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Many-body localized (MBL) systems fail to reach thermal equilibrium under their own dynamics,
even though they are interacting, nonintegrable, and in an extensively excited state. One instability
toward thermalization of MBL systems is the so-called “avalanche,” where a locally thermalizing rare
region is able to spread thermalization through the full system. The spreading of the avalanche may be
modeled and numerically studied in finite one-dimensional MBL systems by weakly coupling an
infinite-temperature bath to one end of the system. We find that the avalanche spreads primarily
via strong many-body resonances between rare near-resonant eigenstates of the closed system. Thus
we find and explore a detailed connection between many-body resonances and avalanches in MBL
systems.
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Introduction.—Many-body localized (MBL) systems are
a class of isolated many-body quantum systems that fail to
thermalize due to their own unitary dynamics, even though
they are interacting, nonintegrable, and extensively excited
[1–7]. This happens for one-dimensional systems with
short-range interactions in the presence of strong enough
quenched randomness, which yields a thermal-to-MBL
phase transition of the dynamics. In the MBL phase, there
are an extensive number of emergent localized conserved
operators [8–11].
One instability of the MBL phase that is believed to play

a central role in the asymptotic, long-time, infinite-system
MBL phase transition is the “avalanche” [12–15]. Rare
locally thermalizing regions necessarily exist due to the
randomness. Starting from such a rare region, this “thermal
bubble” spreads through the adjacent typical MBL regions
until the relaxation rate of the adjacent spins becomes
smaller than the many-body level spacing of the thermal
bubble, in which case the avalanche halts. If the strength of
the randomness is insufficient, the relaxation rate remains
larger than the level spacing and the avalanche does not
stop: the full system then slowly thermalizes and is no
longer in the MBL phase (although it is in a prethermal-
MBL regime [16,17]).
The avalanche has been numerically simulated in small

systems [16,18–22] and experimentally probed [23].
Recent work shows that the instability of MBL to ava-
lanches occurs at much stronger randomness than had been
previously thought [16,21]. This leaves a large intermediate
prethermal-MBL regime in the phase diagram between the
onset of MBL-like behavior in small samples (or corre-
spondingly short times) and the asymptotic MBL phase
transition. Clear numerical evidence has been obtained for
many-body resonances being an important part of the

physics in the near-thermal part of this regime
[16,17,24–30], while no such evidence for the expected
thermalizing rare regions has been found yet. In the part of
this intermediate prethermal regime that is farther from the
thermal regime, it remains unclear what the primary
mechanism that leads to thermalization is for samples
larger than those that can be diagonalized.
In this Letter, we explore how an avalanche spreads

through typical MBL regions for systems that are near the
avalanche instability. In particular, we uncover explicit
connections between many-body resonances and ava-
lanches. We do not simulate the rare region that initiates
the avalanche. Instead, we assume a large avalanche is
spreading, and that we may model that as an infinite-
temperature bath (see Fig. 1) weakly coupled to one end of
our MBL spin chain [16,21] (similar settings were also
considered for studying transport [31–34]). We find that
particular many-body “near-resonances” of the closed
system play a key role in facilitating the avalanche.
These near-resonances are the dominant process by which
the bath at one end of the chain thermalizes the other end of
the chain and thus propagates the avalanche.
Model.—Our model consists of a chain of L spin-1=2

degrees of freedom. The dynamics of the closed system is
given by the random-circuit Floquet MBL model of
Ref. [16], which has unitary Floquet operator ÛF. The
disorder strength in this model is given by the parameter α,
with localization occurring at large α [see the Supplemental
Material (SM) [35] for model details]. To investigate
avalanche spreading, we weakly connect an infinite-tem-
perature Markovian bath to spin L at the right end of the
system [16,21]. The quantum state of this open system is
the density matrix ρ̂ðtÞ.
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In our open-system Floquet model, the bath is repre-
sented by the superoperator Sbath that acts once each time
period:

Sbath½ρ̂� ¼
ρ̂

1þ 3γ
þ γ

1þ 3γ

X3

j¼1

Êjρ̂Ê
†
j ; ð1Þ

where ðÊ1; Ê2; Ê3Þ ¼ ðX̂L; ŶL; ẐLÞ are the jump operators
acting on the last spin at site L. We will take the weak-
coupling limit γ → 0, representing the exponentially weak
coupling of spin L to the distant thermal rare region.
The open-system Floquet superoperator Speriod that takes
our system through one time period is Speriod½ρ̂ðtÞ� ¼
Sbath½ÛFρ̂ðtÞÛ†

