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According to the inflationary theory of cosmology, most elementary particles in the current Universe
were created during a period of reheating after inflation. In this Letter, we self-consistently couple the
Einstein-inflaton equations to a strongly coupled quantum field theory as described by holography. We
show that this leads to an inflating universe, a reheating phase, and finally a universe dominated by the
quantum field theory in thermal equilibrium.
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Introduction.—Cosmological inflation is a paradigm of
extended exponential expansion of our Universe at its
earliest moments. Because of the rapid expansion, this
leads to a quickly cooling Universe, which at the end
reheats to the hot plasma that then forms the big bang. The
exponential expansion provides a natural explanation why
our Universe is to a good approximation homogeneous,
even though different parts could not have been in causal
contact since the big bang.
One of the main uncertainties in inflation is the so-called

“exit” to the hot big bang scenario. Because of the many e-
foldings of expansion, a natural end state of inflation would
be an empty universe, so the question is how ordinary and
possibly dark matter arise in inflation. “Standard inflation”
posits a distinct reheating stage where the inflaton under-
goes a damped oscillation in the inflaton potential while
interacting with and heating up ordinary matter [1–5] (see
Refs. [6–10] for reviews). A different scenario is called
“warm inflation” [11–14]. In this case there is always a
subdominant but significant part of the Universe made up
of ordinary or dark matter. It is only when the inflaton rolls
down the potential that subsequently ordinary matter
becomes dominant, thereby making a smooth transition
to the big bang.
Many microscopic models have been proposed for either

scenario, all of which have advantages and disadvantages
(see, e.g., [15]). In standard inflation there is often a
“preheating” phase, where bosonic fields undergo an

exponential increase in density due to resonant amplifica-
tion. This, however, leads to a nonthermal state of which it
is not a priori clear if it thermalizes in time for the big bang
scenario. Recently there has been renewed interest in warm
inflation, since it may avoid some of the conjectured
constraints on consistent quantum gravity theories that
arise from the swampland program [16,17].
In this Letter, we present a toy universe in which the

inflaton is coupled to a strongly coupled quantum field
theory (QFT) (see also [18] for an earlier attempt). A
unique and important aspect of strongly coupled QFTs is
that they approach hydrodynamics and thermalize as fast as
possible [19,20]. At the relevant energy scales even the
strong coupling constant of quantum chromodynamics is
small due to asymptotic freedom, so this QFT can be
thought of as a hidden sector that exists at some high energy
scale. The strongly coupled QFT is described using
holography, which is a remarkable duality arising from
string theory that can describe strongly coupled QFTs in
terms of a classical anti–de Sitter universe of one higher
dimension. The extra dimension can be thought of as
energy scale, whereby for a thermal state there exists a
black hole horizon in the infrared.
While we present a general framework for reheating with

a strongly coupled QFT, in this Letter we will present a
simple model example to illustrate its dynamics. Quite
strikingly we find that the model qualitatively reproduces
many of the features of warm inflation (see Fig. 1 for a
cartoon). This includes an extended period of cooling and
exponential expansion, an inflaton rolling down the poten-
tial, heating up the QFT, and finally the transition to a
universe dominated by QFT matter in a thermal state.
In this Letter, we use standard inflationary terminology

in describing the evolution of the constructed universe, but
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we stress that in this work we do not attempt to construct a
realistic model for our Universe. Rather, we focus on a
qualitative general description of an inflaton interacting
with a strongly coupled QFTwith a specific evolution as an
explicit example.
Model.—In order to model the energy transfer of the

inflaton field to matter on a dynamical spacetime, we
evolve self-consistently the Einstein-inflaton equations
together with the energy-momentum tensor for strongly
coupled matter described by holography. The total action of
this model consists of two different sectors and an
interaction part:

