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A resistor at finite temperature produces white noise fluctuations of the current called Johnson-Nyquist
noise. Measuring the amplitude of this noise provides a powerful primary thermometry technique to access
the electron temperature. In practical situations, however, one needs to generalize the Johnson-Nyquist
theorem to handle spatially inhomogeneous temperature profiles. Recent work provided such a
generalization for Ohmic devices obeying the Wiedemann-Franz law, but there is a need to provide a
similar generalization for hydrodynamic electron systems, since hydrodynamic electrons provide unusual
sensitivity for Johnson noise thermometry but they do not admit a local conductivity nor obey the
Wiedemann-Franz law. Here we address this need by considering low-frequency Johnson noise in the
hydrodynamic setting for a rectangular geometry. Unlike in the Ohmic setting, we find that the Johnson
noise is geometry dependent due to nonlocal viscous gradients. Nonetheless, ignoring the geometric
correction only leads to an error of at most 40% as compared to naively using the Ohmic result.
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Introduction.—The measurement of heat flow has long
been a pivotal tool for exploring many-body systems in
condensed matter and materials physics. For example,
measurements of thermal conductivity or heat capacity
reflect the existence of whichever quasiparticles are present
in the system, including those which are charge neutral. But
such measurements require an accurate thermometer, and
modern metrology schemes increasingly require nanoscale
temperature resolution.
In the context of electron systems, one challenge of

nanoscale thermometry is to disentangle electron and
phonon contributions to heat transport; in settings with
weak electron-phonon coupling, the electron and phonon
temperatures may not even be the same. Johnson noise
thermometry addresses the electronic half of this issue: it is
a powerful primary thermometry technique that allows one
direct and isolated access to the electronic degrees of
freedom. For this technique’s simplest formulation, con-
sider a resistor held at a uniform electronic temperature T0.
The Johnson-Nyquist theorem (fluctuation-dissipation
theorem) dictates that in a two-terminal setup

Sðt − t0Þ≡ hδIðtÞδIðt0Þi ¼ 2kBT0

R
δðt − t0Þ; ð1Þ

where δIðtÞ ¼ IðtÞ − hIi is the charge current fluctuation at
time t and R is the resistance; h…i denotes an ensemble
average (i.e., a time average if ergodicity is assumed) [1].
As seen in Eq. (1), the time-averaged current fluctuations
provide a direct measure of the temperature of the electron
bath in the resistor. The noise correlator Sðt − t0Þ can be
written in units of temperature, defining the so-called
Johnson noise temperature

TJN ≡ lim
ω→0

R
2kB

SðωÞ; ð2Þ

where SðωÞ ¼ R∞
−∞ dt e−iωtSðtÞ is the (two-sided) Fourier

transform of the current noise correlator. Therefore, in
situations with uniform temperature the Johnson-Nyquist
theorem tells us that TJN ¼ T0; the Johnson noise temper-
ature directly measures the electronic temperature T0

without need for calibration. In other words, Johnson noise
acts as a primary thermometer. This thermometry technique
has recently been fruitfully utilized to make record-
sensitive bolometers [2–6] and to make measurements of
electronic thermal conductivity and heat capacity [7–9].
In many practical situations, such as those listed above,

the fundamental Eq. (1) does not apply since the electronic
temperature is not spatially uniform. Generalizations of
Eq. (1) were previously studied [10,11] for electronic
systems that obey Ohm’s law, i.e., where a local propor-
tionality JðxÞ ¼ σðxÞEðxÞ between current density and
electric field holds, as well as the Wiedemann-Franz (WF)
law. These studies find that when current flows through a
two-terminal device, Joule heating leads to an increase in
the measured Johnson noise (in temperature units) by

