics or Markov networks, the
present formalism is based on identifying particular observ-
able events at which the Markov property is satisfied as
“Markovian.” In accordance with Occam’s razor, we do not
make any assumptions about unobservable parts of the
system, which renders this approach more applicable to
model complex real-world scenarios.
Finally, our Letter also provides a starting point for

thermodynamic inference beyond the estimation of a single
quantity like entropy production. We have pointed out how
broken local detailed balance can be detected qualitatively.
If more details about the system are known, these concepts
can be quantified into estimators for driving affinity and
topology of the thermodynamic cycles, as Ref. [13] has
shown for trajectories cut at observed directed transitions.
The broader framework developed here invites further
advances in this direction of more refined thermodynamic
inference schemes.

We thank Benjamin Ertel for valuable discussions.
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