F�. The time evolution of the system’s state
is given by

ρ̂ðtÞ ¼ Î=2L þ p1e−r1tτ̂1 þ
X

k≥2
pke−rktτ̂k; ð2Þ

where e−rk is the kth largest eigenvalue of Speriod with
eigenoperator τ̂k. Note that the largest (0th) eigenvalue is 1
and is nondegenerate when γ > 0, with eigenoperator
proportional to the identity, which is the steady state of
this system. The mode with the slowest relaxation for γ > 0
is τ̂S ≔ τ̂1, which relaxes with rate rS ≔ Reðr1Þ. The
relaxation rate rS is proportional to γ, and we work to
first order in γ [16,21].
Relaxation of the slowest mode.—In the weak-coupling

limit, one can obtain τ̂S as a superposition of the diagonal
terms jnihnj, where jni are the eigenstates of the closed
system such that ÛFjni ¼ eiθn jni. When γ ¼ 0, then
jmihnj are eigenoperators of Speriod with eigenvalues
eiðθm−θnÞ, so all diagonal terms jnihnj are degenerate, with
rk ¼ 0. Therefore, in the γ ≪ 1 limit, one can obtain τ̂S in
degenerate perturbation theory by diagonalizing the (super)
operator S½ρ̂� ≔ 1

3

P
3
j¼1 Êjρ̂Ê

†
j in this degenerate subspace

[21], where the matrix elements are

Smn ¼ hmjS½jnihnj�jmi ¼ 1

3

X3

j¼1

jhmjÊjjnij2: ð3Þ

Note that this is a symmetric stochastic matrix with real
eigenvalues. In particular, τ̂S ¼

P
n cnjnihnj where c⃗ is the

eigenvector of S with the smallest spectral gap Γ from the
steady state [

P
m Snmcm ¼ ð1 − ΓÞcn]. The relaxation rate

is rS ¼ 3γΓ. We normalize τ̂S so Trfτ̂2Sg ¼ P
n jcnj2 ¼ 2L.

Naively, the slowest mode is the local integral of motion
(LIOM) that is farthest from the bath. More precisely τ̂S is a
traceless superposition of projectors on to the eigenstates of
the closed system. Among such operators, it is the one with
the smallest weight of Pauli strings with nonidentity at
site L [35]. It is a LIOM that is indeed localized far from the
bath, but it is different in detail from the l bits and LIOMs
of Refs. [8–10,36].
The latest time dynamics are determined by τ̂S, with

ρ̂ðtÞ ≃ Î=2L þ pSe−rStτ̂S for any initial conditions that
contain τ̂S. This assumes a nonzero gap between ðr1=γÞ
and ðr2=γÞ, which is the case for all samples examined. We
can view the slow relaxation of τ̂S in terms of probability
currents that flow between the eigenstates of the isolated
system, leading to the final ρ̂ ¼ Î=2L equilibrium where all
eigenstates have equal weight. Specifically, we may quan-
tify the contribution Dmn of the pair of eigenstates m, n to
the relaxation of τ̂S as

Dmn ≔ Smnðcm − cnÞ2 ≥ 0: ð4Þ

One can show [35] that the relaxation rate of τ̂S is given by
the sum of the contributions from all pairs of eigenstates of
the closed system:

X

m<n

Dmn ¼ ΓTrfτ̂2Sg ¼ 2LΓ: ð5Þ

We find the pair of eigenstates jμi, jνi that gives the
strongest contribution to the relaxation of τ̂S by finding
the pair with the largest Dmn. We quantify the fraction of
the full relaxation that is due to this pair by the ratio
R≡Dμν=ð2LΓÞ. The distribution of R over disorder reali-
zations and for different system sizes is shown in Fig. 2,
both for the thermal regime and for the MBL regime near

(a) (b)

Markovian 
(T= )

Slowest mode ( )
Near-resonance

Dominant decay

B

A

B

A

Thermal bubble d1 2 . . . L

d 1 Large avalanche
. . .

