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As a fundamental concept of all crystals, space groups are partitioned into symmorphic groups and
nonsymmorphic groups. Each nonsymmorphic group contains glide reflections or screw rotations with
fractional lattice translations, which are absent in symmorphic groups. Although nonsymmorphic groups
ubiquitously exist on real-space lattices, on the reciprocal lattices in momentum space, the ordinary theory
only allows symmorphic groups. In this work, we develop a novel theory for momentum-space
nonsymmorphic space groups (k-NSGs), utilizing the projective representations of space groups. The
theory is quite general: Given any k-NSGs in any dimensions, it can identify the real-space symmorphic
space groups (r-SSGs) and construct the corresponding projective representation of the r-SSG that leads to
the k-NSG. To demonstrate the broad applicability of our theory, we show these projective representations
and therefore all k-NSGs can be realized by gauge fluxes over real-space lattices. Our work fundamentally
extends the framework of crystal symmetry, and therefore can accordingly extend any theory based on
crystal symmetry, for instance, the classification crystalline topological phases.
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Introduction.—Space groups fundamentally characterize
symmetries for all forms of natural crystals, including
electronic materials, spin liquids, and crystalline super-
conductors, as well as various artificial crystals, including
photonic or acoustic crystals, cold atoms in optical lattices,
periodic mechanical systems, and electric-circuit arrays [1].
Each crystal symmetry can be either nonsymmorphic or
symmorphic, depending on whether it involves a fractional
lattice translation. Two elementary examples are the
glide reflection and screw rotation. The pure reflection
or rotation changes the crystal, and the associated
fractional lattice translation should be followed to leave the
crystal invariant. Hence, as a qualitative categorization, a
space group is either symmorphic or nonsymmorphic
groups, according to whether it contains nonsymmorphic
symmetries.
In three dimensions (two dimensions), there are 157

(4) nonsymmorphic groups among 230 (17) space groups.
In fact, as the dimensionality increases, the proportion of
nonsymmorphic groups becomes more and more dominant
among all space groups [2]. As we know, nonsymmorphic
groups ubiquitously exist on real space lattices. It has
been a hot topic to discuss nontrivial (topological) proper-
ties arising from real-space nonsymmorphic space groups
(r-NSGs) [3–6].
The situation is radically changed in momentum space

according to the ordinary theory of space groups [1].

The momentum space is dual to the real space under
the Fourier transform. We have the reciprocal lattice in
momentum space for each real-space lattice. And the
momentum-space Hamiltonian HðkÞ is invariant under
integral reciprocal-lattice translations, i.e., Hðkþ KÞ ¼
HðkÞ for any reciprocal lattice vector K. However, every
symmetry operator only rotates k with NO fractional
reciprocal-lattice translation [7], and therefore no non-
symmorphic group exists in momentum space [1,8].
Hence, a natural question arises: Is it possible to have

nonsymmorphic groups in momentum space?
Here, we establish a novel theory of momentum-space

nonsymmorphic space groups (k-NSGs) based on the
projective representations of space groups. Recall that a
projective representation ρ of a group G is characterized by
a multiplier ν, i.e.,

ρðg1Þρðg2Þ ¼ νðg1; g2Þρðg1g2Þ: ð1Þ

Here, ρðgÞ is the symmetry operator of g ∈ G, and
νðg1; g2Þ ∈ Uð1Þ is a phase factor for any g1; g2 ∈ G. It
is appropriate multipliers that endow symmetry operators
fractional reciprocal-lattice translations.
Our theory can exhaustively represent k-NSGs in any

dimensions, i.e., for each dD k-NSG we can identify a real-
space symmorphic space group (r-SSG) and the multiplier
ν of the r-SSG that leads to the k-NSG. Particularly, we
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have explicitly tabulated the representations of all 157 3D
k-NSGs, and 4 2D k-NSGs.
All these multipliers of r-SSG and therefore all k-NSGs,

can be realized by lattice models with gauge fluxes. This
connects k-NSGs to spin liquids with emergent gauge fields
[23,24], crystalline superconductors [25], and various artifi-
cial crystals with engineerable gauge fluxes [9–15,26–29].
Under a k-NSG, the Hamiltonian is constrained by

