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In solid state physics, any phase transition is commonly observed as a change in the microscopic
distribution of charge, spin, or current. However, there is an exotic order parameter inherent in the localized
electron orbitals that cannot be primarily captured by these three fundamental quantities. This order
parameter is described as the electric toroidal multipoles connecting different total angular momenta under
the spin-orbit coupling. The corresponding microscopic physical quantity is the spin current tensor on an
atomic scale, which induces spin-derived electric polarization aligned circularly and the chirality density of
the Dirac equation. Here, elucidating the nature of this exotic order parameter, we obtain the following
general consequences that are not restricted to localized electron systems; chirality density is indispensable
to unambiguously describe electronic states and it is a species of electric toroidal multipoles, just as the
charge density is a species of electric multipoles. Furthermore, we derive the equation of continuity for
chirality and discuss its relation to chiral anomaly and optical chirality. These findings link microscopic
spin currents and chirality in the Dirac theory to the concept of multipoles and provide a new perspective
for quantum states of matter.
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Introduction.—In strongly correlated electron systems,
the spin and orbital degrees of freedom of nearly localized
electrons are activated by electronic correlations, resulting
in various intriguing phenomena, such as heavy electrons,
unconventional superconductivity, and exotic magnetic
orders. These quantum states are commonly characterized
by the spatial distribution of the fundamental microscopic
physical quantities, charge, spin, and current. They have
been systematically studied using the concept of multipole
expansions [1–12]. These multipoles are classified into four
categories (electric, magnetic, magnetic toroidal, and elec-
tric toroidal) according to spatial parity and time reversal
[12]. Such a classification is useful for elucidating exotic
orders and predicting novel response to external fields.
In particular, electric toroidal multipole ordering has

recently attracted much attention as a novel nonmagnetic
degree of freedom [13–17], which has not been strongly
recognized so far. In localized electron systems, such
degrees of freedom are inherent in the components con-
necting different total angular momenta under the spin-
orbit coupling λl · s. The simplest rank-1 electric toroidal
dipole is written as Gð1Þ ¼ l × s [15,18–20]. When
considering this electric toroidal dipole in analogy to a
magnetic toroidal dipole [21], we would expect the elec-
tric polarization to be circularly aligned. The ordinary

electric polarization PðrÞ ¼ rρðrÞ (ρ is a charge density),
however, cannot capture the toroidal structure, as PðrÞ
is a simple charge distribution. What physical quantity
characterizes the nature of electric toroidal multipoles
microscopically?.
In the following, we clarify the underlying fundamental

physical quantity using the knowledge of the relativistic
quantum mechanics. It is shown that the electric polariza-
tion PSðrÞ induced by the spin degrees of freedom is
responsible for the electric toroidal moment. The spin-
derived electric polarization PSðrÞ is also associated with
the microscopic spin current tensor, which is regarded as
one of the fundamental physical quantities analogous to
charge, spin, and electric current. The relation between
electric polarization and spin current has been discussed in
the context of spintronics based on weak-coupling itinerant
Fermi liquid description [22]. We further find the relation
between the electric toroidal multipole, spin current, and
chirality of the Dirac equation by employing the localized
electron picture. This chirality degree of freedom is
intimately related to the diagonal part of the spin current,
and is a more fundamental quantity corresponding to
electric toroidal multipoles. We thus link microscopic spin
currents and chirality in Dirac theory to the concept of
multipoles. Finally, we derive the equation of continuity for
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chirality density and discuss its relation to chiral anomaly
and optical chirality.
Definition of multipoles.—Let us start with the definition

of multipoles in localized electron orbitals with the angular
momentum l. The multipole operators are defined as a
complete matrix basis set to describe all operators of the
type c†mσcm0σ0 , where cmσ is the annihilation operator of the
electron with the magnetic quantum number m ∈ ½−l;l�
and spin σ ¼ ↑;↓. Under strong spin-orbit coupling, the
multipole operators are usually considered only for a
ground-state j ¼ l� 1=2 multiplet. We here consider
the full space containing different j multiplets. The
classification scheme recently formulated for l ¼ 1 case
[20] is applied to the general l [23]. In this case, the generic
rank-p multipole is written as