. . .1 2 L

FIG. 1. (a) The avalanche model. We model the large avalanche (seeded by a bare thermal rare region) spreading, but still far away
(d ≫ 1) by connecting the Markovian infinite-temperature bath in the weak-coupling limit with the one-dimensional MBL system of
length L spins. Specifically, we analyze the decay of the slowest mode (τ̂S), which is localized near the end of the system farthest from
the bath; τ̂S is a “localized integral of motion” in the MBL phase. (b) Schematic decay of τ̂S. A large fraction of the probability current in
the decay of τ̂S passes through four eigenstates associated with a rare near-resonance.
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the avalanche instability. In the thermal regime, R decreases
exponentially with increasing L, indicating that many pairs
of eigenstates are contributing similar amounts to the
relaxation of the slowest mode, which is as should be
expected for this thermal regime.
In the MBL regime, we find that this pair of eigenstates

contributes an order-1 fraction that does not decrease
substantially with increasing L. This is consistent with
previous works [16,17,37,38] that found extremely broad
distributions for the matrix elements of local operators
among MBL eigenstates. On looking at the relaxation more
thoroughly, we find that in this MBL regime the strongest
contribution to the relaxation actually involves a set of four
eigenstates, at least two of which are involved in a many-
body near-resonance, as we will now describe in more
detail.
Near-resonant eigenstate set.—Deep in the MBL

regime, we typically find that the strongest contributions
to the relaxation of τ̂S come from a set of four eigenstates,
which include a near-resonant pair jAi, jBi (we explain
what “near-resonant” means below). The other two eigen-
states involved are obtained by “flipping” the l bit τ̂L
adjacent to the bath:

jA0i ¼ τ̂xLjAi; jB0i ¼ τ̂xLjBi: ð6Þ
In some cases, jA0i and jB0i are also near-resonant, as we
discuss in the SM [35] with details. The polarization cA ¼
hAjτ̂SjAi of the slow mode differs substantially between the
“A” eigenstates (jAi and jA0i) and the “B” eigenstates,
while it is essentially unchanged by flipping τ̂L, so cA ≅ cA0

and cB ≅ cB0 . Thus, it is the transitions between fA; A0g
eigenstates and fB;B0g eigenstates that relax τ̂S. If we
“demix” [16] the near-resonance to make a more localized
(less entangled, more polarized) pair of orthonormal states
jai, jbi, we obtain

jAi ≅ jai − ϵjbi; jBi ≅ jbi þ ϵjai; ð7Þ

where jai and jbi differ by spin flips at a nonzero fraction
of all sites, including the sites that are most polarized in τ̂S,
so this is a long-range many-body resonance, in that sense,
and it includes a “flip” of τ̂S. The spin that is flipped
between jai and jbi that is closest to the bath is at site x. For
the largest L that we can access, the most probable location
of x is near x=L ¼ 0.8 [35].
In the regime near the estimated avalanche instability, the

“mixing” ϵ in the near-resonance is typically exponentially
small in L, although it is exponentially larger than the
mixing between other typical pairs of eigenstates that differ
over a similar distance range. This is why we say “near-
resonance”: the mixing is relatively strong, partly due to the
two eigenstates being near degeneracy in the spectrum of
ÛF, but it is not fully resonant, since ϵ ≪ 1.
In many samples, fA0; B0g is not near-resonant and

these states are well-approximated by jA0ðB0Þi≅ X̂LjaðbÞi.
As a consequence of the near-resonance between fA;Bg,
i.e., the relatively large ϵ compared to other pairs
of states, there are anomalously large matrix elements
jhAðBÞjÊ1;2jB0ðA0Þij2 ≅ ϵ2 of the two jump operators
Ê1ð2Þ ¼ X̂LðŶLÞ. These drive two particularly large contri-
butions, DAB0 and DBA0 (and their transposes), to the total
relaxation rate of τ̂S with SAB0 ≅ SBA0 ≅ 2ϵ2=3.
In addition, when the near-resonance involves flipping

the polarization of site L next to the bath (so x ¼ L), there
is another anomalously large matrix element. This time it is
the matrix element jhAjẐLjBij2 ≅ 4ϵ2 of the jump operator
Ê3 ¼ ẐL between the two near-resonant eigenstates them-
selves. This results in SAB ≅ 4ϵ2=3 and DAB ≅ 2DAB0ðBA0Þ
(and its transpose).
Thus, there are two cases forDμν, the largest contribution

to Eq. (5), corresponding to whether or not the resonance
involves flipping the spin nearest to the bath. The bath can
drive relaxation of the slowest mode through a resonance
indirectly (with X and Y jump operators), i.e., the pairs of
eigenstates involved are not the near-resonant pair, and
sometimes directly (with Z jump operator). We depict the
two cases in Figs. 3(a) and 3(b) and call them the “XY” and
“Z” cases. Our claim is that the relaxation of the slowest
mode, and thus the avalanche, proceeds via these dominant
processes involving four eigenstates that include a particu-
larly strong near-resonance, as explained in this section.
This structure implies that the largest contribution Dμν