URðkÞHðkÞ½URðkÞ�† ¼ HðRkþ κRÞ: ð2Þ

Here, for each symmetry R, κR is the associated fractional
reciprocal-lattice translation, and URðkÞ is the unitary
operator. Since crystalline topological phases rely on
symmetry constraints [4,30–32], and the novel constraints
of Eq. (2) can significantly extend the existing topological
classifications [33–35]. Recently, it has been shown that
projective symmetry can lead to fascinating topological
phases [36–44]. Hence, Eq. (2) can open a broad avenue
along this direction.
An example: k-NSG Pg from projective Pm.—Let us

start with presenting a simple example to illustrate the main
ideas before introducing our general theory.
Our example is the wallpaper group Pm. It is generated

by translation symmetries Lx and Ly along the x and y
directions, respectively, and the mirror reflection symmetry
Mx that inverses the x coordinate. It is clear that in Pm

MxLy ¼ LyMx; ð3Þ

i.e., Mx and Ly commute with each other since they act on
different dimensions.
We then consider a projective representation ρ of Pm

with the multiplier ν satisfying

νðMx; LyÞ ¼ −1; νðLy;MxÞ ¼ 1: ð4Þ

Then, according to Eq. (1), ρðMxÞρðLyÞ ¼ −ρðMxLyÞ and
ρðLyÞρðMxÞ ¼ ρðLyMxÞ. Since ρðMxLyÞ ¼ ρðLyMxÞ, we
have the projective algebraic relation,

ρðMxÞρðLyÞ ¼ −ρðLyÞρðMxÞ: ð5Þ

In momentum space, the translation operator
ρðLyÞ is decomposed into k components, ρkðLyÞ ¼ eikyb

with b the lattice constant along the y direction. Then,
from (5), we see ρðMxÞρkðLyÞ½ρðMxÞ�† ¼ −ρkðLyÞ, i.e.,
ρðMxÞeikyb½ρðMxÞ�† ¼ −eikyb ¼ eiðkyþGy=2Þb, where Gy ¼
2π=b is the reciprocal lattice constant along the ky
direction. Hence, under the projective representation, ky
is translated by a half of the reciprocal lattice constant, i.e.,

ρðMxÞ∶ðkx; kyÞ ↦ ð−kx; ky þ Gy=2Þ: ð6Þ

Here, the inversion of kx comes from the ordinary rela-
tion ρðMxÞρðLxÞ ¼ ρðL−1

x ÞρðMxÞ.
From the above derivations, we see ρðMxÞ acts on the

momentum space as a nonsymmorphic symmetry, namely,
a glide reflection, which stems from the multiplier ν
specified by Eq. (4).
Then, a natural question is how to realize the projective

representation of Eqs. (4) or (5). It is well known that gauge
fluxes can lead to projective representations. A general
formulation is given in the Supplemental Material [8].
Specializing to Eq. (4), a lattice model with appropriate
gauge fluxes is illustrated in Fig. 1(a).
The Hamiltonian and the unitary operator UMx

for Mx
can be found in the Supplemental Material [8]. Importantly,
the symmetry constraint is given by

UMx
Hðkx; kyÞU†

Mx
¼ Hð−kx; ky þ Gy=2Þ: ð7Þ

One may write ρðMxÞ in momentum space as ρðMxÞ ¼
UMx

Gkx . Here, Gkx is the glide reflection in momentum
space, with Gkxðkx; kyÞ ¼ ð−kx; ky þ Gy=2Þ. The energy
band structure is shown in Fig. 1(b), and a constant
energy cut is given in Fig. 1(c). We observe that the band
structure is indeed invariant under the glide reflection.
Moreover, it is easy to verify Eq. (5), since ρðkyÞ ¼ eikyb.
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FIG. 1. (a) The lattice model with the flux pattern preserving
Pm. Blue and red bonds denote positive and negative hopping
amplitudes, respectively. Each plaquette with π flux is shadowed.
(b) The band structure of the model. (c) The constant-energy
contour of the band structure at E ¼ −0.25 eV. We observe that
both (b) and (c) are invariant under the glide reflection Gx. Note
that a ¼ b ¼ 1 is assumed in (b) and (c). (d) The effective
negative hopping amplitude. Two (light) sites with energy ϵ hop
to the (dark) site with energy ϵþ Δ with amplitude t > 0. The
low-energy effective hopping amplitude between the two sites
with energy ϵ is −t2=Δ.
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In experiments, we need to realize the particular pattern
of π fluxes or negative hopping amplitudes of the model. A
simple mechanism is illustrated in Fig. 1(d). The low-
energy effective hopping amplitude of two low-energy sites
through a high-energy site is negative if the energy gapΔ is
large enough. Thus, in principle, one can engineer negative
hopping amplitudes by appropriately inserting high-energy
sites [see Fig. 1(d)]. More details and other mechanisms for
realizing gauge fluxes can be found in the Supplemental
Material [8].
Two questions.—We shall generalize the main ideas of

