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We present a gauge-invariant framework for bubble nucleation in theories with radiative symmetry
breaking at high temperature. As a procedure, this perturbative framework establishes a practical, gauge-
invariant computation of the leading order nucleation rate, based on a consistent power counting in the
high-temperature expansion. In model building and particle phenomenology, this framework has
applications such as the computation of the bubble nucleation temperature and the rate for electroweak
baryogenesis and gravitational wave signals from cosmic phase transitions.
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Achieving a rigorous understanding of the thermal
history of the electroweak (EW) symmetry breaking has
been a long-standing challenge at the interface between
particle physics and cosmology. The standard history of
the standard model (SM) of particle physics contains no
electroweak phase transition. Instead a smooth crossover
between high and low temperature phases occurs [1,2]. A
nonstandard history with a first-order phase transition is
conceivable in theories beyond the SM (BSM) that are well
motivated from the electroweak to TeV scale. BSM
scenarios with extended scalar sectors can contain rich
patterns of symmetry breaking [3] and potentially produce
EW baryogenesis [4–6], and also rich phenomenology for
high energy collider physics [7] and the production of
primordial gravitational waves [8]. These phenomena have
been actively studied for decades and recently sparked
increased interest in next-generation gravitational wave
detector experiments [9–11] such as LISA [12].
One key ingredient for both EW baryogenesis and

stochastic gravitational wave background production is a
first-order phase transition in the primordial plasma of
particles that proceeds via nucleating bubbles of the
low-temperature phase. The thermodynamics and bubble

dynamics of such transitions can be reliably described
nonperturbatively using lattice simulations [13–15].
However, exploring BSM scenarios and their thermody-
namics invariably requires the use of perturbation theory,
since fully comprehensive nonperturbative analyses of a
multidimensional parameter space are computationally out
of reach. A qualitative and quantitative assessment of the
perturbative reliability requires robust theory computations
when comparing to lattice data. In that respect, an unphys-
ical gauge dependence of the bubble nucleation rate has
plagued particle physics phenomenology applications of
the thermal phase transition literature for decades
(cf. Refs. [8,16] and references therein). While by now
resolved at zero temperature [17–22], a similar, long-
standing and open problem exists at finite temperature if
the potential barrier between the phases is radiatively
generated. Such a scenario in EW symmetry breaking is
relevant for the initial of two transition steps [23] or a single
transition step wherein new scalars both strengthen the
barrier while reducing the magnitude of the effective Higgs
boson self interaction [24]. It is also relevant for a phase
transition in a dark sector [25].
We resolve this long-standing problem by providing a

practical, gauge-invariant framework for thermal bubble
nucleation, intended for model building and particle phe-
nomenology applications. The reliability of the approach
can be assessed by “benchmarking,” against lattice analyses
in the future. Such benchmarking is incompatible with the
conventional approach since there the nucleation rate is
gauge dependent and an ill-defined unphysical quantity.
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The bubble nucleation rate per unit volume, Γ, has the
semiclassical approximation [26–29]

Γ ¼ Ae−B: ð1Þ

Here, the exponent B ¼ S3=T with S3 being the three-
dimensional Euclidean effective action evaluated at the
“bounce” solution that solves the classical Euclidean field
equations [27,30]. The prefactor A is dimensionful and
given by the characteristic mass scales of the theory,
resulting from computing the functional determinants.
The leading behavior of the rate Γ is encoded in the
exponent B.
The effective action is computable using the background

field (ϕ) method. Therein, Veffðϕ; TÞ is the thermal
effective potential describing the equilibrium free energy
of the system, and Z

1
2ðϕ; TÞ is the field renormalization

factor. Both Veffðϕ; TÞ and Zðϕ; TÞ admit an expansion in
the weak gauge coupling, denoted generically here as g.
After the gradient expansion in powers of spatial deriva-
tives ð∂iϕÞ, the effective action reads as [31,32]