δTJN ≡ TJN − T0 ¼
PR

12L0T0

: ð3Þ

Here P ¼ I2R is the Joule power, R is the resistance, and
L0 ¼ κ=ðσT0Þ ¼ ðπ2=3ÞðkB=eÞ2 is the Lorenz ratio. The
quantity δTJN can be thought of as the excess noise arising
from Joule heating; throughout this Letter we refer to the
total TJN as simply the “Johnson noise.” Equation (3) has
been known for the special case of a rectangular geometry
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with a spatially uniform and diagonal conductivity tensor
since at least 1992 [12], but in fact Eq. (3) is generic for any
two-terminal geometry and any form of the conductivity
tensor (even if it exhibits spatial variations), so long as
Ohm’s law and the WF law are obeyed [11].
What has remained unknown is how Eq. (3) should be

generalized for situations not governed by Ohm’s law.
Electronic systems that violate Ohm’s law have become
increasingly prominent in recent years, with experimental
works demonstrating a hydrodynamic regime of strongly
interacting electrons in a number of materials [13–40]. In
such systems there is no concept of a spatially local
conductivity and WF is violated. Graphene in particular
is a material of choice both for Johnson noise thermometry
and electron hydrodynamics, due to its relatively weak
electron-phonon coupling, low disorder, and strong elec-
tron-electron interactions. The advent of these hydrody-
namic electron systems calls for an extension of Johnson
noise theory to this new setting.
Moreover, a naïve application of Eq. (3) (as was used, for

example, in the seminal measurements of WF violation in
graphene [20]) suggests great practical utility of hydro-
dynamic electrons. Electrons in the hydrodynamic regime
can display large WF violations [20,34,41–50], and deep in
the hydrodynamic regime (with only a single type of
carrier) the Lorenz ratio κ=ðσT0Þ becomes very small
[41–43,45,49]. Naively inserting this small effective
Lorentz ratio into Eq. (3) suggests a very large sensitivity
for Johnson noise in the hydrodynamic regime. Such high
sensitivity would imply that hydrodynamic electrons are
ideal for bolometry and thermometry applications.
Therefore, the key question of the fate of thermal noise
in a hydrodynamic electron system and the validity of
Eq. (3) has significant practical and theoretical importance
for the development of electron thermometry.
In this Letter, we explicitly study the Johnson noise of

hydrodynamic electrons. We analytically solve for the low-
frequency fluctuations of the Navier-Stokes equations in a
rectangular geometry, depicted in Fig. 1. We find that the
Johnson noise temperature is no longer geometry indepen-
dent due to nonlocal viscous gradients, as opposed to the
Ohmic case [11]. Despite this nonuniversality, Eq. (3) is of

the correct functional form up to a multiplicative geometric
correction. In fact, this geometric correction is no larger
than 40% for any aspect ratio of the system or any value of
the electron-electron scattering rate. Thus, Eq. (3) provides
a generally correct description of the Johnson noise, even
though the resistance R and Lorenz ratio L are strongly
renormalized by hydrodynamic effects.
Mathematical setup.—Throughout this Letter, we work

with the rectangular geometry shown in Fig. 1. The full
equations of motion for incompressible flow are given by

∂tv þ v · ∇v ¼ −
1

ρ
∇P −

q
m
∇ϕ − γv þ ν∇2v; ð4Þ

∂tT þ v ·∇T ¼ κ

2cp
∇2T þ ν

2cp
ð∂kvi þ ∂ivkÞ2 þ

γ

cp
v2;

ð5Þ

∇ · v ¼ 0: ð6Þ

The hydrodynamic fields are the velocity v, the temperature
T, the pressure P, and the electric potential ϕ. The pheno-
menological constants in the equations of motion are the
hydrodynamic massm, the charge q, the mass density ρ, the
momentum relaxation rate γ, the viscosity ν, the specific heat
at constant pressure cp, and the thermal conductivity κ. We
have assumed an incompressible flow with constant density
[51]; this assumption is valid for flows with v ≪ c and
τ ≫ L=c where c is the speed of sound and τ and L are a
characteristic time and length, respectively [52,53]. We also
neglect the pressure P since it can be subsumed into an
effective electric potential ϕ0 ¼ ϕþmP=ðρqÞ. Finally, we
will work at linear order, neglecting convection terms v ·∇v
and thermal advection v ·∇T. Dropping convection is valid
at low Reynolds numbers Reν ≡ vL=ν ≪ 1 [54] or at
low “momentum-relaxation Reynolds number” [55] Reγ≡
v=Lγ ≪ 1. Graphene experiments are typically deep within
this low Reynolds number regime, with γ ∼ 650 GHz,
ν∼0.1m2=s, and L ∼ 5 μm [19] so that Reγ ∼ I=ð26 mAÞ
and Reν ∼ I=ð160 μAÞ [55]. Moreover, dropping thermal
advection is valid for κ=ðcpLÞ ≫ v when thermal diffusion
is fast compared to the fluid velocity. After these simplifi-
cations, the equations of motion become

