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Direct numerical simulation and theoretical analyses showed that the probability density functions
(PDFs) of the energy dissipation rate and enstrophy in turbulence are asymptotically stretched gamma
distributions with the same stretching exponent, and both the left and right tails of the enstrophy PDF are
longer than those of the energy dissipation rate regardless of the Reynolds number. The differences in PDF
tails arise due to the kinematics, with differences in the number of terms contributing to the dissipation rate
and enstrophy. Meanwhile, the stretching exponent is determined by the dynamics and likeliness of
singularities.
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In turbulence, kinetic energy is pumped into the flow at
large scales of motion and transferred to smaller scales by
nonlinear interactions among fluid motions of various
sizes, and then dissipated into heat under the action of
the viscosity. In a statistically steady state, the means of the
input rate and transfer rate are equal to the mean of the
dissipation rate of the kinetic energy per unit mass, which is
defined by ϵ̄ ¼ hϵ̃ðx; tÞi and ϵ̃ðx; tÞ ¼ ðν=2Þð∂ui=∂xjþ
∂uj=∂xiÞ2, where hi denotes the ensemble average, and
summation over repeated indices is assumed. Therefore, the
dissipation rate is a key factor connecting large-, inter-
mediate-, and small-scale turbulence dynamics. However,
very strong fluctuations of the dissipation rate occur often;
the extreme amplitude is beyond thousands of times the
mean, and the probability density function (PDF) PðϵÞ for
ϵ ¼ ϵ̃=ϵ̄ expands rightward as the Reynolds number Rλ

increases. Vorticity refers to the swirling motion of fluid,
while enstrophy (squared vorticity), which is defined by
Ω̃ðx; tÞ ¼ ω̃2 ¼ ð∂ui=∂xj − ∂uj=∂xiÞ2=2, characterizes the
turbulent flow structure (where domains of large enstrophy
are of the form of thin tubes distributed randomly and/or
coherently). The enstrophy fluctuations are also compa-
rable to, or even stronger than the dissipation, and the right
tail of the PDF PðΩÞ for Ω ¼ Ω̃=Ω̄, where Ω̄ is the mean,
also expands with increases inRλ. These strong fluctuations
of the dissipation and enstrophy are now widely recognized
as the intermittency of turbulence and remain among the
central problems in turbulence research.
Since the 1990s, it has been known that the dissipation

PDF decays faster than the enstrophy PDF [1–11]. Indeed,
as shown in Fig. 1(a), the right tails of PðϵÞ and PðΩÞ of
homogeneous isotropic turbulence (HIT) obtained by direct
numerical simulation (DNS) of the Navier-Stokes (NS)
equation for an incompressible fluid become very long with

increases in Rλ; the right tail of PðΩÞ is longer than that of
PðϵÞ, suggesting that the intermittency of the enstrophy is
stronger than that of dissipation.
This is curious, however, because dissipation and ens-

trophy are computed as squared sums of the symmetric or
skew-symmetric combination of the same velocity gra-
dients. There have been a number of efforts, including
theoretical analyses [2], experimental studies using particle
image velocimetry at Rλ ¼ 54 [3], and high-resolution
DNS of HIT up to Rλ ¼ 1300 with 12 2883 grid points
[4–12], to understand the asymptotic behavior of two
PDFs. DNS studies showed that the right tails of the
PDFs are asymptotically of the stretched exponential, as

PαðxÞdx ∝ exp ð−BαxβαÞdx; for x ≫ 1; ð1Þ

where x represents the variables ϵ or Ω, and α denotes the
labels ϵ or Ω for parameters or PDFs throughout this Letter.
The exponents βϵ and βΩ are close to each other, and the
Reynolds number dependency of the decay rate Bα is
explored [6,12]. However, no satisfactory explanations
have yet been proposed for these phenomena, and our
knowledge is very limited.
The question to be addressed herein is, why does the

enstrophy PDF have a longer tail than the dissipation PDF?
We begin with considering two PDFs for the multivariate
Gaussian random and solenoidal velocity field, for which
the analytical forms of the PDFs were recently obtained
by one of the authors [10]. The theory predicts that in the
dð≥ 2Þ dimensional space the PDFs for the dissipation and
enstrophy are given by the gamma distribution as

PGðϵÞdϵ ¼
1
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Nϵ
2
−1 exp
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where Zα is the normalization constant. The Nϵ and NΩ are
the number of terms contributing to the dissipation and
enstrophy for the incompressible fluid, and are functions
of d as

Nϵ ¼ ðdþ 2Þðd − 1Þ=2: NΩ ¼ dðd − 1Þ=2; ð4Þ

respectively, where the symmetry (skew-symmetry) of the
rate of strain (vorticity) tensor and the incompressibility
condition are used. Then we have Nϵ ¼ 5 and NΩ ¼ 3,
respectively, in three-dimensional space [10,12]. It follows
from Eqs. (2) and (3) that the Nϵ (NΩ) determines the
functional form of the left and right tails of PGðϵÞ [PGðΩÞ].

