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It is shown that the quantum intensity noise of a single-emitter nanolaser can be accurately computed by
adopting a stochastic interpretation of the standard rate equation model. The only assumption made is that
the emitter excitation and photon number are stochastic variables with integer values. This extends the
validity of rate equations beyond the mean-field limit and avoids using the standard Langevin approach,
which is shown to fail for few emitters. The model is validated by comparison to full quantum simulations
of the relative intensity noise and second-order intensity correlation function, gð2Þð0Þ. Surprisingly, even
when the full quantum model displays vacuum Rabi oscillations, which are not accounted for by rate
equations, the intensity quantum noise is correctly predicted by the stochastic approach. Adopting a simple
discretization of the emitter and photon populations, thus, goes a long way in describing quantum noise in
lasers. Besides providing a versatile and easy-to-use tool for modeling emerging nanolasers, these results
provide insight into the fundamental nature of quantum noise in lasers.
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The ability of a laser to generate a coherent optical signal
with ultra-low noise is key to a wide range of applications,
including the internet [1], sensors [2], as well as funda-
mental tests of physics [3]. Recent advances in nano-
technology have enabled the realization of a new
generation of microscopic lasers, for instance, based on
semiconductor quantum dots in photonic crystals [4–6],
opening new possibilities in, e.g., on-chip communications
[7–10] and quantum technology [11]. However, as the laser
shrinks into the microscopic regime, the power decreases,
and the intrinsic quantum noise of the laser may lead to
unacceptable bit-error rates in optical links [12]. The noise
of lasers is a rich and complex field which is still
developing [13–25]. For few emitters, it is, in principle,
possible to perform full-scale quantum simulations of the
noise properties [26–30]. However, such simulations are
numerically demanding for more than a few emitters.
Instead, the use of rate equations has proven extremely
successful in realizing the advanced semiconductor laser of
today [31]. However, as we shall show, rate equations, even
with the addition of stochastic Langevin noise terms
[32,33], do not correctly account for the quantum noise
of few-emitter lasers.
In this Letter, we consider the ultimate limit of a

nanolaser, where the gain medium is a single-emitter,
e.g., a quantum dot in a photonic crystal cavity as studied
in [34,35], and illustrated in Fig. 1. We show that the
quantum noise of such nanolasers can be quantitatively
described by adopting a simple stochastic interpretation of
conventional rate equations in terms of discrete rather than

continuous variables. The appearance of sub-Poissonian
statistics below threshold is thus predicted by our approach,
while standard Langevin approaches are shown to fail in
this regime. The stochastic approach is thereby shown to be
a more correct way of adding quantum noise to rate
equations. Furthermore, the stochastic approach is easily
extended to more complex systems and scenarios, such as
large-signal temporal modulation, where analytical small-
signal results are inapplicable.
Our finding enables a new approach toward the quantum

noise of nanolasers. Not only does it provide an intuitive
and simple simulation tool, but it also offers new insights
into the origin of quantum noise in lasers.

FIG. 1. Schematic of a photonic crystal cavity laser containing
a single quantum dot. Examples of photon distributions inside
and outside the cavity, calculated with the stochastic approach,
are shown above threshold for the same parameters as in Figs. 3
and 4.
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In second quantization, the single-emitter laser is
described by a master equation (ME) of the form [26,27]

∂ρ

∂t
¼ −

i
ℏ
½H; ρ� þ κDa½ρ� þ γDDσ†σ½ρ�

þ γADσ½ρ� þ PDσ† ½ρ�; ð1Þ

where H ¼ −ℏΔa†aþ ℏgðσ†aþ a†σÞ is the Jaynes-

Cummings Hamiltonian with g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ωeg=ð2ℏϵ0ϵVÞ

q
being the light-matter coupling [36]. Here, d is the emitter
dipole moment, ϵ is the dielectric constant of the back-
ground material, V is the cavity mode volume, σ ¼ jgihej is
the atomic transition operator, a is the cavity mode
annihilation operator, Δ ¼ ωeg − ωc is the detuning
between the electronic transition ωeg and the cavity
frequency ωc, and DA½·� ¼ 1