S3 ¼
Z

d3x
�
Veffðϕ; TÞ þ 1

2
Zðϕ; TÞð∂iϕÞ2 þ…

�
; ð2Þ

where the ellipsis contains terms of additional ð∂iϕÞ
powers. While the gradient expansion in general does
not converge [15,33–35], one may obtain a self-consistent,
gauge-invariant estimate of Γ by ensuring the three follow-
ing conditions apply. (A) Fields that generate the barrier
must be parametrically heavier than the nucleating field; in
this case leading orders can be correctly described by a
derivative expansion. (B) Temperatures are assumed to be
in the vicinity of the critical temperature, Tc, such that a
specific power counting in g applies, wherein the leading
order potential has a radiatively generated barrier.
(C) Bubbles are assumed to have a thick-wall which can
arise after supercooling when the nucleation temperature,
Tn, is sufficiently below Tc but still within the criteria
of (B).
Condition (C) is particularly relevant for strong tran-

sitions interesting for cosmological applications [35].
Hence, we focus on a temperature regime where the first
two leading terms of the effective action are enhanced by
powers of g and presentable schematically as

S3 ¼ a0g−
3
2 þ a1g−

1
2 þ Δ: ð3Þ

Here a0;1 are numerical coefficients that are computable in
the gradient expansion at leading (LO) and next-to-leading
orders (NLO), respectively. Δ encodes formally higher
order corrections—that areOð1Þ, up to potential logarithms
of g [34]—that we presently do not compute. The bubble
nucleation rate then reads as

Γ ¼ A0e−ða0g
−3
2þa1g

−1
2Þ: ð4Þ

We formally collected higher order effects encoded in Δ in
Eq. (3), to a yet unspecified prefactor A0 ≡ Ae−Δ. The
expression [Eq. (4)] results from an expansion based on the
chain of scale hierarchies at high temperature,

πT ≫ gT ≫ g
3
2T; ð5Þ

where πT is the thermal scale of nonzero Matsubara modes,
gT is the intermediate scale of zero modes that are
thermally screened, and g

3
2T is a characteristic scale of

bubble nucleation, related to an effective mass of the
nucleating field. For a systematic treatment of thermody-
namics in the framework of three-dimensional, high tem-
perature effective field theory (3D EFT) see Refs. [36,37]
and [38,39] for relevant applications. This framework was
recently extended [34] by presenting an approach for an
effective description for bubble nucleation.
Here, we work at the leading high temperature expansion

[40] that allows us to perform the computation without
formally constructing a 3D EFT. Our goal is to compute LO
and NLO terms in B and show their gauge invariance. We
emphasize that this computation agrees with the generic
EFT approach [34] at leading orders, and an accompanying
article [35] revisits this computation in the EFT context,
which allows one to pursue improvement in terms of higher
order corrections.
As in earlier literature both at zero [17,41] and high [33]

temperature, we use the Abelian Higgs model as a concrete
illustration. The Euclidean Lagrangian density for the
Abelian Higgs model is

L ¼ 1

4
FμνFμν þ ðDμΦÞ�ðDμΦÞ þ μ2Φ�Φþ λðΦ�ΦÞ2

þ LGF þ LFP; ð6Þ

with a U(1) gauge field Bμ and a complex scalar field Φ.
The covariant derivative for complex Higgs reads as
DμΦ ¼ ∂μΦ − igBμΦ, where g is the gauge coupling
and the field strength tensor Fμν ¼ ∂μBν − ∂νBμ. We
expand Φ in real fields,

Φ ¼ ϕffiffiffi
2

p þ 1ffiffiffi
2

p ðH þ iχÞ; ð7Þ

where ϕ≡ ϕðxÞ is a spatially dependent classical back-
ground field and H and χ are propagating quantum degrees
of freedom. In perturbation theory the gauge can be fixed
using Rξ gauge [33,42]

LGF ¼
1

2ξ
½−ð∂μBμ þ igξðϕ̃�Φ −Φ�ϕ̃ÞÞ�2; ð8Þ
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with the Fadeev-Popov ghost ðc; c̄Þ Lagrangian

LFP ¼ c̄ð−□þ ξg2ðϕ̃�ΦþΦ�ϕ̃ÞÞc: ð9Þ

Although one need not relate ϕ̃ directly to ϕ, it is
convenient to identify ϕ̃ ¼ ϕ=

ffiffiffi
2

p
to eliminate mixing

between the gauge field and Goldstone mode χ.
Equilibrium thermodynamics are described by the effec-

tive potential, whose minima should be separated by a
barrier for a first-order phase transition. While the Abelian
Higgs model admits no tree-level barrier, the barrier
arises radiatively through loop corrections. Similar to
Refs. [17,33,40,43], we show that one-loop gauge field
contributions can arise at the same order as the tree-level
potential provided that model parameters assume the
following power counting. First, we assume that