When turbulence is excited by the Gaussian random force
at low Reynolds number, it is expected that PðϵÞ and PðΩÞ
are close to Eqs. (2) and (3), respectively, and that
Bϵ ¼ 5=2, BΩ ¼ 3=2, and the exponents are identical as
βϵ ¼ βΩ ¼ 1. Therefore, for small and large amplitudes, we
have

PðϵÞ < PðΩÞ for Rλ < Oð1Þ: ð5Þ

To explore the variation of the PDFs with respect to Rλ,
we made a set of DNSs of the HIT for Rλ ¼ 0.13 to 1016
and included the data provided from Buaria and his
coworkers [8,9,11]. Details of the simulation and the data
are described in the Supplemental Material [10,13,14].
Figures 1(b) and 1(c) show that, when Rλ is very low, the
DNS curves follow the gamma distribution (black line).
Moreover, even for Rλ ¼ 1300 the curves of the left tail

(a) (b)

(c) (d)

FIG. 1. Probability density functions for the kinetic energy dissipation rate and squared vorticity (enstrophy) of HIT obtained by
DNS of NS equation. (a) Upper two curves, PðΩÞ. Lower two curves, PðϵÞ. Green, Rλ ¼ 392; red, Rλ ¼ 1016. (b) Variation of PðϵÞ
for ϵ ¼ ϵ̃=ϵ̄ against Rλ. (c) PðΩÞ for Ω ¼ Ω̃=Ω̄. Black, gamma distributions Eqs. (2) and (3), respectively. Magenta,
Rλ ¼ ½0.13; 0.36; 0.61; 1.0; 2.1; 3.8�; green, Rλ ¼ ½6.2; 9.2; 13�; cyan, Rλ ¼ ½23; 32; 44; 58; 66; 84�; navy, Rλ ¼ 112; light green,
Rλ ¼ ½166; 277; 392; 466�; orange, Rλ ¼ 810; red, Rλ ¼ 1016. Brown, Rλ ¼ ½650; 1300�; data due to Buaria et al. [8,9,11]. Straight
lines show the slopes of 3=2 and 1=2, respectively. (d) Right tails of the compensated PDFs j ln½ϵ−3=2ZϵPðϵÞ�j (upper curves) and
j ln½Ω−1=2ZΩPðΩÞ�j (lower curves, shifted by 0.1). The two curves in the middle are the same plots of the dissipation (blue) and
enstrophy (green) at Rλ ¼ 1300 (DNS by Buaria et al. [8,9,11]) but are shifted by some amount. The straight line indicates the
slope, 0.16.
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remain straight lines with the same slope as that in the
Gaussian case, meaning that the left PDF tails obey the
power law as PðϵÞ ∝ ϵ3=2 and PðΩÞ ∝ Ω1=2, respectively,
while the right tails decay more slowly than the exponential
and gradually expand rightward with increasing Rλ, sug-
gesting stretched exponential decay. Assuming that for
large amplitudes x the PDFs are of the form of

PαðxÞdx ¼ 1

Zα
xNα=2−1 expð−BαxβαÞdx; ð6Þ

we examined the right PDF tails by fitting the compensated
PDFs j ln ðx−Nα=2þ1ZαPðxÞÞj as in Fig. 1(d). The upper
group of curves is for ϵ, and the lower group is for Ω. A
common feature of the curves is that as Rλ increases, near
the right end of the curves, (1) the straight portion of the
curve becomes longer, (2) their slopes decrease slowly, and
(3) the slopes of the dissipation and enstrophy for a given
Rλ are very close to each other, especially when the two
curves at Rλ ¼ 1300 are shifted vertically by some amount,
as in the middle of Fig. 1(d); they collapse excellently at
large amplitudes [9,11].
The above observations of PDFs confirm that the

asymptotic PDF tails at high Reynolds number are
stretched exponential [Eq. (6)], and βϵ and βΩ are equal
to each other [6,7,9] (for passive scalar dissipation, see
Ref. [15]), but the Reynolds number dependency of βα has
not been studied, and the focus has rather been on Bα under
the assumption that βα is independent of Rλ [7]. By ana-
lyzing the DNS data, it was found that Bα ¼ ðAR−ξ