2
ð2Að·ÞA† − ð·ÞA†A − A†Að·ÞÞ

is the Lindblad operator. The various Lindblad terms
describe dissipative processes relevant to single-emitter
lasers; κ is the cavity decay rate, γD is the pure dephasing
rate, arising from, e.g., phonons in quantum dot emitters
[35], γA is the nonradiative decay and/or decay into
nonlasing modes, and P is the pump rate of the emitter,
modeled as incoherent pumping [26,33]. The ME is
numerically implemented by using QuTiP [37,38].
Under the assumption of a large dephasing rate, such that

the polarization can be adiabatically eliminated [33,35,39],
a rate equation can be derived from the ME in Eq. (1). With
na ¼ ha†ai and ne ¼ hσ†σi and making a mean-field
approximation we get

dna
dt

¼ γrð2ne − 1Þna þ γrne − κna; ð2Þ

dne
dt

¼ Pð1 − neÞ − γrð2ne − 1Þna − γrne − γAne; ð3Þ

with an emitter-cavity coupling rate given by
γr ¼ 4g2=ðPþ κ þ γD þ γAÞ. Since the polarization was
adiabatically eliminated, this model does not display Rabi
oscillations. Furthermore, the equations only govern the
average emitter excitation and number of cavity photons
and do not include quantum noise. Conventionally, quan-
tum noise is accounted for by adding stochastic Langevin
forces to the rhs of Eqs. (2) and (3) [31,40,41]. As we shall
see, however, this leads to incorrect results for the intensity
correlation, gð2Þð0Þ, which is an essential parameter for
identifying the regime of lasing [14,18].
Another approach to include noise in the rate equations is

to interpret Eqs. (2) and (3) as a stochastic process for
integer-valued variables, ne and na [16,42]. Thus far, the
stochastic approach (StA) has been used only for meso-
scopic lasers comprising ten or more emitters [16], and it
was not expected to be valid for fewer emitters. In essence,
it replaces the rates in Eqs. (2)–(3) by Poisson processes,

thus attributing all the quantum noise of the laser to the
discrete nature of photons and emitter excitation. Notably,
this approach does not require the calculation of diffusion
coefficients for Langevin forces, nor does it assume small
perturbations around a steady state. Here, to numerically
solve the stochastic equation, we use Gillespie’s first-
reaction method [17,43,44].
We choose parameters compatible with a single quantum

dot in a photonic crystal cavity with a light-matter coupling
of g ¼ 0.1 ps−1 [34] and a cavity decay rate κ ¼ 0.02 ps−1

[20]. Furthermore, we use γA ¼ 0.012 ps−1 and study three
different pure dephasing rates γD ¼ 0; 1; 10 ps−1. Ignoring
pump broadening, this gives β factors of β¼γr=ðγrþγAÞ¼
0.999, 0.764, 0.249, thus placing the laser in the high-β or
“thresholdless” regime. It is worth noting that recent
advances in dielectric nanocavities with deep subwave-
length confinement [45–48] enable even larger values of g.
Figure 2 shows the results obtained from the ME and the
StA. The mean photon number na, the intensity correlation
function gð2Þð0Þ, relative intensity noise (RIN), emission
spectrum, and linewidth are depicted. See Supplemental
Material for details [49].
Figures 2(a)–2(c) demonstrate excellent agreement

between the StA and the ME for the mean photon number,
intensity correlation, and RIN. This is the case for all
dephasing values and pump rates. The result of adding
Langevin noise terms to Eqs. (2) and (3), see [16] for
details, is also shown. It is clear that the Langevin approach
(LA) captures the mean photon number and RIN relatively
well, while there is a large deviation in the intensity
correlation. This shows a fundamental problem of the
LA for few emitters, since gð2Þð0Þ is a key measure of
the statistics of the light [14,15,33]. Below threshold,
the light is antibunched in the single-emitter case, which
is correctly identified by gð2Þð0Þ < 1 for the ME and
StA, while the LA predicts super-Poissonian statistics,
gð2Þð0Þ > 1.
The shortcoming of the LA stems from its inability to

correctly estimate second-order quantities such as hn2ai,
which gð2Þð0Þ depends very sensitively on. The LA assumes
perturbations around the mean value to be small. This is
clearly not true for a single emitter below threshold, where
the photon population is close to zero. A single spontaneous
emission event will here lead to a temporal fluctuationmuch
larger than the mean value itself. On the other hand, the StA
does not assume small perturbations and correctly predicts
gð2Þð0Þ. See Supplemental Material for a derivation of the
LA perturbation strength and further details [49].
Figure 2(d) shows the emission spectrum, obtained from

the ME, for the case of γD ¼ 0. Note that the StA, which
in its present form does not contain information about
the phase, cannot predict the emission spectrum. We
observe two spectral peaks for low pump values that reflect
Rabi oscillations and correspondingly have a splitting of
2g ¼ 0.2 ps−1. As the pump rate is increased, we see the
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transition to lasing as the Rabi peaks coalesce into a
single peak at the cavity frequency, whose linewidth
narrows significantly. This is seen from Fig. 2(e), which
shows the corresponding linewidth Δν (FWHM) calculated
from the Liouville gap (the smallest real eigenvalue in the
system) [18].

