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Electrothermal instability plays an important role in applications of current-driven metal, creating
striations (which seed the magneto–Rayleigh-Taylor instability) and filaments (which provide a more rapid
path to plasma formation). However, the initial formation of both structures is not well understood.
Simulations show for the first time how a commonly occurring isolated defect transforms into the larger
striation and filament, through a feedback loop connecting current and electrical conductivity. Simulations
have been experimentally validated using defect-driven self-emission patterns.
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Introduction.—For decades, researchers have sought to
harness the potential of metal driven by pulsed, intense
electrical current, for applications including material prop-
erty studies [1–5], radiation science [6,7], laboratory
astrophysics [8,9], magnetic flux compression [10,11],
and magnetoinertial fusion [12–21]. Experiments com-
monly drive electrical current density j through cylindrical
metallic shells (also known as liners), which then implode
due to the interaction of the self-generated magnetic fieldB
with current (i.e., j × B force). Magnetically accelerated
liners are susceptible to the magneto–Rayleigh-Taylor
instability (MRTI) (e.g., Refs. [22–25]), which ampli-
fies density perturbations on the outer surface of the
liner. Assuming j flows vertically, even initially smooth
(∼50 nm rms) liners develop horizontally oriented pertur-
bations [26] that can degrade performance. However, the
seed for the MRTI remains an open question.
Another important consideration in current-driven met-

als is when and how plasma initiates on the Joule-heated
surface [27,28]. Plasma formation on the liner outer surface
can shunt current away from the liner [3,29] and develop
magnetohydrodynamic (MHD) instabilities, reducing per-
formance. The deleterious effects of plasma formation have
inspired detailed one-dimensional (1D) MHD simulation
studies of thermal plasma initiation [30,31]. However,
experiments [32–35] show the process is three dimensional
(3D), suggesting that to fully understand plasma formation
and its later-time evolution, we must also consider its 3D
nature, which we explore here.
A candidate for seeding both the MRTI and

plasma formation is the electrothermal instability (ETI)

[23,36–41], driven by nonuniform Joule heating. In metals,
where electrical conductivity σ falls with increasing tem-
perature T (i.e., dσ=dT < 0), ETI predicts the formation of
horizontal, overheated striations, oriented so as to rapidly
grow through the MRTI. Once heated metal transforms into
vapor, where dσ=dT > 0, ETI predicts the formation of
overheated, vertical plasma filaments, in agreement with
experiments. However, a basic question remains unan-
swered: how, exactly, do striations and filaments form?
Given the orthogonal orientation of these modes, we
anticipate this is a 3D process, requiring 3D seed pertur-
bations. Metals commonly contain many such defects,
including micrometer-scale resistive inclusions [32,42]
and voids [43].
Defects force j to deflect around and locally amplify, so

that despite their small size, defects in general constitute
nonlinear perturbations. For instance, the analogy between
hydrodynamic and electrical current flow [44,45] shows
that, independent of size, a spherical pit amplifies j by a
factor of 3=2 around the equator. This nonlinear perturba-
tion δj initiates a feedback loop: the resulting enhanced
Joule heating j2=σ raises T, which lowers σ, further
altering j.
In this Letter, we use MHD simulations to show for the

first time how a 3D nonlinear perturbation [i.e., a hemi-
spherical pit on the metal surface, see Figs. 1(b) and 1(c)]
self-consistently seeds both the striation and filament forms
of ETI, through the feedback loop connecting j and σ. The
striation [Fig. 1(d)] is a hot strip aligned transverse to j,
which owing to its lower density ρ [Fig. 6(b)], serves as a
seed to later MRTI growth. The filament [Fig. 1(e)] forms
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later than the striation, but eventually coexists simulta-
neously with the striation, at larger radius in the lower-ρ
vapor. The filament illustrates the 3D nature of plasma
formation, achieving plasmalike temperatures earlier than
an equivalent 1D simulation, owing to ETI-enhanced Joule
heating. Finally, simulations predict that nonuniform heat-
ing seeded by the pit results in distinctive self-emission
patterns, thus providing a means for experimental valida-
tion, recently accomplished in Ref. [46]. This experimental
companion paper also briefly describes simulation results,
to the extent necessary to understand the origins of the
emission patterns, but does not address striation develop-
ment or details of filament formation; we reserve this
discussion for the present manuscript.
3D MHD simulation.—We use the MHD code ALEGRA