λ Þβα ,
indicating slower decay of the PDF with Rλ, where A and ξ
are positive constants.
We show in Fig. 2(a) the variation of βϵ and βΩ with error

bars for low to high Reynolds numbers. It can clearly be
seen that βϵ and βΩ are equal within the error bar (see the
Supplemental Material [13]).
For very low Rλ, the βα is slightly larger than unity. This

is because the PDFs are those of the Navier-Stokes field
excited by the Gaussian random force and not those of the
Gaussian random field itself. The excited velocity (gra-
dient) field undergoes strong attenuation by the viscosity,
which suppresses the large dissipation rate and enstrophy;
therefore, the right PDF tails decay faster than the expo-
nential. They begin to decrease at about Rλ ≈ 2 [10], turn to
be a very slow decay for Rλ > 100, and are slightly smaller
than 0.2 for large Rλ, which is well within the range of
values reported previously [6,7,9,11]. It is not certain
whether β continues to decrease or approaches to a finite
positive constant. However, the fact that the two stretching
exponents βϵ and βΩ are equal and decrease mono-
tonically with Rλ is sufficient for the arguments presented
below.
From the above observations, we tentatively assume that

the PDFs of the dissipation rate and enstrophy obey the

stretched gamma distributions with the same stretching
exponent β for all x:

PαðxÞdx ¼ 1

Zα
xNα=2−1 exp ½−ðbαxÞβ�dx; ð7Þ

where Bα ¼ bβα. When the normalization condition and
mean of unity are imposed,Z

∞

0

PαðxÞdx ¼ 1;
Z

∞

0

xPαðxÞdx ¼ 1; ð8Þ

the constants Zα and bα are expressed in terms of the single
parameter, β. The results are

1

Zα
¼ βbNα=2

α

Γ
�
Nα
2β

� ; bα ¼
Γ
�
Nαþ2
2β

�

Γ
�
Nα
2β

� ; ð9Þ

where ΓðxÞ is the gamma function. When 0 < β ≤ 1,
bα > 1. More interestingly, the ratio of the decay rates
Bϵ=BΩ ¼ ðbϵ=bΩÞβ can be analytically obtained as

Bϵ

BΩ
¼

�
bϵ
bΩ

�
β

¼

0
B@Γ

�
Nϵþ2
2β

�

Γ
�
Nϵ
2β

� Γ
�
NΩ
2β

�

Γ
�
NΩþ2
2β

�
1
CA

β

> 1: ð10Þ

(a)

(b)

FIG. 2. Variation of (a): βϵ (green) and βΩ (blue). (b): Bϵ=BΩ
against Rλ obtained by DNS. Filled triangles with error bars,
DNS; open circles, theory [Eq. (10)] with use of β of DNS. The
error bars were computed by shifting the fitting range by �50%.
Symbols of brown for ϵ and orange for Ω are data due to DNSs in
Refs. [8,9,11].
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For Nϵ ¼ 5, NΩ ¼ 3, and 0 < β ≤ 1 all arguments of the
gamma functions in Eq. (10) are greater than 3=2, for which
ΓðxÞ and lnΓðxÞ are convex and monotonically increase
as functions of x. Therefore, we have the inequality
Bϵ=BΩ ¼ ðbϵ=bΩÞβ > 1; thus for left and right tails and
for any Reynolds number we have

PðϵÞ < PðΩÞ: ð11Þ
When Rλ is infinite, the β would be small, and we can
compute the ratio using Stirling’s formula for the gamma
function to the leading order of small β as

Bϵ

BΩ
→ e

1
2
½ðNϵþ2Þ lnðNϵþ2Þ−Nϵ lnNϵ�

× e
1
2
½NΩ lnNΩ−ðNΩþ2Þ lnðNΩþ2Þ� ≈ 1.51: ð12Þ

The ratio of the decay rates can be described solely by Nϵ
and NΩ, and independent of β. Figure 2(b) indicates that
Bϵ=BΩ obtained by the DNSs is greater than unity,
decreases very slowly with Rλ, and tends to an asymptotic
value which is about 10% smaller than 1.51 of Eq. (12).
This is in agreement with the theoretical prediction
[Eq. (10)] that is computed by using β of DNS, and also
consistent with the data by Ref. [6]. The underestimation of
the ratio by DNS is due to the fact that the peak part of
Eq. (7) is smaller than the actual PDFs.
Equations (10)–(12) and DNS results in the previous

arguments strongly suggest that the number of terms
(degrees of freedom) contributing to the dissipation rate
and enstrophy determines the power law exponents of the
left tails and the decay rates Bα of the right tails of the PDFs
[12], while the stretching exponent β is related to the
singularities of the Navier-Stokes equation and their like-
liness. Moreover they lead to the following predictions.
PDFs of the dissipation surrogates.—The dissipation

