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Spin-lattice relaxation within the nitrogen-vacancy (NV) center’s electronic ground-state spin triplet
limits its coherence times, and thereby impacts its performance in quantum applications. We report
measurements of the relaxation rates on the NV center’s jms ¼ 0i ↔ jms ¼ �1i and jms ¼ −1i ↔
jms ¼ þ1i transitions as a function of temperature from 9 to 474 K in high-purity samples. We show that
the temperature dependencies of the rates are reproduced by an ab initio theory of Raman scattering due to
second-order spin-phonon interactions, and we discuss the applicability of the theory to other spin systems.
Using a novel analytical model based on these results, we suggest that the high-temperature behavior of NV
spin-lattice relaxation is dominated by interactions with two groups of quasilocalized phonons centered at
68.2(17) and 167(12) meV.

DOI: 10.1103/PhysRevLett.130.256903

Introduction.—The nitrogen-vacancy (NV) center is a
point defect in diamond that has become a promising
platform for quantum technologies ranging from nanoscale
magnetic resonance imaging [1,2] and electric field sensing
[3,4] to quantum information processing [5–7]. The NV
center owes much of its appeal to its crystalline host, which
allows the system to be placed near other materials or
integrated into larger devices without the need for trapping
or cooling [8,9]. The NV center’s solid-state environment
also presents significant challenges, however. Interactions
between the NV center’s electronic spin and phonons in the
surrounding crystal lattice drive spin-lattice relaxation [10],
also called spin-phonon relaxation [11,12], fundamentally
limiting the system’s achievable electronic spin coherence
times and therefore its performance in quantumapplications.
Accordingly, several works have explored the temperature
dependence of phonon-limited relaxation on the single-
quantum transition between the jms ¼ 0i and jms ¼ �1i
levels of the NV’s ground-state electronic spin triplet
[10,13–15]. Although relaxation on the double-quantum
transition between the jms ¼ −1i and jms ¼ þ1i levels also
limits coherence times, phonon-limited relaxation on this
transition has been less thoroughly studied, leaving maxi-
mum achievable NV coherence times unknown for a wide
temperature range.

To our knowledge, the only systematic measurements of
phonon-limited double-quantum relaxation to date are
Refs. [16] and [17]. In Ref. [16], we found that double-
quantum relaxation occurs roughly twice as fast as single-
quantum relaxation in the phonon-limited regime at room
temperature. In Ref. [17], Lin et al. present measurements
of the single- and double-quantum relaxation rates between
room temperature and 600 K, but several discrepancies
with prior works suggest that these results cannot be easily
generalized to describe NV spin-lattice relaxation in high-
purity samples (Fig. S2 in the Supplemental Material [18]).
The temperature dependence of phonon-limited double-
quantum relaxation has not been characterized below room
temperature.
In this Letter, we present measurements of the temper-

ature dependence of the single- and double-quantum
relaxation rates of the nitrogen-vacancy center’s electronic
ground-state spin triplet in high-purity samples from 9 to
474 K. In contrast to prior theoretical understanding [10],
we argue that Raman scattering of phonons in the NV
center arises mainly due to second-order, rather than first-
order, spin-phonon interactions. We develop an ab initio
framework for calculating the relaxation rates that result
from these interactions, and we suggest similar spin
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systems that are subject to the same theoretical arguments.
Informed by the presence of two vibrational resonances in
the NV spin-phonon spectral function, we develop an
analytical model of NV spin-lattice relaxation in which
transitions are driven by two strongly coupled effective
phonon modes at energies of 68.2(17) and 167(12) meV.
Additionally, we use our experimental results to calculate
the temperature-dependent limits to NV electron spin
coherence times imposed by spin-lattice relaxation for
superpositions in both the single- and double-quantum
subspaces, and we compare these limits to the longest
coherence times reported in literature.
Experimental methods.—Figure 1(a) shows the level

structure of the NV’s ground-state electronic spin triplet,
where we abbreviate jms ¼ 0i (jms ¼ �1i) to j0i (j � 1i).
Relaxation on the j0i ↔ j � 1i single-quantum transitions
occurs at a common rate Ω; relaxation on the j − 1i ↔
j þ 1i double-quantum transition occurs at rate γ. Prior
studies of phonon-limited spin relaxation in NVs have
focused on the lifetime of j0i under the assumption that j0i
and either j − 1i or j þ 1i can be considered a qubit and the
third level of the spin triplet can be neglected, tacitly
assuming γ ¼ 0 [10,13–15]. These prior works use T1 to
denote the lifetime of j0i, which is related to the rates used
in this Letter by T1 ¼ 1=ð3ΩÞ.
The experimental methodology we employ to measure γ