[47] to model experiments [46] applying a current pulse
IðtÞ to a 1-mm-diameter aluminum rod, on the surface
of which we machine hemispherical pits with radius
R ¼ 10 μm (Fig. 1). Such rods achieve magnetic fields
B ∼ 320 T, larger than the threshold at which aluminum
forms thermally driven plasma [27], while also relevant to
fields experienced by imploding liners discussed in the
Introduction.
A SESAME equation of state [48] including material

strength models the rod, which is initialized at room
temperature Ti ¼ 294 K (all units are SI). Electrical and
thermal conductivities are provided by the Lee-More-
Desjarlais model [49]. Simulations assume ion and electron
temperatures are equal and do not account for radiative
losses. To keep computations tractable, we only model a
section of the rod using the wedge geometry shown in
Figs. 1(b) and 1(c), with periodic boundary conditions in
both the axial (z) and azimuthal (θ) directions. Further
simulation details may be found in the companion
paper [50].
Initial overheating and feedback due to pit.—Figures 2(a)–

2(c) visualize the rod surface at early time, when the rod is

still solid. As described in Refs. [44,45], the flow of j
around obstacles can be understood in terms of its analo-
gous ideal hydrodynamic flow. Hence, just as in hydro-
dynamic flow around an impenetrable sphere, the pit drives
a flow pattern jsphere in which j deflects around the pit
[see j streamlines in Fig. 2(a)]. This deflection amplifies j
around the equator, which in turn leads to enhanced j2=σ
there [Figs. 2(b) and 2(c)].

FIG. 1. (a) Current drive (black line) applied to (b) aluminum rod, with evenly spaced hemispherical pits on the outer face (only nine
are shown). (c) Periodic wedge simulation demonstrates that a 20-μm-diameter pit seeds the formation of the (d) striation and
(e) filament forms of ETI. Panels (c)–(e) show temperature TðKÞ, as well as viewing orientations. The top and side view visualize the
axial midplane zm and cross-sectional θ ¼ 0 plane, respectively.

FIG. 2. Flow around a hemispherical pit, jsphere. Panels (a) and
(b) visualize jðA=m2Þ and j2=σðW=m3Þ on the rod surface
(r ¼ 0.5 mm). Representative j streamlines (in blue) divert
around the pit and amplify at the equator. (c) Top view visualizes
enhanced j2=σ around the pit. (d) T at a later time, showing
focusing pressure gradient −∇p. (e)–(h) Azimuthal lineouts
taken along L, shown in (b) and (c). The edge of the pit lies
at x ¼ −10 μm. Legends use exponential notation, so 1e11
corresponds to 1 × 1011.
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When σ is spatially constant (i.e., σ ¼ σ0), j and j2=σ
can be expressed simply along the azimuthal lineout L
shown in Figs. 2(b) and 2(c):

jsphereðjxj ≥ RÞ ¼ j0ðtÞ
�
1þ R3

2jxj3
�
ẑ; ð1Þ

j2sphere
σ

ðjxj ≥ RÞ ¼ j0ðtÞ2
σ0ðtÞ

�
1þ R3

2jxj3
�

2

; ð2Þ

where x ¼ rθ is the distance from pit center and j0ðtÞ is the
unperturbed value of j, far from the pit. Figures 2(e)–2(h)
plot the x < 0 portion of T; σ; j; j2=σ along L at several
times (profiles are symmetric about x ¼ 0). At t ¼ 40 ns, σ
is approximately constant and Eqs. (1) and (2) match
simulation.
The pit edge x ∼ −R experiences the highest j2=σ, T in-

crease, and σ decrease, initiating the aforementioned feed-
back loop connecting j and σ. By t ¼ 50 ns, σðx ∼ −RÞ
has decreased sufficiently compared to its unperturbed
value σ0 ≡ σðx ≫ RÞ that j deviates significantly from
Eq. (1). Nevertheless, Fig. 2(h) shows the j2=σ profile
remains relatively insensitive to variations in σ—the
electric field E in lower-σ regions rises, partially compen-
sating for reduced σ in j2=σ ¼ σE2. Consequently, we can
solve for the T profile:

Tðjxj > R; tÞ ≃ Ti þ
�
1þ R3

2jxj3
�

2 ηi
dη
dT

ðe
R

t

0
γ0dt − 1Þ; ð3Þ

with growth rate γ0 ¼ ½ðdη=dTÞj0ðtÞ2=ρcV �, where ηðTÞ≡
1=σðTÞ is the electrical resistivity, ηi ≡ ηðT ¼ TiÞ,
ðdη=dTÞ is assumed constant, and cV is the specific heat.
Further details on the derivation of Eq. (3) may be found in
Supplemental Material [51]. Equation (3) approximately
matches simulation up through t ¼ 50 ns, and can thus
predict nonlinear δT perturbations. However, by t ¼ 55 ns,
δσ is sufficiently large that the fit (2) starts to fail, so Eq. (3)
overpredicts Tðx ∼ −RÞ.
Striation development.—In solid metal, the MHD equa-

tion of motion ρðdv=dtÞ ¼ −∇pþ j × B generalizes to
ρðdv=dtÞ ¼ ∇ · Tþ j ×B, where the stress tensor Tij ≡
−δijpþ T 0

ij includes both thermal pressure p and devia-
toric stress T 0

ij, which accounts for material strength of the
solid. At t ¼ 55 ns, the j ×B force and tensile deviatoric
stress, which point radially inward, approximately balance
the outward-pointing pressure gradient −∇p at the rod
surface. However, after the surface melts, material strength
vanishes and the melt-induced decrease in σ causes j and
j ×B to fall. Consequently −∇p dominates and initiates
hydrodynamic expansion, altering the σ “topography.”
The overheated region around the pit is hottest and

expands first. As shown in Fig. 2(d), the void creates a−∇p
which azimuthally focuses the resulting expansion, similar
to the “shaped-charge” effect [57,58]. This concentration of
metal into the pit center forms a bump (Fig. 3), while also

resulting in a lower-ρ region behind the bump [bounded by
the gray curve in Fig. 3(a)]. Consequently, j no longer
deflects around a pit (i.e., azimuthally away and radially
inward), but rather flows into the bump (i.e., azimuthally
toward and radially outward), as illustrated by j streamlines
in Figs. 3(b) and 3(c). In the 2D ðr; zÞ solution for
hydrodynamic flow over a bump [50,59], flow is fastest
at the base of the bump, where the surface transitions from
curved to flat. Similarly, in our electrical problem, j peaks
at the bump base [Figs. 3(b) and 3(c)], leading to peaks in
j2=σ there. This flow pattern contrasts with the original
jsphere solution [Fig. 2(a)].
Later, the “bump flow”-driven Joule heating pattern

persists at the rod surface [Fig. 4(a)] and drives hot spots

FIG. 3. (a) Top view of density ρ (kg=m3), showing how
overheated metal around the pit’s equator has expanded, forming
a bump which qualitatively changes the j flow pattern. (b) Side
view, showing j peaking at the base of the bump. (c) Front view
of j near rod surface (r ¼ 0.499 mm). All panels show t ¼ 80 ns.