XγðpηÞ ¼
X

mm0σσ0
c†mσO

γ
mσ;m0σ0 ðpηÞcm0σ0 ; ð1Þ

where p ¼ 0;…; 2lþ 1, and O is a matrix representation
of the multipole. γ is a label to distinguish 2pþ 1
degeneracies. We have separated the rank-p multipole into
several pieces denoted by the η index: η ¼ a, b denotes the
intra-j multiplet component, and η ¼ c, d corresponds to a
component connecting a different j multiplet [27]. For
η ¼ a, b, c, the even (p ¼ 2q) or odd (p ¼ 2qþ 1) rank
coincides with the even or odd time-reversal (TR) sym-
metry, but this relation is reversed for d components. Note
that in the present intra-l case, the parity of spatial in-
version (SI) is always even. In addition, the type η ¼ d
multipoles are categorized as the toroidal multipoles from
its symmetry [19]. These results are summarized in the left
three columns (“Multipole,” “Type,” “SI=TR”) of Table I.
Charge and current distribution.—Since the multipoles

obtained above were defined based on localized electron
orbitals, they can be described as microscopic charge or
current distributions in continuous space. With the field
operator ψσðrÞ, the microscopic charge density is given by
ρ0 ¼ eψ†ψ , and the current density and magnetization
operators by

j ¼ e
2m

ψ† p
↔
ψ ; MS ¼

ℏe
2mc

ψ†σψ ; ð2Þ

where p ¼ −iℏ∇, and A∂

↔
B ¼ A∂B − ð∂AÞB. The spin

summation is implicitly performed. We expand the operator
by the atomic orbitals as ψσðrÞ ¼

P
m RðrÞYlmðr̂Þcmσ.

Then, for example, the current operator is written as

jðrÞ ¼
X
pηγ

XγðpηÞjðr;pη; γÞ: ð3Þ

Namely, once the multipoles are given, the spatial distri-
bution of the current can be visualized through the product
with the distribution function, jðr;pη; γÞ for each set of
ðpη; γÞ. Similar expansions are possible for other micro-
scopic physical quantities.
However, as will be shown later, there is no primary

change in the spatial distributions of ρ0ðrÞ, jðrÞ, and MSðrÞ
in the ordered state of electric toroidal dipole Gð1Þ. In order
to obtain another microscopic quantity having primary
change, we start with the basic Hamiltonian H with
relativistic corrections. Then the current and charge are
obtained by jtot ¼ −δH=ðδA=cÞ and ρtot ¼ δH=δΦ, where
A and Φ are vector and scalar potentials [22,23]. Based on
the spin dependence, the total current and charge can be
uniquely separated into two parts: jtot ¼ jþ c∇ ×MS and
ρtot ¼ ρ − ∇ · PS. The current density j and magnetization
MS have already been defined above. The charge density
and electric polarization are given by

ρ ¼
�
1þ ℏ2

8m2c2
∇2

�
eψ†ψ ≃ eψ†ψ ¼ ρ0; ð4Þ

PS ¼
ℏe

8m2c2
ψ† p

↔
× σψ : ð5Þ

The second term in ρ originates from the uncertainty of the
position in relativistic quantum mechanics. However, this
second term has only a minor correction on the charge
distribution since it originates from the second derivative of
the large first term (ρ0), and the spin degrees of freedom are
not directly involved. This correction term has the same
origin as the Darwin term in the Hamiltonian [28], which
only affects the s electron (l ¼ 0) and vanishes for l > 0.

TABLE I. List of the multipole distribution function fðr;pη; γÞ (p ¼ 2q or p ¼ 2qþ 1) defined in Eq. (3) where
f ¼ ρ;MSμ; jμ; PSμ; τZ;X;Y , and ∇ · PS. The label “nonzero” (“0”) for each cell indicates a nonzero (zero) multipole distribution
function in the leading-order contribution of the nonrelativistic limit. The signs of the spatial inversionP and time reversalΘ indicated in
the third column and the second row are defined as PfðrÞP−1 ¼ �fð−rÞ and ΘfðrÞΘ−1 ¼ �fðrÞ.