∂tv ¼ −
q
m
∇ϕ − ðγ − ν∇2Þv; ð7Þ

∂tT ¼ κ

2cp
∇2T þ ν

2cp
ð∂kvi þ ∂ivkÞ2 þ

γ

cp
v2; ð8Þ

∇ · v ¼ 0: ð9Þ

Equation (7) is the momentum balance equation with an
electric force, momentum relaxation, and viscous drag.
Equation (8) is the heat equation, with source terms from

FIG. 1. The rectangular geometry that we consider and its
boundary conditions. A voltage V is applied across the contacts,
and we consider no-slip boundary conditions at the walls. We also
fix the temperature on the x boundaries and enforce ∂yT ¼ 0 on
the y boundaries.
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viscous heating and Joule heating. Supplemented by fixed-
voltage, fixed-temperature, and no-slip or no-heat-flow
boundary conditions (see Fig. 1), solving these equations
provides the quasi-equilibrium solution about whichwewill
study noise fluctuations.
Once the steady-state solution is known, we can study

the thermal noise fluctuations. We are interested in low
frequency solutions, s → 0, where the velocity fluctuations
δvi are described by the Laplace transform of Eq. (7) [56]

ðsþ γ − ν∇2
rÞhδviðr; sÞδvjðr0; 0Þi ¼ hδviðr; 0Þδvjðr0; 0Þi

≡ kBTðrÞ
ρ

δðr − r0Þδij;

ð10Þ

where s is the Laplace parameter [57] and the initial
condition on the rhs of Eq. (10) is given by the equipartition
theorem. This equation is supplemented by incompress-
ibility of fluctuations ∂ihδviðr; sÞδvjðr0; 0Þi ¼ 0. In writing
Eq. (10) with incompressibility, we have neglected the
electric potential (pressure) and density fluctuations. This
approximation is again valid when ω ≪ c=L, i.e., when the
frequency is much smaller than the characteristic sound
frequency of the sample. Finally, to obtain the current
fluctuations from the velocity fluctuations, it is convenient
to apply the relation I ¼ ð1=lÞ R dxdyJx to the solution of
Eq. (10); this relation arises from current conservation sinceR
dyJx is independent of x.
For simplicity, we ignore other forms of noise that may

be present. Shot noise, in particular, is also present; for
diffusive conductors it dominates whenever the source-
drain voltage V is large enough that eV ≫ kBT (see, e.g.,
Refs. [58,59]). However, recent experiments measuring
Johnson noise in hydrodynamic electrons tend to operate in
a regime where Johnson noise is dominant over shot noise
[7–9,20,60]. We leave an exploration of other noise
mechanisms in the hydrodynamic regime to future work.
Solution.—We begin by solving the steady-state equa-

tions of motion to determine the temperature profile. The
steady-state velocity profile is given by the Ohmic-
Poiseuille solution (see, e.g., Ref. [17])

JxðyÞ≡ nvxðyÞ ¼ σDEx

�
1 −

coshðy−h=2λ Þ
coshð h

2λÞ
�
; ð11Þ

where σD ≡ ne2=ðmγÞ is the Drude conductivity and the
electric field Ex ¼ V=l. The viscous length scale or Gurzhi
length λ≡ ffiffiffiffiffiffiffi

ν=γ
p

is a length scale below which viscous
effects are important. For convenience,we can define an effec-
tive conductivity σ̄≡ðl=hÞ=R¼½1−ð2λ=hÞ tanhðh=2λÞ�σD,
where the two-terminal resistance R ¼ V=I was computed
using Eq. (11). In the Ohmic limit λ ≪ h, the effective
conductivity σ̄ → σD reduces to the usual Drude

conductivity. We emphasize that a local conductivity is
not well defined in the presence of viscosity; the effective
conductivity is useful as a measure of the heat dissipation,
not of the local current-voltage relation. The solution for the
velocity profile in Eq. (11) determines the dissipative
heating terms in Eq. (8), which allows us to solve for the
temperature profile.
We use Fourier techniques to obtain the temperature

profile analytically. The exact result can be written as

TðxÞ ¼ T0 þ
σ̄V2

κ

�
1

2
x̃ð1 − x̃Þ − h2

l2
F

�
h
l
;
λ

h
;x

��
; ð12Þ

where x̃ ¼ x=l is the nondimensionalized x coordinate and
F is a double Fourier sum [61]. To obtain a qualitative
understanding, we consider this result in various simplify-
ing limits (see Fig. 2).
In the Ohmic limit λ ≪ h, the heating profile (i.e., the

heat per unit area generated at each point) is spatially
uniform; since F → 0, this limit admits the simple para-
bolic temperature profile

