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We study the quasiparticle interference (QPI) pattern emanating from a pair of adjacent impurities on the
surface of a gapped superconductor (SC). We find that hyperbolic fringes (HFs) in the QPI signal can
appear due to the loop contribution of the two-impurity scattering, where the locations of the two impurities
are the hyperbolic focus points. For a single pocket Fermiology, a HF pattern signals chiral SC order for
nonmagnetic impurities and requires magnetic impurities for a nonchiral SC. For a multipocket scenario, a
sign-changing order parameter such as an s� wave likewise yields a HF signature. We discuss twin
impurity QPI as a new tool to complement the analysis of superconducting order from local spectroscopy.
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Introduction.—Quasiparticle interference (QPI) around
impurities, which can be probed through a scanning
tunneling microscopy (STM) measurement, has acquired
a pivotal role in exploring the properties of unconventional
electronic states of matter including high-Tc superconduc-
tors (SCs) [1–8] and topological insulators (TIs) [9,10].
For the SC, the local density of states (LDOS) modulation
patterns not only reflect principal features of electronic
dispersion and pairing symmetries [1,11–13], but are also
sensitive to sign changes in the SC order parameter [3–5] as
well as to time-reversal symmetry [10,14]. In addition to
QPI patterns arising from a single impurity, the LDOS
distribution and possible bound states due to the presence
of multiple impurities have been studied in a variety of
systems [15–20].
The QPI pattern’s phase sensitivity renders it preemi-

nently suited to resolve intricate properties of an unconven-
tional SC state of matter. At present, the evidence on the
nature of unconventional pairing symmetry of several
material classes is still incomplete. This includes candidates
for the chiral SC order such as strontium ruthenate [21],
Na-doped cobaltates [22] or, more lately, Sn=Si hetero-
structures [23] and kagome metals [24]. Likewise, addi-
tional ways to track the sign-changing nature of extended
s-wave order, as suspected for many iron pnictide families,
are highly sought after [25].
In this Letter, we propose a hyperbolic fringe (HF) signal

fingerprint found in the QPI pattern of two adjacent
impurities deposited on a gapped SC, which we coin twin
QPI. We find that through the HF signal, the twin QPI
pattern allows us to retrieve information beyond the single

impurity case, and thus to draw conclusions on the either
chiral or multipocket sign changing nature of the SC order
parameter.
Minimal model.—In order to complement the numerical

analysis with an analytically tractable limit to showcase
the mathematical structure of the HF pattern, we initially
constrain ourselves to the simplest Bardeen-Cooper-
Schrieffer (BCS) Hamiltonian for a single electronic band
with nearest neighbor hybridization on a square lattice
εk ¼ −2tðcos kx þ cos kyÞ − μ:

H ¼
X
ks

εkc
†
kscks þ

X
k

ðΔkc
†
k↑c

†
−k↓ þ H:c:Þ; ð1Þ

where we set the hopping parameter t ¼ 1 and the lattice
spacing a ¼ 1. Initially, we assume the chemical potential
to be located at fillings where the Fermi surface (FS) is
approximately circular [Fig. 2(a) red line]. The presence of
impurity scattering is modeled by

Himp
NM ðMÞ ¼ U0

X
r

X
n

δr;rnðc†r↑cr↑ � c†r↓cr↓Þ; ð2Þ

where rn denotes the location of impurities, U0 is the
impurity coupling strength, and the þð−Þ sign corresponds
to nonmagnetic (magnetic), impurities. The QPI pattern
observed by a STM measurement is related to the LDOS
distribution Nðr;ωÞ, where we recast ω as the frequency
bias of the STM tip. It reads

Nðr;ωÞ ¼ −
1

π
ImTr

�
1̂þ τ̂z
2

Gðr; r;ωþ iηÞ
�
; ð3Þ
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whereG denotes theNambuGreen’s function, with the four-
component spinor operator given by ðc†k;↑c†−k;↓c−k;↓−ck;↑Þ
in momentum space. τ⃗ ¼ ðτx; τy; τzÞ denotes the Pauli

matrix vector in particle-hole space, and η denotes an
infinitesimal positive number regulator. In the absence of
impurities, the Green’s function is given by