In contrast tomacroscopic lasers, characterized by β ≪ 1,
the transition to lasing in nanolasers with β of order unity
does not show a clear phase transition [50], giving rise to
vivid discussions of the proper definition of threshold
[21,51–53]. This highlights the ambiguity in defining the
threshold for nanolasers, in contrast to the case of macro-
scopic lasers. In Figs. 2(d) and 2(e), vertical lines show the
predictions of two threshold definitions, Ppr and Pcl, to be
further discussed below. In both cases, the number of carriers
at lasing threshold, ne;th, is defined by the balance between
gain and cavity loss γrð2ne;th − 1Þ ¼ γc. From here, the
classical approach [31] is to compute the corresponding
pump rate by assuming that the photon population below
threshold is zero. This procedure leads to the following
expression, where we have ignored pump broadening [54]

Pcl ¼
�

2

1 − 1=ð2ξÞ
�
1

2

γc
β
ð1þ 2ξÞ ð4Þ

with ξ ¼ γr=ð2γcÞ. However, for a near-unity β factor, the
number of photons below transparency will be non-
negligible [55] and a generated photon has a significant
chance of being re-absorbed rather than escaping the cavity.
This cycle of spontaneous emission into the lasingmode and
stimulated re-absorption, i.e., photon recycling [54,55], may
effectively increase the carrier lifetime and lower the pump
rate required to reach the lasing threshold. By including the
effect of photon recycling, one arrives at the following
expression [54]:

Ppr ¼
�

2

1− 1=ð2ξÞ
�
1

2

γc
βeff

; βeff ¼
β

1þ 2ξð1− βÞ : ð5Þ

From Fig. 2, it is seen that Ppr marks the pump value at
which gð2Þð0Þ approaches one from below, the Rabi peaks
coalesce, and the linewidth starts narrowing following the
collapse. At the larger pump value of Pcl, the linewidth has
already reduced significantly, and one enters a regime with
gð2Þð0Þ ≈ 1, independently of the pump value. However,
when various light-matter coupling rates are considered
(not shown here), it is clear [54] that Pcl does not mark this
point consistently, whereas Ppr always corresponds to the
onset of lasing.
At a yet larger pump value, denoted as the quenching

threshold and indicated by Pqn, the linewidth starts to
rebroaden, and gð2Þð0Þ quickly approaches the thermal
value of 2. This quenching behavior at high pump values
is in agreement with previous work [26,27,33] and occurs
because pump-induced dephasing dominates the emitter
broadening. See Supplemental Material [49] for details on
Pqn and also analytical expressions for the linewidth, which
are compared to the simulations of the ME in Fig. 2(e).
To further characterize the quantum noise, we consider

the frequency dependence of the RIN spectrum. The
spectrum of the outcoupled signal is the experimentally

(a)

(b)

(c)

(d)

(e)

FIG. 2. (a) Cavity population, (b) second-order correlation
function gð2Þð0Þ, (c) RIN, (d) emission spectrum, and (e) linewidth
vs pump rate, for three different pure dephasing rates: γD ¼ 0

(red), γD ¼ 1 ps−1 (blue), and γD ¼ 10 ps−1 (green). The spec-
trum, calculated using the ME, is only shown for γD ¼ 0,
normalized to 1 for each pump rate. The characteristic pump
rates, Pre, Pcl, and Pqu separate the laser into four qualitatively
different regimes I–IV.
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relevant observable and differs qualitatively from the
intracavity spectrum due to the nontrivial action of the
outcoupling mirror [41,56]. This is illustrated in Fig. 1,
where the photon distribution changes drastically outside
the cavity. We calculate the outcoupled noise spectrum by
simulating the detection of photons outside the cavity for a
finite time T. In the ME, this is done using normally
ordered photodetection theory [26,57–59], and for the
stochastic approach, we track all outcoupling events
[12]; see Supplemental Material for details [49]. In the
calculations, we choose a detector integration time small
enough to capture all features in the outcoupled spectrum.
Empirically, the inverse emission rate γ−1r is a good choice.
Figure 3 shows RIN spectra for the intracavity and

outcoupled photons for two pump values: one below
threshold and one above. We also show results based on
the analytic LA introduced in Ref. [31] and adopted to the
nanolaser rate equations in Ref. [12]. Below threshold,
Rabi oscillations manifest themselves in the intracavity
RIN spectrum calculated by the ME as a peak around
2πf ¼ 2g. These oscillations arise due to the dynamics of
the atomic polarization, which neither the LA nor the StA
can capture, due to the adiabatic elimination imposed in the
rate equations [12,17]. The outcoupled RIN shows that the
partition noise at the cavity mirrors [31] dominates, and the