and Ω is similar to that of prior works [16,27,28]. Optical
polarization and state-selective π pulses enable initializa-
tion into any spin state. Following a relaxation time τ, the
population in a target state is mapped to j0i and read out

optically. Differences between pairs of the measured
relaxation curves yield single-exponential decays from
which the rates Ω and γ are extracted [Fig. 1(b)]
[27,28]. Experiments are conducted using a home built
confocal microscope with support for low-temperature (9 K
to ambient) and high-temperature (ambient to 474 K)
operation modes. A static magnetic field oriented to
within 5° of the NV orientation under study is applied
with a permanent magnet to lift the j � 1i degeneracy
by Δ� ≈ 145 MHz. Experiments are conducted using
two diamond samples with NV concentrations of 1 ppb
(sample A) and 10−3 ppb (sample B). (See Sec. I in the
Supplemental Material [18] for additional experimental
details).
Results.—Figure 2 displays measurements of the relax-

ation rates Ω and γ as functions of temperature between 9
and 474 K for NV ensemble and single NV measurements
in samples A and B respectively. Above 125 K, sample-
dependent contributions to Ω and γ fall below 10%,
indicating that the relaxation rates are dominated by
phonons in the diamond lattice, rather than by interactions
with other defects. In Ref. [16], we found that γ ≈ 2Ω at
room temperature. Our results here demonstrate that this
factor of 2 is coincidental, as the ratio γ=Ω declines from
2.5 to 1.8 between 200 and 474 K (Fig. S7 in the
Supplemental Material [18]).
Prior work has fit the temperature dependence of the

single-quantum relaxation rate Ω using an empirical model

FIG. 1. Phonon-limited spin relaxation in nitrogen-vacancy
centers. (a) Level structure of the NV− ground-state electronic
spin triplet. The zero field splitting raises j � 1i above j0i by
2.87 GHz at room temperature; a static magnetic field lifts the
j � 1i degeneracy. Relaxation between j0i and j � 1i (j − 1i and
j þ 1i) occurs at rate Ω (γ). Inset: nitrogen-vacancy defect within
a carbon lattice. (b) Effect of temperature on the curves used to
extract the relaxation rate γ. Data points show the difference
between population in j þ 1i and j − 1i after time τ following
initialization in j þ 1i in sample A. Curves are single-exponential
fits with decay rate 2γ þΩ.

FIG. 2. Temperature dependence of relaxation rates γ and Ω.
Error bars are 1σ. Above 125 K (vertical gray line), sample-
dependent contributions are below 10%. Darker lines show fit
according to the proposed model described by Eqs. (4) and (5),
where dotted (dashed) lines include sample-dependent constants
for sample A (B). Lighter solid lines show relaxation rates
predicted by ab initio calculations. See Figs. S4 and S11, and
Table S4 in the Supplemental Material [18] for additional plots
and full set of data. Inset: semilog plot of relaxation rates versus
inverse temperature.

PHYSICAL REVIEW LETTERS 130, 256903 (2023)

256903-2



in which two terms chiefly contribute to phonon-limited
relaxation: one term that scales in proportion to the phonon
occupation number at a specific energy, and a second term
that scales with temperature as T5. The first term has been
described as an “Orbach” [13], “Orbach-type” [10,15], or
“Orbach-like” [16] process, as the temperature scaling
matches that of the standard Orbach process [29,30].
However, the standard Orbach process is unlikely to
contribute to spin relaxation in the NV− center ground
state because the nearest excited state that could enable the
process is roughly 400 meVabove the ground state [31,32],
well beyond the phonon cutoff frequency of approximately
165 meV in diamond. The Orbach-like term in prior models
has instead been attributed to quasilocalized phonon modes
near 73 meV [10]. The interactions giving rise to this term
have not been described in detail. The second term has been
attributed to Raman scattering of low-energy acoustic
phonons that are weakly coupled to the spin via first-order
interactions, as described by Walker in Ref. [33]. We
argue that Walker’s process is negligible in systems like
the NV− ground-state triplet where the spin-phonon inter-
action strength is much smaller than typical phonon
energies. Under this condition, Raman scattering will be
driven by second-order, rather than first-order, spin-phonon
interactions.
According to Fermi’s golden rule, the rate of Raman