ϕ ∼ T; ð10Þ

which sets the size of the background field to the character-
istic mass scale of the problem, the temperature. Second,
we relate the size of the scalar self-coupling and gauge
coupling by [40]

λ ∼ g3: ð11Þ

By assuming that the quartic coupling is sufficiently small
compared with gauge coupling, the cubic term induced by
the gauge field will contribute at leading order, as seen
below. Third, we assume

μ2 ∼ ðgTÞ2; ð12Þ

which installs the high-temperature expansion of μ2 ≪ T2.
Finally, the effective thermally corrected mass of the scalar
at leading order is

μ2eff ≡ μ2 þ ð4λþ 3g2ÞT
2

12
∼Oðg2þNT2Þ: ð13Þ

Here, the first and third terms are individually of Oðg2T2Þ.
However, for μ2 < 0, a cancellation between the first and
remaining terms can render the overall sum in μ2eff smaller—
parametrized by N > 0—for some temperature range.
Henceforth, we assume a temperature window where
N ¼ 1 and argue below that this occurs in the vicinity of
the phase transition critical temperature [40,44].
The assumptions of Eqs. (10)–(13) induce the chain of

thermal scale hierarchies in Eq. (5). Nonzero Matsubara
modes have masses ∼πT. In the unbroken phase (ϕ ¼ 0)
zero Matsubara modes have the following scales: Higgs
and Goldstone fields have masses ∼μeff ∼ g

3
2T. The gauge

field temporal mode, B0, has a thermal mass m̄B0
∼ gT;

while spatial gauge fields remain massless (mB ¼ 0) in the
unbroken phase. In the broken phase (ϕ > 0), spatial and

temporal gauge bosons, Goldstone and ghost fields have
masses ∼gϕ ∼ gT, while the Higgs field that undergoes
nucleation has a parametrically lighter mass ∼g3

2T.
The full one-loop effective potential is found using the

following background field dependent mass eigenvalues

m̄2
H ¼ μ2eff þ 3λϕ2; ð14Þ

m̄2
χ ¼ μ2eff þ λϕ2 þ g2ξϕ2; ð15Þ

m̄2
B0

¼ 1

3
g2T2 þ g2ϕ2; ð16Þ

m2
c ¼ g2ξϕ2; m2

B ¼ g2ϕ2; ð17Þ

where masses for the zero Matsubara modes of the Higgs,
Goldstone, and temporal gauge field B0 include resummed
thermal corrections, e.g., the T2 term in the third line
describes Debye screening. The mass of the longitudinal
component of the gauge field equals the ghost mass.
Neither spatial gauge fields, nor ghost fields, develop
thermal masses. Based on the power counting in g, the
leading contribution to the effective potential is ofOðg3T4Þ
and reads as

Veff
LO ¼ 1

2
μ2effϕ

2 þ 1

4
λϕ4 −

g3T
12π

×

�
2ϕ3 þ

�
1

3
T2 þ ϕ2

�3
2

�
; ð18Þ

the second line is the gauge field contribution with the first
term therein results from the spatial vector field and the
second term the Debye mass (16) of the temporal compo-
nent. Near the phase transition, all terms in the potential
should be approximately of the same order of magnitude
which is assured by construction, given the assumed power
counting in g in Eqs. (10)–(13). The leading-order potential
of Eq. (18) at Oðg3T4Þ is gauge invariant.
The one-loop contribution to the effective potential from

the longitudinal gauge field, Goldstone field, and ghost
fields is

−
T
12π

ðm̄3
χ −m3

cÞ ∼Oðg4T4Þ: ð19Þ

Note that ghosts contribute with a relative minus sign to
other fields. These contributions give rise to an explicit ξ
dependence, but these terms are of higher order compared
with Eq. (18) due to a cancellation at leading order. Below
we include the remaining Oðg4T4Þ terms at NLO in the
effective potential which expands as