the simple example into a general theory for all k-NSGs in
any dimensions. Specifically, for each k-NSG, we shall
answer two questions: (i) What is the corresponding
r-SSG? (ii) With the r-SSG obtained, what is the multiplier
that leads to the k-NSG?
To answer the two questions, we first look into how

certain multipliers of projective representations can lead to
fractional translations of momenta in the following two
sections.
The canonical multiplier.—To spell out the multipliers

that we are interested in, we first introduce a basic
formulation of r-SSGs. Each r-SSG contains two natural
subgroups, namely, the translation group L and the
point group P. L consists of lattice translations with
lengths t ¼ P

i n
iei, where ni are integers, and ei the

primitive lattice vectors. Hence, the group elements can
be written as

L ¼ ft ¼
X

i

niei; ni ∈ Zg: ð8Þ

L can equally be interpreted as the collection of lattice sites
related to the origin by lattice translations. Hereafter, we
refer to L as the real-space translation group and lattice,
interchangeably. The point group P is a finite subgroup of
the orthogonal group OðdÞ. P compatibly operates on the
lattice L, i.e., Rt ∈ L for any R ∈ P and t ∈ L. Such a
compatible pair ðP;LÞ is referred to as a crystal class D.
Accordingly, each r-SSG can be denoted by L⋊DP,
consisting of group elements ðt; RÞ with t ∈ L and
R ∈ P. The group multiplication is given by

ðt1; R1Þðt2; R2Þ ¼ ðt1 þ R1t2; R1R2Þ: ð9Þ

Notably, a point group may compatibly operate on more
than one kind of lattices, and therefore corresponds to a
number of crystal classes. Consequently, in three dimen-
sions, there are 32 point groups, but 73 crystal classes and
therefore 73 symmorphic space groups.
We are now ready to state one of the key results, namely,

the multiplier, which is given by

νððt1; R1Þ; ðt2; R2ÞÞ ¼ e−iκR1 ·R1t2 : ð10Þ

We shall show that κR is the fractional reciprocal-lattice
translation associated to R, i.e., R transforms k as

R∶k ↦ Rkþ κR: ð11Þ

Moreover, to make Eq. (10) a multiplier, κR must satisfy
the relation

κR1
þ R1κR2

− κR1R2
∈ L̂ ð12Þ

for any R1; R2 ∈ P. Here, L̂ is the reciprocal lattice dual to
L. From ei, we can derive the primitive reciprocal-lattice
vectors Gi [45], and write L̂ as

L̂ ¼
�

K ¼
X

i

miGi; mi ∈ Z

�

: ð13Þ

Note that eit·K ¼ 1 for any t ∈ L and K ∈ L̂. Just like L, L̂
is referred to as the momentum-space translation group and
reciprocal lattice interchangeably.
The rigorous derivations of Eqs. (10) and (12) can be

found in Appendix A, which are based on Mackey’s
canonical form of multipliers for semi-direct product
groups [16,46].
Fractional translations of momenta.—We then elucidate

the meaning of κR in a projective representation ρ with the
multiplier of Eq. (10). It is significant to note that with
the multiplier of Eq. (10), we can derive from Eq. (1) the
projective algebraic relation,

ρðt0; RÞρðt; 1Þ ¼ e−iκR·RtρðRt; 1Þρðt0; RÞ: ð14Þ

Here, ðt; 1Þ is an arbitrary element of the translation
subgroup of the r-SSG L⋊DP [8].
Let us recall that each k corresponds to the irreducible

representation ρk of the translation subgroup L, with
ρkðt; 1Þ ¼ eik·t. Then, the transformation of ρðt0; RÞ on k
is given by ρkðt; 1Þ ↦ ρðt0; RÞρkðt; 1Þ½ρðt0; RÞ�†. From
Eq. (14), we find that

eik·t ↦ e−iκR·Rteik·Rt ¼ eið−RTκRþRTkÞ·t: ð15Þ

Here, RT is the transpose of R with R−1 ¼ RT . Note that
κRT þ RTκR ∈ L̂, which comes from Eq. (12) with R1 ¼
RT and R2 ¼ R. The transformation can be simplified to be

eik·t ↦ eiðR
TkþκRT Þ·t: ð16Þ

Thus, we conclude that each R ∈ P operates on mo-
mentum space as Eq. (11). Thus, we have proved that
ρðt0; RÞ acts as a nonsymmorphic symmetry in momentum
space.
It is insightful to compare k-NSGs with r-NSGs. Recall

that for a r-NSG with the point group P. Each R ∈ P is
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associated with a fractional lattice translation τR, and we
have the relation,