FIG. 4. (a) The Joule heating pattern arising from bump flow
drives hot spots (HS) near the rod surface (visualized by ρcrit ¼
400 ðkg=m3Þ contour), as well as a striation deeper in the metal.
The HS, visualized in (b), are observable in (c) visible self-
emission. The striation in (d)–(g) has lower electrical conduc-
tivity σð1=ΩmÞ relative to surrounding metal, forcing j to divert
around and amplify at the edges. The resulting enhanced Joule
heating drives striation growth azimuthally and radially. All
panels show t ¼ 100 ns.
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(HS), visualized in Fig. 4(b). Simulated visible self-
emission [Fig. 4(c)], generated using the postprocessing
code SPECT3D [60], shows the HS and allows comparison to
experiment [46], which have indeed validated this predic-
tion. Figure 4(c) does not resolve another overheated
structure that lies too deep within the metal to be visible
in self-emission. This structure—a nascent ETI striation—
is visualized in Fig. 4(d). The striation, roughly bounded by
the σ ¼ 7.5 × 105 ð1=ΩmÞ contour, is broader than the HS
in Fig. 4(b), as well as lower ρ than surrounding metal. Its
origin traces back to the overheated metal surrounding the
pit in Fig. 2, which expands, resulting in the hotter, lower-ρ
region bounded by the gray curve in Fig. 3(a). Since
dσ=dρ > 0 in the solid and liquid phases (e.g., Fig. 1 in
Ref. [50]), lower ρ and higher T in the striation results in
lower σ there [i.e., using a subscripted S to denote the
striation, δσS < 0 in Fig. 4(e)], and consequently lower j
[δjS < 0 in Fig. 4(f)]. Nevertheless, the striation continues
to overheat through enhanced j2=σ [Fig. 4(g)], because the
increase in j2=σ due to δσS < 0 overcomes the reduction
due to δjS < 0.
The δσS < 0 causes j to divert azimuthally around the

striation, as sketched in Fig. 4(f), so j and j2=σ amplify at
the edges, similar to flow around the pit. In this way, the
striation continuously widens by converting high-σ, dense
metal at the edges into hotter, expanded, lower-σ metal,
characteristic of the striation. The j redistribution respon-
sible for striation widening also applies radially: as seen in
Fig. 4(a), the striation constitutes a low-σ divot which
forces j to divert inward and amplify at the divot tip
[50,59]. Consequently, a local peak in j2=σ develops there
[magenta arrow in Fig. 4(a)], and the resulting overheating
allows the striation to propagate radially. These current
redistribution processes, also described in Ref. [39], allow
the pit to seed structures in the metal that are several times
the original pit size.
Filament and crater formation.—Eventually, the over-

heated HS in Figs. 4(a) and 4(b) explode, creating expand-
ing plumes and craters [Fig. 5(a)]. The black ρcrit ¼
400 ðkg=m3Þ contour is close to the critical density
∼375 ðkg=m3Þ [48], and thus roughly visualizes the
boundary between liquid metal and dense vapor.
In Figs. 5(b)–5(e), the HS have expanded into the vapor

phase, where dσ=dT > 0 (opposite to solids and liquids).
Consequently, in contrast to Fig. 4(e), where the hotter
striation represented a minimum in σ (relative to surround-
ing metal), now the HS correspond to peaks in σ. Hence,
the HS can satisfy the feedback loop required for the
filament form of ETI: δTHS > 0 ⇒ δσHS > 0 ⇒ δjHS >
0 ⇒ δðj2=σÞHS > 0 ⇒ dTHS > 0. Just as in striation for-
mation, j redistribution plays a vital role in HS-filament
formation, now concentrating in the HS and providing
enhanced j2=σ to compete with pdV cooling (i.e., work
done in changing volume from V to V þ dV) during plume
expansion.

As the HS explode, they expand axially, as sketched
by the velocity vectors v in Fig. 5(a). However, in the
azimuthal direction, v initially focuses before later expand-
ing. As described in Ref. [50], this focusing is due to the
shaped-charge effect, also responsible for converting the pit
into a bump in Fig. 3. Because of this hydrodynamic flow
asymmetry, the HS grow faster axially than azimuthally,
leading to the axially elongated filament [Figs. 5(b)–5(e)]
predicted by ETI.
By t ¼ 135 ns, the filament spans the computational

domain and ETI-enhanced j2=σ achieves plasmalike tem-
peratures in the filament [compare Figs. 1(e) and 5(b)],
which dominates self-emission in Fig. 6(a). An equivalent
1D simulation, which models a perfectly smooth rod using
the same radial resolution as 3D, also demonstrates plasma
formation. However, because 1D cannot resolve j concen-
tration in the filament and the resulting enhanced j2=σ, the
1D simulation forms plasma ∼17 ns later than 3D, as
discussed in Ref. [50].
Inside the metal, the striation has continued to overheat