Veff ¼ Veff
LO þ Veff

NLO þOðg9
2T4Þ; ð20Þ

where
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Veff
NLO ¼ 1

ð4πÞ2
�
g4T2ϕ2

�
−1þ ln

�
4g2ϕ2

Λ2

��

þ
ffiffiffi
ξ

p
gTϕðg3Tϕ − 2πðμ2eff þ λϕ2ÞÞ

þ g4T2

�
1

2

ffiffiffi
ξ

p
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
T2 þ ϕ2

r

þ 1

2
ϕ2

�
−1þ ln

�
4g2ð1

3
T2 þ ϕ2Þ
Λ2

����
: ð21Þ

The last term on the second line originates from the one-
loop Goldstone-ghost contribution in Eq. (19), and the last
two lines correspond to the two-loop contributions of the
B0 field. The remaining terms result from two-loop dia-
grams with spatial gauge fields, ghosts, and scalars (χ,H).
The Oðg9

2T4Þ term in Eq. (20) arises at one-loop order from
the Higgs field.
Consistent treatment of the effective action [Eq. (2)] at

NLO also requires including the one-loop Higgs field
renormalization:

Z ¼ 1þ ZNLO þOðg3
2Þ; ð22Þ

where

ZNLOðϕÞ ¼
gT
48π

�
−
22

ϕ
þ ϕ2

ð1
3
T2 þ ϕ2Þ32

�
; ð23Þ

is detailed in Ref. [35]; cf. Refs. [33,45] for a similar
computation. The first term is from the spatial gauge fields
and ghosts while the second term is from the temporal
gauge field component. Notably, at order OðgÞ the field
renormalization is independent of the gauge-fixing param-
eter. Higher order terms at Oðg3

2Þ arise from two-loop
diagrams involving gauge, ghost, and Goldstone fields, and
one-loop diagrams with internal Higgs legs. Importantly,
the gauge dependence arising from m̄2

χ −m2
c is formally of

higher order in our power counting. The corresponding
contributions to S3 are asymptotically suppressed, arising
from the tail of the bounce solution wherein ϕ ≪ T.
In the semiclassical approximation, the background field

extremizes the leading-order action and can be found from
the equation of motion for the leading-order potential

∇2ϕbðxÞ ¼
∂Veff

LO

∂ϕ

				
ϕ¼ϕb

;

�
ϕbð∞Þ ¼ 0

ϕ0
bð0Þ ¼ 0

; ð24Þ

where ∇2 ≡ ∂i∂i is the three-dimensional Laplacian oper-
ator, and ϕb is the “bounce solution” [46]. We expand the
exponent of the nucleation rate as B ¼ B0 þ B1:

B0 ¼ β

Z
d3x

�
Veff
LOðϕbÞ þ

1

2
ð∂iϕbÞ2

�
; ð25Þ

B1 ¼ β

Z
d3x

�
Veff
NLOðϕbÞ þ

1

2
ZNLOðϕbÞð∂iϕbÞ2

�
; ð26Þ

where β≡ 1=T. The characteristic length scale R for
nucleation is related to the typical bubble size, given by
the inverse mass of the nucleating field R ∼m−1

H ∼ g−
3
2T−1.

This gives rise to the formal scaling
R
d3x ∼ g−

9
2T−3.

Together with the power counting for the effective potential
and field renormalization, this establishes the relative
importance of the first two leading exponent terms of
the nucleation rate: B0 ∼ g−

3
2, B1 ∼ g−

1
2 as already foreshad-

owed in Eqs. (3) and (4). Despite the 1=ϕ behavior of
ZNLOðϕbÞ, the contribution of the term ZNLOðϕbÞð∂iϕbÞ2 is
finite also in the region of vanishing ϕb [35] (cf. also
Refs. [34,47,48]). NLO corrections to the bounce solution,
ϕ ¼ ϕb þ Δϕ, also induce corrections to the effective
action and hence the tunneling rate. However, these are
higher order contributions than we consider here:

SeffðϕÞ ¼ SLOeff ðϕÞ þ SNLOeff ðϕÞ þ…

¼ SLOeff ðϕbÞ þ ½SNLOeff ðϕbÞ þ ðΔϕÞδSLOeff ðϕbÞ� þ…

¼ B0 þ B1 þ…: ð27Þ

In the second line, the terms inside the ½ � are OðgÞ;
δSLOeff ðϕbÞ ¼ 0 since ϕb extremizes the LO action. Thus,
the corrections Δϕ to the bounce solution first enter at
higher orders, so we may neglect them here.
Because the bounce solution has to be solved numerically

fromEq. (24), the exponentsB0;1 are necessarily obtained by
numerical integration. Nevertheless, their gauge independ-
ence can still be proven analytically. The gauge-fixing
parameter is absent at leading order since Z and Veff are
both ξ independent at this order, implying gauge independ-
ence of both the bounce solution ϕb and exponent B0. The
gauge invariance of B1 is not immediately obvious since
Veff
NLO in Eq. (21) explicitly depends on ξ. To proceed, we

utilize the Nielsen identities [42,49] in analogy to Ref. [17].
These identities have been discussed in the context of finite
temperature in, e.g., Refs. [33,41,50,51]. The Nielsen iden-
tity (in d-dimensional Euclidean space)

ξ
∂Seff

∂ξ
¼ −

Z
ddx

δSeff

δϕðxÞ CðxÞ; ð28Þ

relates the variation of the effective action with the gauge
parameter to the corresponding Nielsen functional

CðxÞ ¼ ig
2

Z
ddyhχðxÞcðxÞc̄ðyÞ

× ½∂iBiðyÞ þ
ffiffiffi
2

p
gξϕχðyÞ�i; ð29Þ

which admits a derivative expansion [33]
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CðxÞ ¼ CðϕÞ þDðϕÞð∂μϕÞ2 − ∂μðD̃ðϕÞ∂μϕÞ þOð∂4Þ:
ð30Þ

Together with the expansion of the effective action [Eq. (2)],
this yields theNielsen identities for the effective potential and
field renormalization factor

ξ
∂

∂ξ
Veff ¼ −C

∂

∂ϕ
Veff; ð31Þ

ξ
∂

∂ξ
Z ¼ −C

∂

∂ϕ
Z − 2Z

∂

∂ϕ
C − 2D

∂

∂ϕ
Veff − 2D̃

∂
2

∂ϕ2
Veff:

ð32Þ

To employ these relations, we expand them in powers of g by
first quoting the scaling of the Nielsen coefficients

C ¼ CLO þOðg3
2TÞ; CLO ¼ T

ffiffiffi
ξ

p
16π

g; ð33Þ

D ¼ Oðg−1T−3Þ; D̃ ¼ Oðg−1T−2Þ: ð34Þ

These coefficients are computed at leading order in
Refs. [33,35]. We do not need the explicit expressions of
D, D̃ because the terms on the second line of Eq. (32) appear
at Oðg2Þ, and are hence suppressed relative to those on the
first line atOðgÞ. The leading orderCLO ∼ gT is independent
of the scalar background field ϕ at finite temperature. An
explicit counting in powers of g in the identities from
Eqs. (31) and (32) yields

ξ
∂

∂ξ
Veff
NLO ¼ −CLO

∂

∂ϕ
Veff
LO; ð35Þ

ξ
∂

∂ξ
ZNLO ¼ −2

∂

∂ϕ
CLO; ð36Þ

at Oðg4T4Þ in the first and OðgTÞ in the second Nielsen
identity.A combination of the explicit expressions [Eqs. (18),
(21), (23), and (33)] readily verifies both identities. In
particular, the equality [Eq. (36)] holds since the NLO
field renormalization is ξ independent and at LO C is ϕ
independent.
Using the above Nielsen identities, we demonstrate

gauge independence of B1:

ξ
∂

∂ξ
B1 ¼ ξ

∂

∂ξ
β

Z
d3x

�
Veff
NLOðϕbÞ þ

1

2
ZNLOð∂μϕbÞ2

�

¼ðAÞβ
Z

d3x

�
−CLO

∂

∂ϕ
Veff
LOðϕbÞ

�

¼ðBÞ − CLOβ

Z
d3x½∇2ϕb�

¼ðCÞ − CLOβ

Z
d2S · ð∂ϕbÞ

¼ðDÞ
0: ð37Þ

Step (A) uses the Nielsen identity [Eq. (35)] and ξ
independence of ZNLO; (B) applies the equation of motion
[Eq. (24)] and moves CLO outside the integrand due to its ϕ
independence; (C) applies Gauss’s theorem; (D) follows
from the asymptotic behavior of the bounce solution at the
boundary,