τR1
þ R1τR2

− τR1R2
∈ L ð17Þ

for any R1; R2 ∈ P [1,2,8]. Here, L is the translation
subgroup of the r-NSG. We observe that Eqs. (12) and
(17) have exactly the same form, except that one is in
momentum space and the other in real space. This further
confirms that the projective representations of Eq. (10) give
rise to k-NSGs through Eq. (11).
Remarkably, the duality between k-NSGs and projective

representations of r-SSGs with Eq. (10) can be rigorously
established at the cohomological level, which is treated in
Appendix B.
Answers and algorithm for all k-NSGs.—We are almost

ready to answer the two questions that we initially
proposed. One last piece needed is the concept called
the Fourier duality between crystal classes, which is
introduced below.
By the Fourier transform of the real-space lattice L, we

obtain the reciprocal lattice L̂. Both L and L̂ are invariant
under the same point group P. But, in terms of the P
actions, the crystal class D̂ of L̂may be different fromD of
L. D̂ is referred to as the Fourier dual of D. Since the

Fourier transform is invertible, we have ˆ̂D ¼ D, i.e., D and
D̂ are dual to each other, resembling the duality between L
and L̂. Hence, each crystal class is either self-dual or paired
with its Fourier dual. For instance, in three dimensions,
among the four crystal classes of point group D2h, mmmP
and mmmC are both self dual, while mmmI and mmmF
are dual to each other. As illustrated in Figs. 2(a) and 2(b),
the dual crystal classes mmmF and mmmI correspond to
the face-centered cubic and body-centered cubic lattices,
respectively.
For any given k-NSG with reciprocal lattice L̂, point

group P, and crystal class D̂, it is now straightforward to
answer the two questions. (i) The r-SSG is L⋊DP, with D
dual to D̂ under the Fourier transform. (ii) To realize the k-
NSG, the multiplier of the r-SSG, L⋊DP, is given by
Eq. (10).
The answers lead to the following algorithm for con-

structing an arbitrary k-NSG.
First, we write down the fractional translations κR

satisfying Eq. (12). From standard textbooks, e.g.,
Ref. [1], we can find the fractional translations τR for
the nonsymmorphic group. To get κR, we just need to
formally replace the real-space basis ei by the reciprocal
lattice basis Gi.
Second, from the reciprocal lattice L̂ and the crystal class

D̂ of the k-NSG, we determine the dual lattice L and dual
class D. L and D uniquely give the r-SSG L⋊DP with P
the point group of the k-NSG.

Third, using Eq. (10), we write down the multiplier ν of
L⋊DP from κR. The projective representation of L⋊DP
with multiplier ν gives the k-NSG.
2D and 3D k-NSGs.—Clearly, following the above

algorithm, we can realize any k-NSG in any dimensions
by constructing the r-SSG with the multiplier of Eq. (10).
The projective representations for all k-NSGs in two
and three dimensions can be found in the Supplemental
Material [8].
All the four 2D nonsymmorphic space groups act on

rectangular or square lattices, and therefore their crystal
classes are all self dual. The case of two different crystal
classes dual to each other occurs in three dimensions.
Hence, we demonstrate our algorithm by such an example,
namely, k-NSG Fddd.
The lattice L̂ of the MNSG Fddd corresponds to the

face-centered cube as illustrated in Fig. 2(b). The basis of L̂
is given by

G1 ¼ πð0; 1; 1Þ; G2 ¼ πð1; 0; 1Þ; G3 ¼ πð1; 1; 0Þ:

The point group of Fddd is D2h, which is generated by
three reflections Mki with i ¼ 1, 2, 3. Here, Mk1;2;3 inverse

G1
G2

G3

e1
e2

e3

(a) (b)