scattering due to first-order interactions scales quadratically
with the square of the first-order interaction strength
divided by the energy of the virtual state mediating the
transition. Gauging the magnitude of the spin-phonon
interaction using the zero field splitting, the first-order
interaction strength is roughly hD ðΔu=aÞ, where D ≈
2.87 GHz is the NV zero field splitting, Δu is the atomic
displacement associated with lattice vibrations, and a is the
nearest neighbor distance in diamond. If the nearest excited
state is beyond the phonon cutoff frequency, then the
virtual state energy is dominated by the phonon energy,
ℏω ∼ 50 meV for acoustic phonons in diamond. Contri-
butions to Raman scattering from first-order interactions
will therefore depend quadratically on the quantity
½hD ðΔu=aÞ�2=ðℏωÞ for the NV center. On the other hand,
the rate of Raman scattering due to second-order
interactions scales quadratically with the second-order
interaction strength, approximately hD ðΔu=aÞ2. The ratio
between the first- and second-order contributions is on the
order of ð2πD=ωÞ2 ∼ 10−7 for the NV center, indicating
that Raman scattering via first-order interactions can be
neglected.
Motivated by these observations, we develop an ab initio

theory of spin-lattice relaxation where Raman scattering is
driven by second-order interactions. The relaxation rate
may be expressed as [12]

Γ ¼ Γð1Þ
1 ðTÞ þ Γð2Þ

1 ðTÞ þ Γð1Þ
2 ðTÞ þ…; ð1Þ

where the superscript indicates the order of the spin-phonon
interaction (terms with superscript 1 or 2 are linear or
quadratic in the atom displacements, respectively) and the
subscript indicates the order in perturbation theory. The

term Γð1Þ
1 describes single-phonon processes which are only

relevant below 1 K for the NV center [34]. At elevated
temperatures, relaxation is dominated by Raman scattering
of higher energy phonons.
Raman scattering appears as two different second-order

terms in Eq. (1): first-order interactions applied to second
order in perturbation theory Γð1Þ

2 and second-order inter-

actions applied to first order in perturbation theory Γð2Þ
1 . As

discussed above, Γð1Þ
2 ≪ Γð2Þ

1 for the NV center, and we use
Fermi’s golden rule to write

Γð2Þ
1ðmsm0

sÞðTÞ ¼
2π

ℏ

X

ll0
jVll0

msm0
s
j2½nlðnl0 þ 1ÞδðΔE−Þ

þ nl0 ðnl þ 1ÞδðΔEþÞ� ð2Þ

for spin states jmsi and jm0
si. Here, Vll0

msm0
s
is the matrix

element coupling jmsi to jm0
si via phonons l and l0, and

ΔE� ¼ Em0
s
� ðℏωl − ℏωl0 Þ − Ems

is the energy difference
between the final and initial states of the composite
system. The mean occupation number for mode l is
nl ¼ ½expðℏωl=kBTÞ − 1�−1. For high energy phonons,
we approximate ΔE� ≈�ðℏωl − ℏωl0 Þ and consider only
the diagonal l ¼ l0 terms. In the continuum limit Eq. (2)
becomes

Γð2Þ
1ðmsm0

sÞðTÞ ¼
4π

ℏ

Z∞

0

dðℏωÞnðωÞ½nðωÞ þ 1�Fð2Þ
msm0

s
ðℏω;ℏωÞ;

ð3Þ

where the spectral function Fð2Þ
msm0

s
ðℏω;ℏωÞ accounts for the

phonon density of states and the spin-phonon coupling

strengths. For the NV center, we identify Γð2Þ
1ð�0Þ and Γð2Þ

1ðþ−Þ
as the relaxation rates Ω and γ respectively. (See Sec. VIII
of the Supplemental Material [18] for a detailed
calculation.)
We obtain the matrix elements Vll