comes from either the Z jump operator or the X and Y jump
operators of the bath, depending on which of the above
cases is relevant. In the Z case, which is x ¼ L, the largest
contribution (A-B pair) is accompanied by two XY con-
tributions of half the magnitude (A-B0 and B-A0 pairs). In
the XY case, which is x < L, there are two roughly equal
largest contributions (A-B0 and B-A0). In both cases, the
largest contribution Dμν doesn’t exceed half of the total
relaxation. The phenomenology of the near-resonant eigen-
state set explained in this section is corroborated by
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FIG. 2. Probability distribution over samples of the ratio R ¼
Dμν=ð2LΓÞ (see text). In the thermal regime (dark red to yellow),
the ratio exponentially decays with increasing L. In comparison,
R barely drifts with L for the MBL case (blue). We observe that R
never exceeds the value 0.5 (gray dashed line), which is explained
with the minimal model in the main text. In this figure, we used
α ¼ 30 and α ¼ 1 for MBL and thermal regimes, respectively.

PHYSICAL REVIEW LETTERS 130, 250405 (2023)

250405-3



numerical observations in the next section. An extension of
this simple description is discussed in the SM [35].
Numerical observations.—We numerically determine the

eigenstates of ÛF, the slowest mode of S, and the con-
tributions Dmn to its relaxation rate associated with prob-
ability currents between eigenstates. We examine the pairs
of eigenstates that contribute the most (jμi and jνi), identify
the four important eigenstates discussed earlier, and quan-
tify how they are related to each other to verify that the
near-resonant set of eigenstates does indeed have that
structure.
Recall that in our model, the polarization has a preferred

spin direction: Z. Deep in the MBL regime, the local l-bit
operators typically are very close to the local single-spin
Pauli operators. Therefore, we identify jγ0i≡ τxLjγi for γ ∈
fμ; νg simply by finding the eigenstate with largest
jhγjX̂Ljnij among all eigenstates jni.
To determine which jump operator from the bath

dominantly couples jμi and jνi we define a tool
Zjumpðm; nÞ ≔ jhmjẐLjnij2=

P
3
j¼1 jhmjÊjjnij2. Note that

Ê3 ¼ ẐL. We find that Zjumpðμ; νÞ is extremely close to
0 or 1 in any one sample, as shown in the inset of Figs. 4(a)
and 4(b). This separation is captured by the minimal model
since Zjumpðμ; νÞ ≅ 0 (or 1) is associated to the XY (or Z)
case where the pair fμ; νg is not (or is) the near-resonant
pair fA;Bg. We therefore identify the near-resonant pair for
each sample based on the minimal model as follows. In the
case that jμi and jνi—the pair with the largest Dmn—is
“connected” with Z (Zjump ≅ 1), these states are identified
as jAi and jBi. Otherwise, if they are connected with X
and Y instead (Zjump ≅ 0), we associate fjAi; jBiÞg to
fjμ0i; jνig or fjμi; jν0ig, whichever pair has the smaller
quasienergy splitting.
We first checked that cγ ≅ cγ0 indeed holds for

γ ∈ fA;Bg. This relation is satisfied because Sγ0γ is of
order 1, so the slow mode τ̂S contains negligible population

difference between γ and γ0. Also, we checked that jcμ − cνj
is of order 1, which should be true as we picked the pair
with the largest Dμν ¼ Sμνðcμ − cνÞ2. Therefore, the matrix
elements Smn [Eq. (3)] are a good proxy for Dmn [Eq. (4)]
within this set of important eigenstates. We compare these
matrix elements to confirm the results are consistent with
the minimal model described in Figs. 3(a) and 3(b). As we
show in Fig. 4(a), SAB0 ≅ SBA0 holds (and their transposes),
and XY jump operators couple them (inset). Furthermore,
when x ¼ L, we additionally observe SAB ≅ 2SAB0 ≅ 2SBA0

as presented in Fig. 4(b) and fA;Bg is coupled with ẐL
(inset). We note that both cases satisfy R < 1=2.
We finally tested our picture using the “demixing”

procedure of Ref. [16], calculating the most localized basis
of a subspace spanned by two eigenstates, and the corre-
sponding basis rotation. The basis rotation corresponds to a
location on a Bloch sphere; the polar angle, called the
“demixing angle,” is a measure of the resonance strength
between the two eigenstates [ϵ in Eq. (7)]. As shown in
Figs. 4(c) and 4(d), the demixing angle between the
eigenstates we identified as fA;Bg is by far the largest
among other pairs in our eigenstate set, consistent with the

(a) XY case (b) Z case

Z

A

B B

A

XY

A

B B

A

(2/3)
XY

(2/3)(4/3)