(d)(c)

kx

ky

kz

FIG. 2. (a) and (b) are the dual face-centered and body-centered
cubic lattices, respectively. The primitive translations are denoted
by Gi and ei, and accordingly the fundamental domains are
shadowed. The length of cube edge in (a) [(b)] is 2π (2). (c) The
model for k-NSG Fddd. Each lattice site in (b) is substituted by a
small cube, and π fluxes are inserted through shadowed pla-
quettes connecting these small cubes. (d) A constant-energy
contour of (c) preserving the k-NSG Fddd. See the Supplemental
Material for more details [8].
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kx;y;z, respectively. The three reflections are associated with
fractional translations: κMki

¼ Gi=2. The fractional trans-
lations for other elements of D2h can be derived from (12).
The crystal class of Fddd is mmmF, which is dual to
mmmI. Hence, the corresponding real-space symmorphic
group is Immm on the body-centered-cubic lattice L [see
Figs. 2(a) and 2(b)]. The basis of L is given by

e1¼ð−1;1;1Þ; e2¼ð1;−1;1Þ; e3¼ð1;1;−1Þ: ð18Þ

The independent multiplier components are derived from
Eq. (10) as

ν½ðt1;MkiÞ; ðt2; RÞ� ¼ ð−1Þni2 ; ð19Þ

which corresponds to the projective representation ρ
satisfying

ρðMkiÞρðeiÞρðMkiÞ ¼ −ρðe1 þ e2 þ e3Þ ð20Þ

with i ¼ 1, 2, 3. Other multiplier components and projec-
tive algebraic relations can be derived from them.
Gauge-flux models for k-NSGs.—Although not all pro-

jective representations of space groups can be realized by
lattice models with gauge fluxes, the projective represen-
tations for k-NSGs can be realized in this way. This can be
inferred from the particular form of Eq. (10). It only
modifies the algebraic relations between translations and
point-group symmetries, namely, modifying the operation
of the point group on the real-space lattice with additional
phase factors [see Eq. (14)]. These phase factors can be
realized by gauge fluxes, resembling the Aharonov-Bohm
effect. See the Supplemental Material for a general
formulation [8].
A lattice model for k-NSGs Fddd has been illustrated in

Fig. 2(c). Each lattice site in Fig. 2(b) is substituted by a
small cube without flux, and π fluxes are inserted for
shadowed plaquettes connecting these cubes. The lattice
model realizes the projective representation of Immm with
the multiplier (19). A constant-energy contour of the model
is shown in Fig. 2(d), which visualizes the k-NSG Fddd.
The technical details for the lattice realization and all lattice
realizations for the four 2D k-NSGs can be found in the
Supplemental Material [8].
In fact, realizing negative hopping amplitudes is suffi-

cient for all 2D k-NSGs and 119 3D k-NSGs among the
157 ones in total. This is because these k-NSGs involve
only half reciprocal-lattice translations, and therefore the
multipliers are equal to �1 according to Eq. (10). Thus, all
2D and most 3D k-NSGs can be readily realized by
artificial crystals [see Fig. 1(d)].
Summary and discussions.—In summary, we have

revealed the intrinsic connection between projective rep-
resentations and k-NSGs, based on Mackey’s canonical
form of multipliers for semidirect product groups. From the

connection, we can systematically construct any k-NSG by
the projective representation of the corresponding r-SSG
with the multiplier given by Eq. (10), which can be
physically realized on the dual lattice with appropriate
gauge fluxes.
Our work substantially extends the scope of

crystal symmetry, and deepens our understanding of the
interplay between gauge structures and symmetry. We
expect new avenues to be opened in topological physics
and artificial crystals under the grand framework of
k-NSGs.

This work is supported by National Natural Science
Foundation of China (Grants No. 12161160315 and
No. 12174181), Basic Research Program of Jiangsu
Province (Grant No. BK20211506), and the Guangdong-
Hong Kong Joint Laboratory of Quantum Matter.