surrogates ϵ̃n (n ¼ 1;…; 4) are defined by the sum of n
terms as

ϵ̃1 ¼ 2νe211; ϵ̃2 ¼ 2νðe212 þ e223Þ;
ϵ̃3 ¼ 2νðe212 þ e213 þ e223Þ;
ϵ̃4 ¼ 2ν½e211 þ 2ðe212 þ e213 þ e223Þ�; ð13Þ

where eij ¼ 1
2
ð∂ui=∂xj þ ∂uj=∂xiÞ is the rate of strain

tensor. The above theoretical arguments based on
Eqs. (10)–(12) predict that (a) the left PDF tails are of
the power laws with exponents σn ¼ n=2 − 1, and (b) the
stretching exponents are all the same but the decay rates
increase with n, so that (c) PðϵÞ < Pðϵ4Þ < � � � < Pðϵ1Þ for
the left and right tails, regardless of Rλ. Indeed, the
accuracy of these predictions can be clearly seen in
Fig. 3. The right PDF tails expand with decreasing n in
Fig. 3(a), and the slope of the left tails of the PDFs changes
as n=2 − 1, so that Pðϵ1Þ has a cusp for very small ϵ1 in
Fig. 3(b). On the other hand, in Fig. 3(c), the curves of the
compensated PDFs for large amplitudes tend to be all
parallel, and the stretching exponents of the right tails are
the same as 0.21 regardless of n.

An important suggestion of our findings is that the
exponent β can be obtained by measuring the right tail of
Pðϵ1Þ in very high Reynolds number experiments, in which
the measurement of ϵ1 is much easier than that of ϵ.
Moments of the dissipation rate and enstrophy.—

Although the expressions (7) and (9) are for asymptotic
tails, the pth order moments are computed by substituting
Eq. (7) into

R
∞
0 xpPαðxÞdx as

hϵpi ¼

2
64Γ

�
5
2β

�

Γ
�

7
2β

�
3
75
p
Γ
�
5þ2p
2β

�

Γ
�

5
2β

� ; ð14Þ

(a)

(b)

(c)

FIG. 3. PDFs of ϵn for Run 2048C, Rλ ¼ 358. (a) logarithm-
linear plot, (b) logarithm-logarithm plot, (c) compensated PDFs
j ln½ϵ−σnZnPðϵnÞ�j. Red, ϵ; orange, ϵ4; green, ϵ3; cyan, ϵ2; blue, ϵ1.
Straight lines and numbers show the slopes of the curves.
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hΩpi ¼

2
64Γ

�
3
2β

�

Γ
�

5
2β

�
3
75
p
Γ
�
3þ2p
2β

�

Γ
�

3
2β

� : ð15Þ

However, the moments with the order p ≤ −5=2 for the
dissipation rate and p ≤ −3=2 for the enstrophy do not
exist. For p ¼ 2 and the Gaussian random field for
which β ¼ 1,we obtain hΩ2i − hϵ2i ¼ 4=15 > 0 as shown
by Ref. [2].
Effects of spatial dimensions on PDFs.—Therefore, the

more that terms are included in the sum of the dissipation
(surrogate) and the enstrophy, the smaller the fluctuations
and the shorter the PDF tails are, which is the same
mechanism as for the central limit theorem. In this regard,
it is worth considering the effect of the spatial dimension d.
DNS of four-dimensional turbulence showed that the
cumulative PDF PcðϵÞ ¼

R
∞
ϵ Pðϵ0Þdϵ0 in d ¼ 4 is consid-

erably narrower than PcðϵÞ in d ¼ 3 [16]. This can be
understood by considering the fact that NϵðdÞ and NΩðdÞ
are quadratic functions of d, and the power law exponents
NαðdÞ=2 − 1 of the left tail and decay rates Bα of the right
tail of Eq. (7) increase rapidly with d, while the stretching
exponent β is expected to change slowly with d, because
the increase in the number of terms leads to weak fluctu-
ation of the amplitudes around the mean. It is conjectured
that when d > 3, the left and right tails of PDF Pα;dðxÞ in
d-dimensional space would satisfy Pα;d≥4ðxÞ < Pα;d¼3ðxÞ
and PdðϵÞ < PdðΩÞ irrespective of Rλ.
With regard to the question asked in the introduction,

why does the enstrophy PDF have a longer tail than the
dissipation PDF, we conclude that although the straining
motion and vorticity describe different aspects of fluid
motion, the different tail behavior between two PDFs arises
from the different number of terms contributing to the
dissipation rate and enstrophy, which is the kinematic
constraint. Elucidation of the physics and development
of the mathematics needed for determination of β and its
relation to the singularities of the Navier-Stokes equation,
and their likeliness, are major challenges in turbulence
research.
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