G0ðr;ωÞ≡

0
BBB@

G0ðr;ωÞ 0 F0ðr;ωÞ 0

0 G0ðr;ωÞ 0 F0ðr;ωÞ
F̃0ðr;ωÞ 0 −G0ðr;−ωÞ 0

0 F̃0ðr;ωÞ 0 −G0ðr;−ωÞ

1
CCCA; ð4Þ

where

0
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ω2 − ε2k − Δ2
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ωþ εk

Δk

Δ�
k

1
CA;

ð5Þ

and S is the area of the sample. In the presence of
impurities, the full Green’s function is expanded with
respect to U0 to obtain the infinite series

Gðr; r0Þ ¼ G0ðr − r0Þ þ
X
r00

G0ðr − r00ÞUðr00ÞG0ðr00 − r0Þ

þ
X
r00r000

G0ðr − r00ÞUðr00Þ

×G0ðr00 − r000ÞUðr000ÞG0ðr000 − r0Þ þ…; ð6Þ

where UðrÞ ¼ U
P

n δr;rn with U ¼ U0τz for nonmagnetic
and U ¼ U0σz [σ⃗ ¼ ðσx; σy; σzÞ is the Pauli matrix vector
in spin space] for magnetic impurities. Note that for
scattering around a pair of magnetic impurities, unless
otherwise stated, we assume that their magnetic moments
are aligned.
Hyperbolic fringes in twin QPI.—Assume two impurities

to be located at r1 and r2. While there are infinitely many
terms, we can separate them into two classes. The first
contains all processes from r to r1 (r2), and after possible
multibouncing, back to r from r1 (r2). We call this class
single contribution. The other part contains processes from
r to r1 (r2), and after possible multibouncing, back to r

from r2 (r1), which we call loop contribution. In each class,
the terms are summed up as a geometric series. The
multibouncing processes at one impurity only renormalize
U according to U0 ¼ ½1̂ −UG0ð0Þ�−1U. Summing up all
the multibouncing processes between two impurities
yields a second step renormalization of U0 according to
U00 ¼ ½1̂ −U0G0ðr1 − r2ÞU0G0ðr2 − r1Þ�−1U0. We get

Gðr; rÞ −G0ð0Þ ¼ G0ðr − r1ÞU00G0ðr1 − rÞ þ ð1 ↔ 2Þ
ð7Þ

þG0ðr − r2ÞU0G0ðr2 − r1ÞU00G0ðr1 − rÞ þ ð1 ↔ 2Þ; ð8Þ

where the lines (7) and (8) denote single and loop
contribution, respectively. We assume a gapped single-
pocket s-wave SC Δs

k ¼ Δ and an electronic filling close to
the band edge such that we obtain an approximately
circular Fermi surface [Fig. 2(a) red line]. This allows us
to gain an analytical grasp on G0ðr;ωÞ. Setting kF ¼ 1, we
find [26]

G0ðrÞ ∼ r−1=2
�
sin r −

iω
ω0 cos r

�
; ð9Þ

and

Fs
0ðrÞ ¼ F̃s

0ðrÞ ∼
iΔ
ω0 r

−1=2 cos r; ð10Þ

where r≡ jrj and ω0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Δ2

p
. To second order in U0,

we find from Eqs. (4), (9), and (10)