and widen [compare Figs. 1(d) and 4(d)], through the j
redistribution process described earlier. Because of the
expulsion of overheated material through the plumes, the
hot band seen in Fig. 1(d) also corresponds to a region of
lower ρ [Fig. 6(b)]. For instance, ρ at the center of the
striation (identified by ρS) is 2.6× lower than the unper-
turbed value ρ0. Hence, the pit has seeded a crater that is
roughly 4× deeper [Fig. 6(c)] and 5× wider than the
original pit size, providing a seed for the MRTI, which is
triggered when the rod surface starts to accelerate radially
inward.

FIG. 5. (a) The HS explode, resulting in plumes as well as
craters on the rod surface (visualized by the ρ ¼ 400 kg=m3

contour). (b)–(e) In the vapor phase, dσ=dT > 0 (i.e., opposite
to solid-liquid phase), so the HS have enhanced σ. This initiates
the ETI feedback loop driving filament formation. All panels
show t ¼ 120 ns.
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In this case, in the accelerated frame moving with the rod
surface, the effective gravity points radially outward, so that
lighter fluid supports heavier fluid (the usual scenario in
the Rayleigh-Taylor instability). Taking the radial compo-
nent of the equation of motion yields ρðdvr=dtÞ≃
−ðdp=drÞ − jzBθ. Hence, in order to achieve inward
acceleration ðdvr=dtÞ < 0, the inward-pointing jzBθ term
must overcome the outward-pointing pressure gradient
−ðdp=drÞ.
In the simulation considered here, this condition is

satisfied locally in the filament (due to enhanced j), but
not over the bulk of the rod surface. In particular, the
maximum current Imax ∼ 0.85 MA is insufficient to achieve
jzBθ > −ðdp=drÞ at the ρcrit crater surface, which will
consequently not seed the MRTI. However, consider a
simulation driven with larger current [see red curve in
Fig. 1(a)], which at t ¼ 140 ns reaches I ∼ 1 MA and
exhibits ρðrÞ similar to Fig. 6(c). For the enhanced-I case,
Fig. 6(d) plots jzBθ and −ðdp=drÞ along radial lineout L
(which lies slightly above the axial midplane to avoid
complications from the bump remnant). Over the range
observed, jzBθ ≥ −ðdp=drÞ, so the crater at ρcrit serves as a
seed for the MRTI.
Summary.—MHD simulations reveal the impact of

commonly occurring defects in current-driven metal: feed-
back between j and σ allows a defect to self-consistently

seed both the larger striation and filament structures
predicted by ETI. The striation constitutes a wider, deeper
density perturbation that seeds the MRTI, as illustrated in
Fig. 6; the filament provides an accelerated path to plasma
formation, through 3D j redistribution. Recent experiments
[46] using ultrapure aluminum rods with machined pits
have verified the self-emission predictions in Figs. 4(c) and
6(a), thus providing credibility to the simulations. Although
the scope of this study is narrow, we have started testing the
robustness of results by varying simulation parameters
(e.g., dielectric-filled pits, differently shaped pits, higher
ðdI=dtÞ, MagLIF-like liners [12–17] driven by 20 MA
current) and found qualitatively similar behavior. This
result suggests the physical processes described here have
a universal character, and constitute building blocks toward
a 3D theory of defect evolution in current-driven metal.
We hope the present Letter will lead to improved

computational predictive capability for targets driven by
intense current, used in a wide array of applications. While
metal is commonly modeled as a homogeneous medium,
accounting for defects should result in more accurate metal
evolution and plasma formation. Although it is not cur-
rently feasible to model an entire target and its associated
3D defects (due to resolution limitations), understanding
the interaction of a smaller collection of defects could lead
to better-informed initial conditions for larger, lower-
resolution design calculations. Furthermore, studies of
defect interaction may elucidate mysteries in the develop-
ment of 3D structures in imploding liners, such as a
helixlike instability in liners premagnetized with an axial
magnetic field [61]. Finally, practically speaking, this
Letter highlights the importance of material and surface
characterization.
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