msm0
s
by calculating the

derivatives of the NV center’s spin-spin induced zero field
splitting tensor with respect to atomic displacements. The
calculation is performed using a plane wave supercell
density functional theory simulation package [35,36] by
means of Perdew-Burke-Ernzerhof functional [37]. We
approximate the spectral function for a macroscopic dia-
mond by convolving the matrix elements with a normalized
Gaussian. The spectral function displays two peaks near 65
and 155 meV (Fig. 3) which are associated with phonon
modes that change the positions of the carbon dangling
bonds [38] and thereby the spin density distribution.
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Evaluating Eq. (3) with the calculated spectral function
yields predicted spin-lattice relaxation rates with no free
parameters that are in rough quantitative agreement with
experiment (lighter solid lines, Fig. 2). Above 125 K, the
predicted rates exhibit the same temperature scalings as the
measured rates. The double-quantum rate is within 20% of
the measured γ, and the single-quantum relaxation rate is
approximately 8 times smaller than the measuredΩ at room
temperature (Fig. S9 in the Supplemental Material [18]).
The discrepancy forΩmay be due to the exclusion of mode
combinations where l ≠ l0, as combinations of modes
with different symmetries likely yield significant matrix
elements for differing spin operators, which drive single-
quantum transitions. We leave the calculation of off-
diagonal combinations for future work. The ab initio
calculations validate the intuitive argument made above
for the dominance of second-order interactions in Raman
scattering for the NV center. The calculated first-order
matrix elements are on the order of 100 MHz, resulting in
contributions to relaxation that are roughly 6 orders of
magnitude smaller than contributions from second-order
matrix elements for 50 meV phonons (Fig. S8 in the
Supplemental Material [18]).
The double-peaked form of the spectral function

Fð2Þ
msm0

s
ðℏω;ℏωÞ suggests that Eq. (3) can be well approxi-

mated by an analytical model of the relaxation rates with
two terms corresponding to two effective phonon modes:

ΩðTÞ ¼ A1n1ðn1 þ 1Þ þ A2n2ðn2 þ 1Þ þ A3ðSÞ; ð4Þ

γðTÞ ¼ B1n1ðn1 þ 1Þ þ B2n2ðn2 þ 1Þ þ B3ðSÞ: ð5Þ

Here, n1;2 ¼ ½expðΔ1;2=kBTÞ − 1�−1 are the mean occupa-
tion numbers at characteristic energies Δ1;2 ¼ ℏω1;2, A1;2

and B1;2 are coupling coefficients for the effective modes,
and A3ðSÞ and B3ðSÞ are sample-dependent constants.
Eqs. (4) and (5) provide excellent fits to the experimental
data (darker lines in Fig. 2) with residuals that are
consistent with purely statistical errors (Fig. S5 in the
Supplemental Material [18]). The characteristic energies
from the fit are 68.2(17) and 167(12) meV, matching the
locations of the peaks in the spectral function. (See
Tables S1 and S2 in the Supplemental Material [18] for
fit parameters.) Suggestively, the spectral structure of the
NV phonon sideband has also been attributed to phonons
with the same two characteristic energies as those we
extract here [39–41]. At low temperatures, n1;2ðn1;2 þ 1Þ≈
expð−Δ1;2=kBTÞ. When plotted semilogarithmically versus
inverse temperature, scalings of the form n1;2ðn1;2 þ 1Þ
therefore appear linear with slope proportional to the
activation energy Δ1;2 (Fig. 2 inset).
The model of NV spin-lattice relaxation proposed here

differs qualitatively from the empirical models used in prior
works to describe the temperature dependence of the
single-quantum relaxation rate Ω [10,13,15]. Because
nðnþ 1Þ ≈ n at low temperatures, we suggest that the
phenomenological Orbach-like term in prior models cor-
responds to the first term scaling with n1ðn1 þ 1Þ in
Eqs. (4) and (5). In contrast to prior models, we attribute
the high temperature scaling of the spin-lattice relaxation
rates to interactions with a second, higher-energy effective
phonon mode leading to a second Orbach-like term, rather
than to first-order interactions with low-energy acoustic
modes leading to a T5 term. Although the prior empirical
model can be naively extended to provide a good fit to both
measured relaxation rates (Fig. S5 in the Supplemental
Material [18]), we argue that it is not physically motivated
or necessary to include an additional mechanism with a
different scaling. Our calculations indicate that the physical
process behind the T5 term in prior models will remain
negligible at temperatures up to and exceeding 1000 K, the
highest temperature at which the NV center has been
coherently manipulated [42]. Given the different asymp-
totic behavior of the two models, we predict that the prior
model of NV spin-lattice relaxation will break down at
temperatures beyond those reached experimentally in this
Letter. In contrast, we expect that the model proposed here
will continue to yield accurate predictions of the relaxation
rates at higher temperatures owing to the model’s physical
underpinnings, and the fact that it already accounts for
contributions from the highest energy optical phonons in
diamond.
Discussion.—Spin-lattice relaxation is an incoherent

process that fundamentally limits achievable coherence
times. Much past work with NV centers has neglected