Nloop;sðrÞ ∼ ðr1r2dÞ−1=2
� cosðr1 þ r2 þ dÞ; NM

cosðr1 þ r2 þ dÞ þ 4Δ2

ω02 cos r1 cos r2 cos d; M
ð11Þ

where r1 ¼ jr − r1j, r2 ¼ jr − r2j, and d denotes the
distance between the two impurities. The nonmagnetic
(NM) expression explains the elliptical oscillations in
Fig. 1(b) (we perform numerical simulations based on

the full tight-binding Hamiltonian, details in [29]), where
the constant contours are r1 þ r2 ¼ C, with C given by
some constant. In contrast, the magnetic (M) expression is
the summation of oscillations of r1 þ r2 and that of r1 − r2.
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As r1 − r2 ¼ C is the very definition of a hyperbola, a HF
appears in Fig. 1(c) on top of the elliptical oscillations. The
emergence of a HF is attributed to the loop quasiparticle
scattering. This pattern in the LDOS remains qualitatively
unchanged upon including higher-order scattering terms, as
described in detail in the Supplemental Material (SM).
When ω ≫ Δ, the superconducting coherence is lost on the
equal energy contour, and we recover the nonmagnetic
results [Eq. (11)] which is the same as that in a metal. Also,
note that the elliptical and hyperbolic fringes exhibit
manifestly different Fourier transformations [(b) and (c) in-
set], which we detailed in the SM.
Chiral SC.—While some aspects of the HF signal for the

s-wave minimal model above carry over to chiral pairing
symmetries, the twin QPI pattern of a chiral SC already
exhibits a HF signal for nonmagnetic impurities. Picking
Δp

k ¼ Δðsin kx þ i sin kyÞ for illustration, we find G0

according to Eq. (9) along with

Fp
0 ðrÞ ¼ ½F̃p

0 ðrÞ�⋆ ∼
iΔ̃
ω0 r

−1=2 sin reiθ; ð12Þ

where θ is the polar angle of r. This gives a loop
contribution to the LDOS according to

Nloop
p ðrÞ ∼ ðr1r2dÞ−1=2 ×

�
cos ðr1 þ r2 þ dÞ

þ Δ2

ω02 ½sin r1 sin r2 cos d cos ðθ1 − θ2Þ
þ cos r1 cos r2 cos d

� ðcos r1 sin r2 sin d cos θ2
− sin r1 cos r2 sin d cos θ1Þ�

�
; ð13Þ

where θ1 and θ2 denote the polar angle of r − r1 and r − r2,
respectively, and þð−Þ corresponds to NM (M) impurities.
According to trigonometric transformations, we immedi-
ately recognize that Eq. (13) is also the summation of the
oscillations of r1 þ r2 and of r1 − r2, albeit the amplitude is
further modulated by terms related to the polar angles θ1
and θ2. That is why we also see a HF on top of elliptical
fringes in Fig. 2(b). We employ Eq. (13) in Fig. 2(d) to
compare our analytical approximation against the numeri-
cal calculation in Fig. 2(b), which shows good agreement.
In contrast to the uniform s-wave pairing, here the two
scattering processes r → r1 → r2 → r and r → r2 →
r1 → r, which are time-reversed to each other, can also
interfere to generate the HF, as the superconducting
gaps acquire different winding phases on the two paths.

FIG. 2. Twin impurity QPI for a single-pocket chiral SC (Δ ¼ 0.05, ω ¼ 1.1Δ, d ¼ 16). (a) Band dispersion ϵðkÞ ¼ −2ðcos kx þ
cos kyÞ (denoted by color) and the FS at μ ¼ −3 (red line) and μ ¼ −1.5 (blue line) in the first Brillouin zone. (b),(c) Twin nonmagnetic
impurity loop contribution for pþ ip-wave pairing with μ ¼ −3 and μ ¼ −1.5. (d) A plot of our analytical expression [Eq. (13)] for the
loop contribution (in arbitrary unit) on a 81 × 81 real space lattice with μ ¼ −3 shows the expected agreement with the corresponding
numerical results presented in panel (b).