ρ MS j PS τZ τX (∼ρ) τYð∼∇ ·MSÞ ∇ · PS

Multipole Type SI=TR þ=þ þ=− −=− −=þ −=þ þ=þ −=− þ=þ
Electric toroidal ð2qþ 1Þd þ=þ 0 0 0 Nonzero Nonzero 0 0 0
Magnetic toroidal ð2qÞd þ=− 0 Nonzero 0 0 0 0 0 0

Electric ð2qÞa;b;c þ=þ Nonzero 0 0 Nonzero 0 Nonzero 0 Nonzero
Magnetic ð2qþ 1Þa;b;c þ=− 0 Nonzero Nonzero 0 0 0 Nonzero 0
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Here we make a few comments on the spin-derived
electric polarization PS. The Gordon decomposition of the
charge and current also introduces the microscopic mag-
netization and electric polarization [28,29]. We also note
that the presence of the microscopic electric polarization
has the same physical origin as the Aharonov-Casher effect
[30], in which the particles with magnetization are affected
by the electric field.
The present spin-derived electric polarization PS is

exactly related to microscopic spin current. The connection
between the spin current and electric polarization has been
discussed for the noncollinear magnets [31] and the
electron gas model in the context of the spintronics [22].
The spin-derived electric polarization PS can be further
rewritten as

PSμ ¼
ℏ2e

8m2c2
ϵμνλjSνλ; ð6Þ

where the spin current jSμν ¼ −iψ†
∂

↔

μσ
νψ and the anti-

symmetric tensor ϵμνλ are introduced (μ; ν; λ ¼ x, y, z) [22].
Furthermore, the spin current tensor jSμν may be classified
into the components with rank 0 (pseudoscalar), 1, and 2
[12]. We find that the rank-0 pseudoscalar component is
related to the chirality degrees of freedom in the Dirac
equation. The chirality density in the second-quantized
form is defined by the annihilation operators for right- and
left-handed chiral fermions, ψR;L, in the Weyl basis as
follows:

τZ ¼ ψ†
RψR − ψ†

LψL; ð7Þ

where the subscript R and L denote the chirality degrees of
freedom. The chirality density is evaluated in the non-
relativistic limit as follows [23,24]:

τZ ≃
1

2mc
ψ† p

↔
· σψ ¼ ℏ

2mc
jSμμ: ð8Þ

Namely, the pseudoscalar part of the spin current tensor
represents the chirality density operator in the nonrelativ-
istic limit. Equation (8) has a structure like the helicity, i.e.,
how much the moving direction of the electron is aligned
along the direction of its spinning axis. In condensed matter
physics, the chiral magnetic anisotropy effect is expected, if
the chirality density integrated over the bulk has a finite
expectation value [32,33].
The chirality operator is further supplemented by another

operator related to the chirality degrees of freedom R, L:

τX ¼ ψ†
RψL þ ψ†

LψR ≃
1

e
ρ0; ð9Þ

τY ¼ −iðψ†
RψL − ψ†

LψRÞ ≃
1

e
∇ ·MS; ð10Þ

which correspond to the Lorentz scalar and pseudoscalar
[23,24], respectively, and the rightmost sides in Eqs. (9)
and (10) express nonrelativistic limits. Equations (7), (9),
(10) are represented by a pseudospin in the “chirality
space.” In the nonrelativistic limit, the R and L components
almost equally exist, leading to the dominant hτXi
component.
All of the multipole distribution functions now represent

the microscopic physical quantities, i.e., ρ,MS, j, PS, τX;Y;Z.
They are summarized in Table I with their signs from parity
for spatial inversion and time-reversal transformations. As
shown in Table I, the electric toroidal momentGð2qþ 1Þ≡
X½ð2qþ 1Þd� appears only with the chirality density oper-
ator τZ and electric polarization PS. It is also notable that
the divergence ∇ · PS is absent, which implies the rotating
nature. In this context, it is interesting to compare it with the
magnetic toroidal moment Tð2qÞ≡ Xðð2qÞdÞ, which is not
accompanied by τY ∼ ∇ ·MS.
Analysis of the l ¼ 1 model.—To gain more insight, let

us consider a mean-field Hamiltonian in the simple l ¼ 1
localized model, given by HMF ¼ P

i ½λðl · sÞi − hi · Gi�
where i is a site index. λ is the spin-orbit coupling, Gi ≡
ðl × sÞi ¼

ffiffiffi
2

p
Xið1dÞ is an electric toroidal multipole, and

hi ¼
P

j JijhGji is the local mean-field generated by the
spontaneous symmetry breaking with the exchange inter-
action Jij [34].
Hereafter we clarify the physical consequence of the

electric toroidal moment. For simplicity, the site index i is
omitted. Without loss of generality, we can choose h ¼ hẑ
(h ≥ 0). The ground-state wave function is written as
jψ�i¼ iαj3