TOhmðxÞ ¼ T0 þ
σ̄V2

κ

1

2
x̃ð1 − x̃Þ þOðλ=hÞ; ð13Þ

FIG. 2. A plot of the purely viscous (λ → ∞) temperature
profiles for (a) h=l ¼ 1 and (b) h=l ¼ 1=40. Notice that for (b),
the profile is very similar to the Ohmic profile, having negligible
y variation.
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with σ̄ → σD. This parabolic profile is the result of the
thermal boundary conditions: heat is only allowed to flow
at the contacts at x ¼ 0 and x ¼ l, so the temperature
must be maximal in the center and minimal at the fixed-
temperature boundaries.
In the opposite viscous limit, λ ≫ h, viscous dissipation

leads to a nonuniform heating along the y direction (though
heating is still uniform in x, as in the Ohmic case). The
temperature profile then obtains a “geometric correction” to
the Ohmic result as a function of the aspect ratio h=l. In the
thin channel regime h ≪ l, analyticity ofF around h=l ¼ 0
means that the temperature profile takes the simple form

T thin ¼ T0 þ
σ̄V2

κ

1

2
x̃ð1 − x̃Þ þOðh2=l2Þ: ð14Þ

This “Ohmic-like” temperature profile arises due to the fact
that in the thin channel limit, the problem becomes quasi-1D;
heating inhomogeneities rapidly equilibrate along y as
compared to along x, leading to small,Oðh2=l2Þ corrections
to theOhmic-like temperature profile that is independent ofy.
An example of an Ohmic-like temperature profile in the thin
channel limit is plotted in Fig. 2(b).
As we will see below, the temperature profile determines

the Johnson noise profile, so that correspondingly Eq. (3) is
obeyed in both the Ohmic limit and the thin channel limit
(for the latter, even in the limit of zero Drude resistivity,
γ → 0). Therefore, in order to observe any deviation from
Eq. (3), one needs to be in the regime l≳ h≳ λ, for which
the temperature profile is nonuniform in the y direction. An
example is shown in Fig. 2(a), where one can see increased
temperature at the boundaries due to viscous dissipation
from the no-slip boundary friction.
Given the temperature profile, we can solve for the

measured current noise via Eq. (10), again using Fourier
techniques. The analytic result can be written as

S ¼ 2kB
R

�
T0 þ

σ̄V2

12κ
fðh=l; λ=hÞ

�
; ð15Þ

where the function f is a Fourier series and is plotted in
Fig. 3 [61]. In the Ohmic limit λ ≪ h, we find that f → 1,
recovering the previous Ohmic result for the Johnson noise
[11] [see Eq. (3)].

SOhm ¼ 2kB
R

�
T0 þ

σDV2

12κ

�
: ð16Þ

Therefore, we interpret f as a geometric correction to the
Ohmic Johnson noise result. For h ≪ l where the temper-
ature profile is Ohmic-like, we also obtain the Ohmic result
f → 1. Around λ=h ∼ 0.2, we find that f − 1 changes sign.
This sign change is due to a crossover from the regime
where Joule heating dominates to the regime where viscous
heating dominates, which produces a corresponding change

in the “topography” of the temperature profile. When Joule
heating dominates (λ=h≲ 0.2) there is a single temperature
peak in the center, while when viscous heating dominates
(λ=h≳ 0.2) there are two temperature peaks, one at each
boundary.
In general, the dimensionless function f is a slow Oð1Þ