FIG. 1. Twin impurity QPI for a single-pocket s-wave SC (μ ¼ −3, Δ ¼ 0.1, ω ¼ 1.1Δ, d ¼ 18) in real space. Note that the shown
LDOS is measured in units of ðta2Þ−1 and thus is dimensionless for our choice of a ¼ 1 and t ¼ 1. (a) Single impurity contribution to the
QPI pattern. (b) Loop contribution to QPI for nonmagnetic (NM) twin impurities. (c) Loop contribution to QPI for magnetic (M) twin
impurities. The insets show the Fourier transformation of the patterns. A hyperbolic fringe (HF) pattern emerges on top of the elliptical
fringe background.
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This interference is reflected in the cos ðθ1 − θ2Þ term in
Eq. (13). We further study the HF signal for a dþ id-wave
SC and find the overall pattern to be similar to that of the
pþ ip-wave case (see SM). The crucial difference is that
the interference pattern in the region between two impurity
sites for the dþ id-wave pairing is not uniform but
stripelike, which is attributed to the distinct phase winding
of two SC orders and can be explained from their detailed
analytic form (details in SM). For magnetic impurities, the
interference patterns are similar, as detailed in the SM.
Note that for our analytical expressions Eqs. (11)

and (13) we have assumed η → 0þ, while in numerical
calculations η has to take a nonzero value (which we have
chosen as η ¼ 5 × 10−3). Having a nonzero η regulator just
amounts to setting ω → ωþ iη in Eqs. (9), (10), and (12),
and does not affect the main features of the LDOS
distribution. Departing from the band edge limit where
we can compare against our analytical solution, we find that
the numerical HF signature prevails even for noncircular
Fermi surfaces [Fig. 2(c)]. This allows us to conjecture that
the HF pattern is a generic signal for twin-impurity QPI
patterns of chiral SCs, where the HF signal dependence on
the chemical potential is further detailed in [26].
s� wave in multipocket systems.—Multipocket

Fermiologies can qualitatively differ from single-pocket
systems. In particular, with respect to gapped SCs, multi-
pocket systems can exhibit s�-wave unconventional pair-
ing where the gap function takes opposite signs on different
Fermi pockets [4]. We start from a two-band model for
iron-based SC ([5])

H ¼
X
k;σ

ðεckc†k;σck;σ þ εdkd
†
k;σdk;σÞ

þ
X
k

½Δkðck;↑c−k;↓ þ dk;↑d−k;↓Þ þ H:c:�: ð14Þ

Here, “c” and “d” label the two electron bands describing
an electronlike FS centered at the M point in the folded
Brillouin zone [or ðπ; 0Þ=ð0; πÞ for the unfolded zone [30] ]
and a holelike FS at the Γ point. It reads

εck ¼ 2t½cos ðkx þ kyÞ þ cos ðkx − kyÞ� − μc; ð15Þ

εdk ¼ 2tðcos kx þ cos kyÞ − μd; ð16Þ

where we choose μc ¼ −3.2 and μd ¼ 3.6 [Fig. 3(a)].
It turns out that s�-wave order, as opposed to conventional
s-wave order without a sign-changing order parameter,
exhibits a HF signal for any kind of impurity. Consider two
types of s-wave pairing:

Δk ¼
�Δs; swave

Δs� cos kx cos ky; s�wave
ð17Þ

where t ¼ 1, Δs ¼ 0.32, and Δs� ¼ 0.4. The extended
s-wave pairing gives the close gap magnitude but takes
opposite signs on the FSs around the Γ and M points.
The formalism laid out for the single pocket case readily
generalizes to the two-band model by recognizing
G0ðrÞ ¼ Gc

0ðrÞ þGd
0ðrÞ, where Gc

0ðrÞ and Gd
0ðrÞ are

defined via Eq. (4) (the unfolded Brillouin zone is used
to perform the summation in the Fourier transformation)
and Eqs. (15)–(17). In Figs. 3(b) and 3(c), we show the loop
contribution in the LDOS distribution of the two-band
SC around two nonmagnetic impurities for conventional
s-wave pairing and unconventional s�-wave pairing,
respectively. For Fig. 3(c), a uniform gap (Δ̃ ¼ 0.32) with
opposite sign on the two electron bands is used in the
underlying calculation in order to reduce the gap
anisotropy. Similar to our previous results for conventional
s-wave pairing on a single pocket, the loop contribution
results in elliptical fringes. In addition, however, an
extended s�-wave SC order parameter gives rise to the
emergence of a HF signal on top of the ellipses. We note
that the emergence of a HF is due to the fact that a sign-
reversing scattering at a nonmagnetic impurity is math-
ematically equivalent to a sign-preserving scattering at a
magnetic impurity. As we have shown for single-pocket
s-wave SC, the latter case can generate a HF. The “mosaic”
like feature (zigzag between neighboring sites) is due to the
FS of the electronlike band centering at the M point.
Since the FS of the two band model is well approximated