FIG. 3. Ab initio second-order spin-phonon coupling coeffi-
cients (thin lines) and spectral function (thick curves) for a single
NV center in a 512 atom supercell. NV spin-phonon dynamics
are characterized by the magnitudes of the matrix elements
ŜzŜþ (blue), Ŝ2þ (red), and Ŝ2z − 1

3
Ŝ2 (black), which cause

single-quantum relaxation, double-quantum relaxation, and de-
phasing respectively. The spectral function displays peaks near
the values of 68.2(17) and 167(12) meV extracted from the fit of
the two-phonon model to the experimental data (gray lines and
�1σ intervals).
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the effect of γ on this limit, thereby overestimating the
maximum achievable coherence times [43,44]. Including γ,
the relaxation-limited coherence time is

TðSQÞ
2;max ¼

2

3Ωþ γ
ð6Þ

for superpositions in the fj0i; j � 1ig single-quantum
subspace and

TðDQÞ
2;max ¼

1

Ωþ γ
: ð7Þ

for superpositions in the fj − 1i; j þ 1ig double-quantum
subspace [27,28]. Figure 4 shows the relaxation limit in the
single-quantum subspace alongside the longest measured
values of T2 at various temperatures reported in the
literature [43,45,46]. The best measured coherence times
fall short of the calculated limit despite the inclusion of γ.
The consistency of the ratio between the measured co-
herence times and T2;max in the phonon-limited regime
(Fig. 4 inset) suggests that the discrepancy may be due to
spin-lattice dephasing, an effect which is not included in
Eq. (6) [43]. The similarity of the spectral function line
shapes for dephasing (Fig. 3, black curve) and for relax-
ation (red and blue curves) indicates that these processes
may have similar temperature scalings.

Our results have several implications for future re-
search with NV centers and related systems. Because T5 ≫
nðnþ 1Þ at high temperatures, we predict that NV spin-
lattice relaxation will be slower than expected based on
prior work at temperatures exceeding those accessed in this
or previous studies. At 1000 K, we predict relaxation rates
several times lower than would have been previously
expected. Spin-phonon interaction mitigation schemes such
as phononic bandgap engineering [47,48] will likely be
ineffective in mitigating the effects of short-wavelength,
quasilocalized modes. On the other hand, it may be
possible to reduce relaxation by lowering the occupation
number of the 167 meV phonon modes in a manner similar
to optical cryocooling [49]. In addition, the theoretical
model and results presented in this Letter can be general-
ized to other crystal defects, such as divacancy centers in
silicon carbide [50,51] and the boron vacancy center in
diamond [52], or to other types of spin systems such as
molecular qubits, whose spin-lattice dynamics are under
active research [12,53,54]. In Sec. IX of the Supplemental
Material [18] we discuss the properties of systems that we
expect would make them good candidates for extensions of
our model.
Conclusion.—We have presented measurements of the

temperature dependence of the NV center’s single- and
double-quantum relaxation rates in high-purity diamond
samples from 9 to 474 K. We argued that Raman scattering
in NV centers primarily arises from second-order spin-
phonon interactions, and we have developed widely
applicable ab initio tools for evaluating the relaxation rates
that result from these processes. Our ab initio calculation of
the NV spin-phonon spectral function demonstrates that
two distinct groups of quasilocalized modes provide
dominant contributions to NV relaxation at high temper-
atures. Accordingly, we have developed an analytical
model of NV spin-lattice relaxation with just two effective
phonon modes with characteristic energies of 68.2(17) and
167(12) meV. Finally, we calculated the limits imposed by
spin-lattice relaxation on the coherence times of super-
positions in the single- and double-quantum subspaces,
properly accounting for the NV spin triplet over a wide
range of temperatures for the first time.
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