function of h=l and λ=h and f never deviates from unity by
more than 40%. Deep in the limit of viscous flow and large
aspect ratio (λ=h ≫ 1 and h=l ≫ 1), i.e., the top-right
corner of Fig. 3, the value of f approaches 3=5. Despite this
conclusion that the Ohmic result of Eq. (3) is always
“nearly correct,” we emphasize that the sensitivity of
Johnson noise thermometry is generally strongly renor-
malized by hydrodynamic effects. Specifically, viscous
effects tend to strongly renormalize the resistance R and
the Lorenz ratio L ¼ κ=ðσ̄T0Þ, thereby making a large
quantitative change in the measured Johnson noise.
Conclusion.—In this Letter, we have shown that the

relationship between Johnson noise and heating for Ohmic
and WF-obeying systems [Eq. (3)] is, surprisingly, mostly
valid even for hydrodynamic electrons [Eq. (10)]. A geo-
metric correction arises from preferential heating near the
no-slip boundaries by viscous shear, but this correction is
never more than 40%, regardless of the sample’s aspect
ratio or viscosity. Our result enables a range of fundamental
and applied applications in thermometry and bolometry,
and justifies applying existing Johnson noise thermometry
techniques (those of Refs. [8] and [9], for example) directly
in the hydrodynamic regime.
Our results, derived for a Galilean-invariant fluid, can be

directly extended to the “Dirac fluid” limit where n-type
and p-type carriers coexist (as in graphene near the charge
neutral point) [64]. In general, with chemical potential μ
away from the Dirac point, electron-hole scattering causes

FIG. 3. A plot of fðh=l; λ=hÞ − 1, the deviation of the geo-
metric correction to the Johnson noise from unity. In both the
Ohmic limit, λ=h ≪ 1, and the thin channel limit, h=l ≪ 1, we
find f → 1. Viscous effects are most prominent for λ=h ≫ 1 and
h=l ≫ 1, where f → 3=5.
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the majority carriers to drag the minority carriers, so that
electrons and holes equilibrate to the same hydrodynamic
drift velocity. Very near the Dirac point, however, there is a
zero-momentum mode with disequilibrated electron and
hole drift velocities that can also carry current. This zero-
momentum mode can relax current via electron-hole
scattering, increasing the current-relaxation rate and sup-
pressing the viscous length λ. Therefore, when the chemical
potential is sufficiently close to the Dirac point, the current
noise should return to Ohmic-like behavior. To estimate the
window where the zero-momentum mode is important, we
estimate the two modes’ relative contribution to the
effective conductivity. We find [61]

σz
σF

∼
ðkBTÞ2
μ2

�
l2ee
L2

þ γimp

γee

�
; ð17Þ

where σz and σF correspond to the zero-momentum and
finite-momentum (hydrodynamic) conductivities, respec-
tively, and L is the sample length. Therefore, even in the
Dirac fluid limit, the zero-momentum mode can be
neglected so long as μ2=ðkBTÞ2 ≫ l2ee=L2 þ γimp=γee,
where the rhs is small in the hydrodynamic limit. Where
this inequality is satisfied, our main result, Eq. (10), applies
directly; where it is violated, the Ohmic result Eq. (3)
applies. We remark that one can make more rigorous
estimates using the explicit expressions from Boltzmann
kinetic theory [26,41,65] which give the same func-
tional form.
While for a rectangular geometry the geometric correc-

tion f to the Johnson noise does not deviate greatly from
unity, one may wonder whether this conclusion is strongly
geometry dependent. More specifically, one can ask about
the annular Corbino geometry; it exhibits “paradoxical”
behavior for hydrodynamic electron flow, with a near-
vanishing of the bulk electric field even when a strong
current is flowing [38–40,66,67]. If one naïvely applies the
Shockley-Ramo theorem [68–71], then this bulk electric
field expulsion would seemingly imply that the Johnson
noise is unmodified by current flow, even as this flow
produces significant electron heating. However, the version
of Shockley-Ramo appropriate for an electron fluid [71]
relies on a well-defined local conductivity. We expect that
the current noise for the Corbino geometry is qualitatively
similar to the rectangle; we do not expect any zeros or
anomalies, only a quantitative change in the geometric
correction. In the Ohmic limit (i.e., small λ), we expect a
return to Eq. (3). Moreover, when the two annular radii
r2 − r1 ≡ δ ≪ r1 are very close, the temperature variations
are suppressed by Oðδ2=r21Þ, so we also expect the current
noise to be Ohmic-like in this 1D limit. We leave further
exploration of the Corbino and of other geometries to
future work.
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