FIG. 3. Twin impurity QPI for a multipocket s�-wave SC (ω ¼ 0.3232, d ¼ 24). (a) FS of the “c” (denoted by yellow line) and the “d”
(denoted by blue line) electron bands of a two-band model. þ (−) denote the sign of the gap for s�-wave pairing. (b) Loop contribution
from two nonmagnetic impurities for conventional on-site s-wave pairing around two nonmagnetic impurities. (c) Loop contribution as
in (b) for s�-wave pairing.
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by circles, the formulas Eqs. (8)–(10) carry over to the
two-band case and analytically explain the HF signal
difference between conventional and unconventional
s-wave pairing [26]. The latter distinguishability only
holds for nonmagnetic impurities, as magnetic impurities
imply a HF pattern in both cases. Our findings for the two-
pocket case with sign changing should generalize to the
generic multipocket case with a sign-changing gap function
on individual pockets.
Experimental detectability.—The loop contribution is

generally smaller than the single contribution according
to Nloop=Nsingle ∼ ðkFdÞ−1=2U0=t for nonmagnetic impu-
rities. Thus, it is crucial to isolate the loop contribution in
STM measurements from the single contribution back-
ground, a procedure for which we provide two proposals.
The first option involves measuring the LDOS around a
single impurity before measuring close to twin impurities.
By subtracting the single-impurity contribution from the
full contribution, the loop contribution can be isolated.
Our second proposal is specifically designed for magnetic
impurities, where two measurements are made with the twin
impurities with antialigned and aligned magnetic moments.
While this change does not affect the individual contribu-
tions (second order), the loop signal changes sign between
the configurations. Taking the difference between the two
signals thus significantly suppresses the single contribution
and singles out the loop contribution. In the SM, we provide
detailed simulations demonstrating the effectiveness of
these proposals. In the measurements, such twin impurities
might be fabricated through STM atomic manipulation [31],
which would further allow us to explore the evolution of the
HF pattern as a function of the distance between twin
impurities. A simple proof-of-principle experiment for our
predicted HF pattern appears to be a conventional s-wave
superconductor with a clean surface and highly adjustable
magnetic impurities on top of it. A good candidate is NbSe2,
which can be grown by molecular beam epitaxy yielding
clean surfaces [32] required for quasiparticle interference
experiments [33]. Moreover, with their s�-wave pairing, it
is also promising to examine the HF signal in iron-based
superconductors such as LiFeAs [34,35].
Conclusion and outlook.—The hyperbolic fringe pattern

from twin impurity QPI provides a complementary
approach of detecting phase information associated with
the SC order. While conventional pairing necessitates
magnetic twin impurities to generate a HF signal, chiral
SC and s�-wave multipocket SC already exhibit a HF
signal for nonmagnetic impurities. Upon closer inspection
of the principal underlying mathematical structure, it is
apparent that the HF signal is not special to the SC, but can
potentially appear in entirely different contexts such as
topological insulators (TIs). For instance, the Qi-Wu-Zhang
model on a two-dimensional lattice [36] for time-reversal
symmetry breaking TIs exhibits a k-space Hamiltonian that

has the same form as a chiral p-wave SC. It is hence
plausible that the HF signature of twin impurities should
also appear in the loop contribution to the TI LDOS
distribution in the topologically nontrivial regime. For
other TIs and topological materials such as graphene,
the QPI pattern on the surface around twin impurities
presents itself as a valuable perspective for future study.
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