2
;�1

2
iþj1

2
;�1

2
i, where α ¼ ð3λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2 þ 8h2

p
Þ=

2
ffiffiffi
2

p
h ≃ −ð2 ffiffiffi

2
p

h=3λÞ (jαj ≪ 1) and the ground-state
energy is E ¼ − 1

4
ðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9λ2 þ 8h2

p
Þ. The single electron

state is written as jjjzi ¼
P

mσh1m 1
2
σjjjzic†mσj0i. The

ground-state degeneracy is protected by the time-reversal
symmetry. In the ordered state, any physical quantities can be
calculated with the density matrix ρ̂¼jψþihψþjþjψ−ihψ−j.
Through the calculation of spin current [23], we can

explicitly evaluate the expectation value of the electric
polarization as

hPSðrÞi
R2ðrÞ ¼ ℏ2e

8m2c2
ð−2þ α2

2
Þr̂ − 3αffiffi

2
p Cz þ 3α2

2r zẑ

2πrð1þ α2Þ ; ð11Þ

where r2 ¼ x2 þ y2 þ z2 and RðrÞ is a radial wave func-
tion. We have defined CzðrÞ ¼ ðxŷ − yx̂Þ=r, which is
circularly rotating around the z axis. This vector field is
schematically plotted on a unit sphere in Fig. 1. It can be
expanded by the order of α. The Oð1Þ contribution enters
from the spin-orbit coupling λ, which is proportional to r̂.
The contribution of Oðα1Þ is a leading-order contribution
from hGzi, which is rotating around the z axis. There is also
the small Oðα2Þ contribution pointing the z direction.
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Based on the Landau theory, we expect the temperature
dependence α ∼ ðh=λÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tc − T
p

near the transition tem-
perature. Hence the Oðα1Þ contribution proportional to Cz
in PS reflects the presence of the primary order parameter
hGi. However, the OðαÞ contribution vanishes in the total
charge ρtot ¼ ρ − ∇ · PS, which behaves as ∝ ðTc − TÞ (not
square root). The primary order parameter would be thus
veiled.
As shown in the OðαÞ contribution of Fig. 1, the

hGzi-ordered state breaks the mirror symmetry along the
z axis [see Fig. 2(a)]. The characteristics also appear in
the chirality density. Indeed, its expectation value shows the
leading-order OðαÞ contribution as follows,

hτZðrÞi
R2ðrÞ ¼ ℏ

2mc
3

ffiffiffi
2

p
αz

2πr2ð1þ α2Þ : ð12Þ

Figure 2(b) shows the spatial distribution of hτZðrÞi on a
unit sphere, which clearly shows the emergence of the
chirality dipole distribution. The red region around the
north pole indicates the right-handed electron rich region,
while the south pole is the left-handed rich region. The
dipole distribution of hτZðrÞi may also be understood in
analogy with the electric dipole distribution. Namely, the
assembly of the local dipoles in hρi in solids forms a polar
crystal. Similarly, the assembly of the local chirality dipole
in hτZi will induce an electric toroidal state in solids
characterized by the circulating electric polarization.
Furthermore, using Eqs. (11) and (12), we arrive at the

relation

hτZi ¼ 4mc
iℏ2e

L · hPSi ¼ −
4mc
ℏe

r · ð∇ × hPSiÞ; ð13Þ

where only the fundamental physical constants appear as
the proportional coefficient. The right-hand side is often
used as the definition of the electric toroidal multipoles
[35]. We note that the right-hand side of Eq. (13) directly
includes r and hence depends on the choice of the origin,
while the chirality in the left-hand side does not. Thus the
G ¼ l × s order parameter is closely related to the micro-
scopic chirality operator τZ, which derives from the
fundamental Dirac theory and is relevant to the electric

toroidal moment. Chirality is an indispensable degree of
freedom to unambiguously describe electronic states.
Coupling to external fields.—In the preceding discus-

sion, we addressed the significance of the spin-derived
electric polarization and chirality density of matter. We now
proceed to examine their coupling with external fields.
Once the magnetization and electric polarization are given,
the coupling to the external electromagnetic fields in the
Hamiltonian is written as

Hext ¼
Z

dr

�
ρΦ −

1

c
j · A −MS · B − PS · E

�
ð14Þ

in the linear response. Here the external magnetic field B ¼
∇ × A and the electric field E ¼ −∇Φ are introduced. In
the atomic limit model with fixed l, the uniform electric
field does not couple with the electric polarization directly
since

R
drPSðrÞ ¼ 0. We need the electric field modulating

on an atomic scale for the finite coupling to the electric
polarization in the present setup.
The spatially uniform fields lead to the familiar form of

the contribution to magnetization and electric polarization.
It is natural (but not unique) to define the potentials
as ΦðrÞ ¼ −E0 · r and AðrÞ ¼ 1

2
B0 × r. We then have

another expression Hext ¼ −
R
dr, (M · B0 þ P · E0)

where the magnetization and electric polarization are

M¼ðe=4mcÞψ†L
↔
ψþMS and P¼rρþPS with L¼r×p.