S ¼ SEHþinf þ Shol þ Sint: ð1Þ

The first sector SEHþinf consists of four-dimensional
Einstein gravity with a dynamical inflaton field, Shol
models the dynamics of a strongly coupled QFT via the
gauge/gravity duality in terms of a five-dimensional gravity
dual, and Sint accounts for the direct coupling between
these two sectors.
The first term in Eq. (1) is the standard Einstein-Hilbert

plus Klein-Gordon action with a nontrivial scalar field
potential V infðϕÞ, which together describe the dynamics of
the spacetime and the inflaton ϕ in the four boundary
dimensions:

SEHþinf ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p �
R
2κ4

−
1

2
γij∂iϕ∂jϕ − V infðϕÞ

�
: ð2Þ

Here, κ4 parametrizes the strength of the gravitational
interaction and R is the Ricci scalar of the spacetime
metric γij. We define this metric to be of Friedmann-
Lemaître-Robertson-Walker type

ds2 ¼ γijdxidxj ¼ −dt2 þ aðtÞ2dx⃗2; ð3Þ

where aðtÞ is the scale factor that determines the expansion
of the spacetime via the Einstein field equations. We
consider an inflaton potential as shown in Fig. 2, which
is given by

V infðϕÞ ¼ v0 þ
9

8
e
2
3
ðϕ−ϕmÞ − 45e−

1
50
ðϕ−ϕmÞ2 ; ð4Þ

where ϕm and v0 are fixed by demanding that the
potential and the inflaton vanish at the global minimum
V infð0Þ ¼ V 0

infð0Þ ¼ 0.
The strongly coupled matter sector is defined via the

gauge/gravity duality by the five-dimensional bulk action

Sbulk ¼
2

κ5

Z
d5x

ffiffiffiffiffiffi
−g

p �
1

4
R −

1

2
ð∂ΦÞ2 − VbulkðΦÞ

�
; ð5Þ

where κ5 denotes the bulk gravitational coupling, R is the
Ricci scalar associated to the bulk metric gμν, and Φ is a
bulk scalar field with potential

VbulkðΦÞ ¼ 1

L2

�
−3−

3Φ2

2
−
Φ4

3
þ 11Φ6

96
−

Φ8

192

�
; ð6Þ

where L denotes the length scale of the asymptotic anti–de
Sitter metric gμν, which we set to unity. The bare bulk
action Sbulk needs to be renormalized by adding appropriate
counter terms Sbdry that render the holographic action
Shol ¼ Sbulk þ Sbdry in Eq. (1) finite on-shell. The renor-
malized action Shol then defines a holographic bottom-up
model [21] for a strongly coupled QFT with regular
renormalization group flow between its conformal ultra-
violet and infrared fixed points and broken conformal
symmetry in between. The mass of the bulk scalar field
m2 ¼ ð∂2V=∂Φ2ÞjΦ¼0 ¼ − 3

2
determines the conformal

scaling dimension Δ ¼ 3 of the dual operator O via the
relation m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðΔ − 4Þp
. It is important to stress that

bottom-up means this model does not originate from a full

FIG. 2. The inflaton starts at ϕ ¼ −30 and then slowly rolls
down the inflaton potential as shown. At the bottom of the
potential the inflaton oscillates and reheats the universe due to its
coupling to the QFT.

FIG. 1. Illustration of the bulk and boundary during holographic
reheating.

PHYSICAL REVIEW LETTERS 130, 251001 (2023)

251001-2



string theory and it is hence unclear if the model is or can be
UV-completed. Instead, bottom-up models (see also holo-
graphic QCD [22,23]) have proven useful as effective
theories for strongly coupled physics to learn general
qualitative lessons. The model is furthermore nonconfor-
mal and hence we can study the effects of the bulk viscosity
that would not be present in simpler conformal models.
Finally, there is an interaction term in the effective action

that couples the inflaton via the vacuum expectation value
(VEV) of the scalar operator hOi ¼ OQFT=κ5 to the holo-
graphic sector:

Sint ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p
UðϕÞOQFT; ð7Þ

where the free function UðϕÞ defines the coupling of the
model. In the QFT the inflaton hence acts as a source for
the scalar operator O, where the source is given by the
asymptotic boundary value of the bulk scalar Φð0Þ ¼ UðϕÞ.
The total energy momentum tensor in the boundary

theory consists of three parts:

Tij ¼ diagðE;P;P;PÞ ¼ T inf
ij þ T QFT

ij þ T int
ij ; ð8Þ

where E and P denote energy density and pressure,
respectively. The first part is the usual expression for the
energy-momentum tensor of a scalar field:

T inf
ij ¼ ∂iϕ∂jϕ − γij

�
1

2
∂kϕ∂

kϕþ V inf

�
: ð9Þ

The second term T QFT
ij ¼ diagðEQFT;PQFT;PQFT;PQFTÞ is

the VEV of the holographic energy momentum tensor,
where EQFT and PQFT denote the corresponding energy
density and pressure. The third term results in an energy-
momentum contribution due to the direct coupling between
the inflaton and the holographic sector:

T int
ij ¼ −

2ffiffiffiffiffiffi−γp δSint
δγij

¼ UðϕÞOQFTγij: ð10Þ

The total energy momentum tensor is covariantly con-
served when using the on-shell condition for the scalar field
∇iT inf

ij ¼ −UðϕÞ∂jOQFT together with the Ward identity

for the holographic energy-momentum tensor ∇iT QFT
ij ¼

−∂jUðϕÞOQFT, where ∇i is the Levi-Civita connection
associated to γij.
In the standard holographic dictionary the QFT lives on a

fixed (curved) background spacetime γij and also the scalar
source Φð0Þ acts as a free parameter that can be specified
arbitrarily. Here, however, we require them to satisfy the
equations of motion that follow from the boundary action
[Eq. (1)]. For the Friedmann-Lemaître-Robertson-Walker
line element [Eq. (3)], one obtains the standard Friedmann

equations together with a scalar field equation for the
inflaton that is coupled to OQFT:

HðtÞ2 ¼ κ4
3
EðtÞ; ð11Þ

a00ðtÞ
aðtÞ ¼ −

1

2
ðκ4PðtÞ þHðtÞ2Þ; ð12Þ

ϕ00ðtÞ ¼ ∂ϕUðϕðtÞÞOQFTðtÞ − 3HðtÞϕ0ðtÞ − ∂ϕV inf ½ϕðtÞ�;
ð13Þ

where HðtÞ ¼ a0ðtÞ=aðtÞ is the Hubble rate and the total
energy density and pressure are given by

E ¼ EQFT þ V infðϕÞ þ UðϕÞOQFT þ
1

2
ϕ02; ð14Þ

P ¼ PQFT − V infðϕÞ − UðϕÞOQFT þ
1

2
ϕ02: ð15Þ

The −3HðtÞϕ0ðtÞ in Eq. (13) is the standard friction term
that brings the inflaton to rest, but we note that with the
holographic coupling the scalar VEV OQFT also contrib-
utes. Importantly, both EQFT and OQFT depend on the full
bulk geometry, including explicit dependencies on ϕðtÞ,
ϕ0ðtÞ, aðtÞ, and a0ðtÞ. In addition,OQFT, EQFT, andPQFT are
not independent, but related via the trace Ward identity

γijT QFT
ij ¼ EQFT − 3PQFT ¼ −UðϕÞOQFT þA; ð16Þ

where A is the conformal anomaly [24,25]. The variational
principle in holography with dynamical boundary condi-
tions, the holographic renormalization of Shol, together with
the resulting expressions for EQFT, PQFT, OQFT and the
corresponding anomaly corrected Ward identities as well as
the thermodynamic properties of the holographic QFT are
given in the Supplemental Material [26].
Solution method.—Computing the time evolution of the

scale factor aðtÞ, the inflaton ϕðtÞ, and the energy-
momentum tensor TijðtÞ for a given set of initial conditions
requires one to solve the corresponding initial value
problem for Eqs. (11) to (13) together with the dual bulk
initial-boundary value problem in a self-consistent way. For
this we follow essentially the same procedure as in [35], but
promote Φð0ÞðtÞ ¼ UðϕðtÞÞ to a dynamical field that
satisfies Eq. (13).
At the initial time t ¼ tini we need to specify initial