∇2ϕb ∼ μ2effϕb; ϕbð∞Þ ¼ 0; ð38Þ

⇒ ϕbðrÞ ∼ c
e−μeffr

r
as r → ∞: ð39Þ

This completes our proof of gauge invariance of the leading
exponential of the nucleation rate.
Figure 1 illustrates the quantitative impact of applying

our framework as compared to the conventional gauge-
dependent approach. The left panel of Fig. 1 gives the λ
dependence of the strength of the transition, characterized
by latent heat released in the transition L, scaled to T4

c . The
right panel of Fig. 1 shows the T dependence of S3=T. We
fix g2 ¼ 0.1 and μ2 ¼ −M2=2, whereM ¼ 100, and where
M and T are in arbitrary units of mass. Furthermore, we
define λ and g at an initial renormalization scale Λ0 ¼ 100
and run to a scale Λ ¼ T using one-loop renormalization
group evolution [35].
The dashed (solid) line in Fig. 1 (left) corresponds to the

gauge-invariant result for L=T4
c at LO (LOþ NLO). For

comparison, we also illustrate the conventional analysis
based on direct minimization of the full one-loop effective
potential (in the high-T expansion). The latter approach is
gauge dependent, as illustrated by the light gray band in
which the gauge-fixing parameter ranges over ξ ¼ ½0; 4�.
The right panel of Fig. 1 shows the T dependence of

S3=T ¼ B0 þ B1 for fixed λ ¼ 0.001 as the black solid
curve. We have obtained this result using FINDBOUNCE [52]
to find the bounce solution ϕb of Eq. (24). For comparison,
the light gray band significantly varies in S3=T whenvarying
ξ ¼ ½0; 4�, which illustrates the gauge dependence that is
often encountered in the past literature (e.g., Refs. [8,53]).
The latter result is based on computing Eq. (1) using Eq. (2),
where the effective potential is directly computed at one-loop
order in a fixed gauge. Therein, the bounce solution is found
from the same gauge-dependent one-loop effective potential.
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This leftover gauge-dependence immediately signals an
inconsistency, as the computation of a physical quantity
should contain no ξ dependence.
By denoting the difference between the two approaches as

ΔS3 ≡ S1-loop3 − ðB0 þ B1Þ, ΔS3 contains the ξ-dependent
terms. Within the context of the power counting of
Eqs. (11)–(13), these ξ-dependent terms are formally
NNLO, i.e., Oðg0Þ and beyond, since they do not enter
B0 þ B1. Indeed, the organization of the perturbative expan-
sion provided herein allows one to clearly identify the
origin—as a function of g—of the ξ dependence in the
“conventional” approach. As a framework for obtaining a
ξ-independent computation to a given order in g, our
framework also delineates the limits of validity of the
perturbative series—also as a function of g—when imple-
mented in combination with the derivative expansion.
For a discussion of other theoretical inconsistencies

encountered in the “conventional” approach, such as the
appearance of an imaginary part in S3 and double counting of
contributions from the nucleating field, see Refs. [34,54,55].
The renormalization scale dependence of the results in Fig. 1,
that can be used to monitor the accuracy of perturbation
theory (cf. Refs. [54,56]), is further discussed in Ref. [35].
The framework presented in this Letter provides a way to

obtain a gauge-independent, perturbative estimate of the
thermal nucleation rate in the presence of radiative barriers.
While we have worked in the Abelian Higgs model along
the lines of previous literature [17,33], our framework
readily generalizes to more complicated gauge field the-
ories, with radiatively generated barrier, and our practical
approach can facilitate corresponding model-building
phenomenological studies. Ultimately, one must assess
the quantitative and qualitative reliability of perturbative
nucleation rate computations through comparison with

nonperturbative calculations (see Refs. [15,57]). A mean-
ingful comparison requires a well-defined, gauge-invariant
perturbative computation, which the framework presented
herein provides.
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