Appendix A: On canonical form of multipliers.—
Mackey formulated a canonical form for multipliers
of semidirect product groups in the classic work [16].
The canonical form is introduced in the Supplemental
Material with slightly changed conventions for our appli-
cation [8]. Since each r-SSG is a semidirect product
of the translation group L and the point group P, we
can apply Mackey’s canonical form to analyze the
multipliers of r-SSGs.
Remarkably, according to Mackey’s canonical form, any

multiplier ν of an r-SSG can be decomposed as ν ¼ σγα,
with σ, α and γ three elementary multipliers of the r-SSG. σ
and α are the restrictions of ν on the two subgroups L and
P, respectively. Importantly, the multiplier of Eq. (10) is in
fact the γ component, and any γ component can be cast into
the form of Eq. (10). γ is a multiplier that connects L and P.
Hence, it is γ that changes the algebraic relations between
translation and point-group operators, and therefore leads
to fractional reciprocal-lattice translations.
For our purpose, it is sufficient to presume that the

restrictions of the r-SSG multiplier ν on the two subgroups
L and P are trivial, namely, σ ¼ α ¼ 1. Then, in
accord with Mackey’s canonical form, the multiplier can
be written as

ν½ðt1; R1Þ; ðt2; R2Þ� ¼ γðR1t2; R1Þ: ðA1Þ

Here, γðt; RÞ is valued in Uð1Þ, and satisfies the following
conditions:

γðt1 þ t2; RÞ ¼ γðt1; RÞγðt2; RÞ; ðA2Þ

and

γðt; R1R2Þ ¼ γðt; R1ÞγðRT
1 t; R2Þ: ðA3Þ

It is straightforward to check that the two conditions
Eqs. (A1) and (A3) are sufficient for making ν a
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multiplier, i.e., νðg1; g2Þνðg1g2; g3Þ ¼ νðg1; g2g3Þνðg2; g3Þ
for all g1; g2; g3 ∈ L⋊DP.
The first equation implies γð�; RÞ with R fixed is a

homomorphism from L to Uð1Þ, and therefore γ takes the
form:

γðt; RÞ ¼ e−iκR·t; ðA4Þ

where κR specifies the homomorphism for each R ∈ P.
Substituting Eq. (A4) into Eq. (A1), we obtain Eq. (10).
Substituting Eq. (A4) into Eq. (A3) gives the significant
relation in Eq. (12).

Appendix B: On cohomological equivalence.—In fact,
the duality between k-NSGs and projective representa-
tions of r-SSGs with Eq. (10) can be solidly established
at the cohomological level.
Let us recall that to identify a r-NSG, it is not sufficient

to only specify the fractional translation τR for each point-
group element R. This is because for an arbitrary vector r̄,
we can construct the fractional translations,

δr̄R ¼ Rr̄ − r̄; ðB1Þ

which obviously satisfy Eq. (17). But such fractional
translations are trivial, since they correspond to essentially
symmorphic space groups [2]. That is, δr̄R comes from the
displacement r̄ of the point-group reference point and the
coordinate origin. Moreover, τR and τ̃R are equivalent if
their difference τ̃R − τR ¼ δr̄R for some r̄, since they can be
equated by shifting the coordinate origin by r̄.
Hence, to fully establish the concept of k-NSGs, we need

to check whether such momentum-space fractional trans-
lations,

δk̄R ¼ Rk̄ − k̄; ðB2Þ

correspond to trivial multipliers. Here, k̄ is an arbitrary
vector in momentum space. To see this, it is noticed that the
corresponding multiplier is given by

νk̄½ðt1; R1Þ; ðt2; R2Þ� ¼ eik̄·R1t2e−ik̄·t2 : ðB3Þ

The multiplier is trivial, because it can be induced from an
ordinary representation by multiplying each operator
ρðt; RÞ with the phase factor χðt; RÞ ¼ eik̄·t. That is, it is
equal to fχ½ðt1; R1Þðt2; R2Þ�=χðt1; R1Þχðt2; R2Þg. Hence, we
have confirmed that if κ̃R − κR ¼ δk̄R for some k̄, κ̃R and κR
are equivalent, since they correspond to equivalent projec-
tive representations.
Thus, given a point group P, all possibilities of

k-NSGs are characterized by equivalence classes of
solutions of Eq. (12). This is just the “twisted” first
cohomology group H1;D̂ðP;Rd=L̂Þ. Here, Rd=L̂ denotes
the fundamental domain in momentum space, namely, the

Brillouin zone, in which κR is valued. In parallel, all
possible real-space nonsymmorphic groups are given by
H1;DðP;Rd=LÞ. Starting with ðP;DÞ, we can first work out
H1;D̂ðP;Rd=L̂Þ and H1;DðP;Rd=LÞ, and then exhaust all
the k-NSGs and r-NSGs, respectively.
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