conditions for the energy density EQFTðtiniÞ ¼ Eini
QFT, the

inflatonϕðtiniÞ¼ϕini and its time derivative ∂tϕðtiniÞ ¼ ϕ0
ini,

as well as a profile for the bulk scalar Φðr; tiniÞ ¼ ΦiniðrÞ,
along the holographic coordinate r and whose asymptotic
value is consistent with the inflaton limr→∞ rΦiniðrÞ ¼
UðϕiniÞ. Equations (11) to (13) then determine ϕ00

ini as well
as the Hubble rate H and its time derivative H0. It is
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important to note that OQFT depends on H0 and also that
EQFT depends on ∂2tϕ. The equations are hence coupled and
lead to a sixth-order polynomial equation that we solve
numerically [36]. After the initialization we evolve H and
∂tϕ using Eqs. (12) and (13). As in [35] for the boundary
metric we replace ∂3tϕ and ∂4tϕ derivatives that appear in the
regularized bulk equations by their solutions in terms of the
near-boundary expansion.
For the evolution presented in this work, we set

κ5 ¼ 1=9, κ4 ¼ ð2π=5625Þ, UðϕÞ ¼ λϕ with λ ¼ 1=30,
and use Eini

QFT ¼ 13275, ϕini ¼ −30, ϕ0
ini ¼ 3=10, and

Φ̃ðrÞ ¼ −6þ 120=r − 300=r3 as initial conditions, where
Φ̃ðrÞ is defined by ΦðrÞ≡ΦNBðrÞ þ r−3Φ̃ðrÞ and ΦNBðrÞ
contains near-boundary terms up to Oðr−2Þ and
O½r−4 logðrÞ�. These parameters are tuned to get an
evolution that shows both an inflationary and a reheat-
ing phase.
Results.—Figure 3 shows the resulting evolution of the

inflaton (left), energy density (middle), and Hubble rate
(right) of the model. The early phase is dominated by the
high initial energy density of the QFT, but at t ¼ 3.27 the
inflaton energy density becomes dominant and the universe
enters a phase of relatively constant exponential expansion.

Later at t ¼ 14.3 the inflaton reaches the bottom of the
potential and starts oscillating rapidly. These oscillations
form sources for the QFT energy, which then increases
from a minimum of EQFT ¼ 0.21 at t ¼ 13.5 to a sub-
sequent maximum of EQFT ¼ 0.64 at t ¼ 17.3. Crucially
this reheating continues, which is apparent from the
relatively slow scaling EQFT ∝ t−1.17 of the QFT energy
density. The universe then keeps expanding at increasingly
slower rates, thereby cooling down both the inflaton and the
QFTenergy density. At late times the QFTenergy density is
dominant.
In Fig. 4 we show the evolution of the pressure of the

QFT (left), the inflaton (middle), as well as the total pressure
(right). After a very short far-from-equilibrium stage, we see
that the QFT pressure is well described by the equations as
given by viscous hydrodynamics, much like what was found
in [35]. After the inflaton rolls down, however, we see that
the reheating pushes the QFT significantly out of equilib-
rium. After this the system settles down to equilibrium
rather quickly. At late times the evolution is completely
dominated by the QFT, which is now close to its conformal
IR fixed point where PQFT ¼ EQFT=3 (Fig. 4, right). It
is important that this fast approach to hydrodynamics

FIG. 4. Left: The pressure over energy density of the QFT together with the predictions from ideal and viscous hydrodynamics. After a
brief initial hydrodynamization period, the QFT is well described by viscous hydrodynamics until the inflaton sources the QFT out of
equilibrium. Middle: The equivalent figure for the inflaton. Initially it is dominated by the potential having P ¼ −E after which it
oscillates around the minimum. Right: We show the total pressure over energy density, which is initially dominated by the QFT, then by
the inflaton and at late times again by the reheated QFT.