This expression provides an intuitive understanding of
magnetization and polarization.
Equation of continuity.—Finally, we discuss how the

source and/or sink of the material chirality appears using
the equation of continuity. We begin with the axial cur-
rent which satisfies ∂μjμ5 ¼ 2mPþ ðe2=16π2ÞϵμνλρFμνFλρ,
where jμ5 is the axial current, P the Lorentz pseudoscalar,
and F the electromagnetic field with the antisymmetric
tensor ϵ [25,36]. When we take its nonrelativistic limit, the
leading-order contributions are of Oðc0Þ, but they are
exactly canceled [37]. Here we further consider the

FIG. 1. Schematic picture for the spatial distribution of the
electric polarization PSðrÞ on a unit sphere. In the right-hand side,
the contributions from Oð1Þ, OðαÞ, Oðα2Þ [see Eq. (11)] in the
α → 0 limit are separately plotted.

FIG. 2. (a) Schematic for the mirror symmetry breaking of
hPSðrÞi, where the mirror is located parallel to the z axis.
(b) Spatial distribution of the chirality density hτZðrÞi on a unit
sphere where red (around north pole) and blue (south pole)
parts indicate right-chirality-rich and left-chirality-rich regions,
respectively.
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Oðc−2Þ contributions which describe the dynamics of
chirality as [23]

∂hτZi
∂t

þ ∇ · hjZi ¼ 2

ℏ
E ·

�
hMSi þ

e2

4π2ℏc
B

�
; ð15Þ

where τZ is defined in Eq. (7) and the chirality current is
given by [23]

jZ ¼ 1

4m2c

�
ψ† p

↔ðp↔ · σÞψ þ ℏ
2
∇ × ψ† p

↔
ψ

�
; ð16Þ

where the second term is divergence-free. The last term in
Eq. (15) proportional to B represents the chiral anomaly
inherent in the quantum field theory of fermions [25,36].
Thus, the coupling between magnetization and electric field
are the source of the chirality of matter.
The above chirality of matter is analogous to the chirality

of electromagnetic field, C ¼ E · ð∇ × EÞ þ B · ð∇ × BÞ,
which is known as the Lipkin’s zilch [38]. This quantity is
shown to be useful in determining the asymmetry of the
optical absorption rate between left- and right-handed
systems [39–41]. Its equation of continuity defines also
the corresponding current and source of the zilch, which are
contrasted against those in the Poynting theorem for the
energy density U ¼ ðE2 þ B2Þ=8π [39].
We recognize that the relation between the chirality

density τZ and the charge density ρ is analogous to that
between C and U. Hence, the apparent similarity between
the material chirality and the optical chirality suggests
the relevance of τZ to characterization of the asymmetry
between left- and right-handed materials. It is also
interesting to point out that the magnetic helicity
H ¼ R

drA · ð∇ × AÞ, which has been rarely discussed in
condensed matter physics, is closely related to the chiral
anomaly of fermions [42].
Summary and discussion.—We have investigated the

electronic degrees of freedom in the localized electron
orbitals using the knowledge of relativistic quantum
mechanics. We clarified that electric toroidal multipoles
are microscopically characterized by spin-derived electric
polarization and chirality in the Dirac theory, which are
closely related to the spin current tensor. In particular, the
chirality intrinsic to elementary particles is the essence of
electric toroidal multipoles.
When considering the ordered state of such electric

toroidal multipoles, the corresponding components of the
spin current tensor are modulating on an atomic scale. It
would be hard to detect the primary order parameter by
conventional spectroscopies. In this context, it is interesting
to study some exotic phase transitions, such as URu2Si2
[43] and CeCoSi [44,45].
Thus, the spin-derived electric polarization and the

chirality are fundamental quantities characterizing the
quantum states of materials. Recently, the importance of

the electric toroidal monopole in chiral crystals and
molecules has been noted [16,17]. The microscopic quan-
tities discussed in this Letter are relevant to any materials
with the spin-orbit coupling. Mapping out the spin-derived
electric polarization and the chirality distributions in these
materials is an interesting future challenge.
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