spectrum is accurately given by the standard quantum limit:
SN ¼ 2=ðnaκÞ, without any features of Rabi oscillations.
Above threshold, Rabi oscillations do not manifest

themselves in the RIN spectrum, and all three approaches
agree. At large frequencies shot noise again dominates the
outcoupled RIN spectrum. Note, however, that the out-
coupled RIN spectrum is not simply given by the intra-
cavity RIN spectrum with the added shot noise. Below
5 GHz, the outcoupled RIN is thus smaller than the
intracavity RIN [12,31]. While outcoupling at the laser
mirror introduces quantization (shot) noise of the out-
coupled photons, the noise is reduced at low frequencies
due to anticorrelation effects [12,31]. The partition noise at
the cavity mirrors can thus lower the noise in the low-
frequency range.
It should be emphasized that the StA still inherits the

adiabatic elimination of the medium polarization from the
rate equations. Therefore, the inability of the StA to capture
Rabi oscillations was expected. The StA should, therefore,
not be seen as a complete alternative to master equations
but rather as a more consistent way of adding quantum
noise to rate equations. This is especially true in the limit of
few emitters, where the assumptions implicit in Langevin
equations of small-signal white-noise perturbations around
the steady state are not valid.
The limitations of the StA are more clearly seen when

considering the time dependency of the intracavity intensity
correlation function, g2ðτÞ (see Supplemental Material
[49]). This is illustrated in Fig. 4, where we see deviations

(a)

(b)

FIG. 3. RIN spectra for intracavity and outcoupled photons
(a) below and (b) above threshold. The parameters are the same as
in Fig. 2 with pump rates P ¼ 0.0012 and P ¼ 0.3023 ps−1 and
detector integration times T ¼ γ−1r ¼ 0.83 and 8.36 ps−1, respec-
tively, below and above threshold. The vertical dashed line shows
the Rabi frequency at f ¼ 2g=2π ¼ 31.8 GHz, and the horizontal
dots mark the standard quantum limit SN ¼ 2=ðnaκÞ.

(a)

(b)

FIG. 4. Computed correlation function gð2ÞðτÞ (a) below and
(b) above the laser threshold for the same parameters as in Figs. 2
and 3. A fit to the master equation with the expression (6) is also
shown (see SupplementalMaterial [49]), aswell as amonotonically
decaying exponential with coherence lifetime τ−1c ¼ κ − P=4g2.
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between the StA and the ME below and above threshold.
The deviation below threshold clearly arises from Rabi
oscillations, which, as mentioned, cannot be captured by
the StA. Above threshold, the absolute deviation is quite
small (within 1%–2%), but the qualitative behavior is
significantly different. Although not visible in the spec-
trum, transitions in the Jaynes-Cummings ladder [60] still
affect the two-time correlation function. We show this by
fitting an expression similar to the Siegert relation found in
Ref. [61] to our results:

gð2ÞðτÞ ¼ 1þ ðg2ð0Þ − 1Þe−τ=τc þ δgð2ÞðτÞ ð6Þ

with τ−1c ¼ κ − P=4g2 [29]. See Supplemental Material
[49] for details on δgð2ÞðτÞ. The correction δgð2ÞðτÞ is
necessary when emitter-photon correlations are present
[61], and when omitted, we see that we recover g2ðτÞ as
obtained from the StA. The StA thus quantitatively
accounts for the zero-time delay intensity correlation of
the laser light. This is the critical parameter characterizing
the quantum statistics of any light source. On the other
hand, time-dependent quantum correlations, δgð2ÞðτÞ are
predicted with less accuracy.
In conclusion, we have shown that a simple stochastic

interpretation [17] of standard rate equations accurately
accounts for the intensity quantum noise of a single-emitter
laser. This implies that the intensity quantum noise of a
laser originates solely from the discrete nature of photon
and emitter excitations. In contrast, the conventional
Langevin approach [31] does not correctly predict the
quantum statistics of light in this regime. We also analyzed
the single-emitter lasing transition in detail and introduced
a new threshold definition that reliably predicts the onset of
lasing. The stochastic approach can easily be extended to
multiple emitters [16,54], where quantum master equations
become too numerically demanding, and to large-signal
temporal modulation, where Langevin approaches become
inapplicable. Our findings may, therefore, facilitate the
analysis and design of a new generation of nanolasers while
also allowing for a better understanding of quantum noise.
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[17] E. C. André, J. Mørk, and M. Wubs, Opt. Express 28, 32632

(2020).
[18] N. Takemura, M. Takiguchi, and M. Notomi, J. Opt. Soc.

Am. B 38, 699 (2021).
[19] I. E. Protsenko, A. V. Uskov, E. C. André, J. Mørk, and M.
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