FIG. 3. Left: After an initial stage where the QFT cools down (until about t ¼ 3), the inflaton ϕ slow-rolls down until it starts
oscillating in the potential well. Middle: Initially the dynamics is dominated by the QFT energy until about t ¼ 3. After this the universe
inflates until the inflaton reaches the bottom of the potential at t ¼ 14.3. The inflaton oscillations then reheat the QFT universe. Right:
Initially the Hubble rate decreases due to the dilution of the QFT energy until t ≈ 5. After this, the universe inflates at a constant
exponential rate until about t ¼ 14.3 when the inflaton is at the bottom of the potential.
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(also called “hydrodynamization” [19,37]) is a general
feature for strongly coupled theories that contrasts with
perturbative mechanisms and is hence expected to be a
qualitative feature of reheating in holographic theories.
In Fig. 5 we show in blue the temperature obtained from

the surface gravity of the apparent horizon TAH (explicit
formulas are given in the Supplemental Material [26]). We
verified that the event horizon location is numerically
indistinguishable from the apparent horizon throughout
the evolution, which is expected for a theory in thermal
equilibrium but unlike the vacuum de Sitter case of [38].
During the entire evolution the temperature is dominated by
the QFTenergy E. SinceH2 ∝ E and T4

QFT ∝ E at late times,
the temperature of the cosmological horizon TdS ¼ H=2π ∝
T2
QFT is negligible ifTQFT is small. At early times we notice a

significant difference between the apparent horizon temper-
ature and the temperature obtained from theQFTequation of
state. This can be fully explained by the fact that the universe
is expanding. Indeed, subtracting TQFT → TQFT −H=2π
accurately describes the complete evolution with the excep-
tion of a small off-equilibrium time window where the
inflaton approaches theminimumof the potential for the first
time. This is consistent with the analytical solution of a
thermal plasma expanding in de Sitter space for a strongly
coupled conformal theory (see, e.g., [39,40]). We verified
that the exact same subtraction describes the evolution in
Fig. 9 of [38] up to the point where TQFT ≈ TdS.
Discussion.—For simplicity, our work is restricted to a

specific model that assumes a holographic potential that
realizes in the dual field theory a renormalization group
flow between UV- and IR-fixed points and leads to the
thermodynamics of a smooth cross over between two
conformally symmetric phases.
Changing the potential would allow one to study QFTs

with different equilibrium properties, like for example
theories with phase transitions and confinement [23,41],

or one may vary the dimension Δ of the scalar operator that
couples to the inflaton. Choosing Δ < 3, for example,
makes the linear coupling to the inflaton relevant, as ϕ has a
weak-coupling dimension near 1.
It would also be interesting to generalize the field content

of our construction, for example by adding the dynamics of
a gauge field in the bulk theory, which would allow one to
model the dynamics of conserved charges [42] and gauge
fields [43,44] in the boundary theory.
One may also change the functionUðϕÞ that controls the

coupling of the inflaton to the scalar QFT operator.
Nonlinear options for this function may affect the evolution
nontrivially, like, for example, a quadratic U affects the
effective mass of the inflaton and may stop inflation if it
becomes large enough.
The holographic reheating scenario has several relevant

scales. There is the initial energy density in the QFT, there
is the initial vacuum energy and the time it takes to roll
down [both largely determined by our choice of inflaton
potential in Eq. (4)], and finally our QFT is nonconformal
due to the bulk potential [Eq. (6)] and its coupling to the
inflaton U. One important aspect to consider regarding
these scales is that the reheating temperature is largely
unconstrained by cosmological observations, as long as it is
at a sufficiently high temperature. As long as the universe
then exits inflating and reheats into a radiation dominated
universe at a sufficiently high temperature the actual scales
present are not essential.
The most exciting avenue will be to make our model into

a realistic inflationary scenario for our own Universe that
satisfies all the constraints known from cosmology. For this
several steps are required, including a realistic coupling of
the QFT to fields of the standard model.
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