FIG. 3. Two distinct cases for the set of four most important
eigenstates of ÛF for the avalanche to propagate. The near-
resonant pair fA; Bg are coupled with X̂L and ŶL jump operators
to B0 and A0, respectively, i.e., they have anomalously large
matrix elements. In the Z case (b), the near-resonant pair involves
a spin flip next to the bath (site L), and the bath can additionally
couple the resonant pair with the ẐL jump operator with matrix
element SAB twice as large as SA0B and SAB0 . The two states with
the largest Dμν are colored red. In the XY case (a), this pair is not
the near-resonant pair, and fμ; νg ¼ fA; B0g, while they are the
same in the Z case, so fμ; νg ¼ fA; Bg. In some samples,
fA0; B0g are also near-resonant (not shown).

(a) (b)

(c) (d)

0 0.5 10 0.5 1

0 1 0 1

XY and Z

AB’ and A’B AB

Only Z

XY case

System size (L) System size (L)

Z case

jump jump

FIG. 4. Consistency with the near-resonant eigenstate set. All
data here are for α ¼ 30. (a) The near-resonance between fA; Bg
causes the AB0 and A0B matrix elements to be roughly equal, as
described in the minimal model. The distribution of SAB0=SA0B is
indeed peaked near 1. The inset shows Zjump of AB0 and A0B are
peaked at zero (coupled with X̂L and ŶL). (b) When the near-
resonant pair involves the spin flip of the last site (Z case), the
bath can directly couple fA; Bg. The distribution of the shown
ratio of matrix elements demonstrates that SAB ≃ 2SAB0 ≃ 2SA0B.
The inset shows Zjump of AB is peaked at 1, implying fA; Bg are
coupled with ẐL. The bottom two panels show the demixing
angles for (c) the XY case and (d) the Z case. The points
correspond to AB (red), A0B (gray ×), AB0 (gray dot), and A0B0
(blue). The near-resonant pair identified as in the main text (AB)
has the largest demixing angles for all cases. The calculations in
(a),(b) are done with L ¼ 11 and 104 disorder realizations.
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idea that that pair is indeed a near-resonance that enables
the bath to relax the slowest mode, i.e., the avalanche to
propagate.
Conclusion.—Our Letter bridges the two key ingredients

that destabilize many-body localization—many-body res-
onances and the avalanche instability—demonstrating that
avalanches spread primarily by strong rare near-resonances.
Assuming the avalanche has proceeded for a sufficiently
large distance, we model the putative thermal bubble as an
infinite Markovian bath with infinite temperature. In this
model, we discovered the existence of dominant processes
in the avalanche, involving only a few pairs of eigenstates
of the closed system, including a strong near-resonance.
The avalanche proceeds through these rare eigenstate pairs,
leveraging many-body near-resonances to relax the spins
some distance away along the chain. The inner structure of
the dominant set of eigenstates is dictated by whether or not
the associated resonance involves flipping a spin at the site
next to the bath. This sets what jump operators effectively
use the resonance present in the closed system to spread the
avalanche. We presented a minimal model involving two
near-resonant eigenstates and two additional auxiliary
states to explain how this works in detail, and verified
our picture with numerical observations. Our Letter
advances the understanding of the avalanche instability
of many-body localization and provides a detailed con-
nection to rare many-body resonances present in MBL
systems. Some further discussion of our conclusions and
model assumptions is provided in the SM [35].
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[23] Julian Léonard, Sooshin Kim, Matthew Rispoli, Alexander
Lukin, Robert Schittko, Joyce Kwan, Eugene Demler, Dries
Sels, and Markus Greiner, Probing the onset of quantum

PHYSICAL REVIEW LETTERS 130, 250405 (2023)

250405-5

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.91.085425
https://doi.org/10.1103/PhysRevB.91.085425
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevLett.121.140601
https://arXiv.org/abs/arxiv:1711.09880
https://doi.org/10.1103/PhysRevB.102.125134
https://doi.org/10.1103/PhysRevB.102.125134
https://doi.org/10.1103/PhysRevB.105.174205
https://arXiv.org/abs/arxiv:2207.05761
https://doi.org/10.1103/PhysRevLett.119.150602
https://doi.org/10.1103/PhysRevB.99.195145
https://doi.org/10.1103/PhysRevB.99.195145
https://doi.org/10.1103/PhysRevResearch.2.033262
https://doi.org/10.1103/PhysRevB.106.L020202
https://doi.org/10.1103/PhysRevB.107.014203


avalanches in a many-body localized system, Nat. Phys. 19,
481 (2023).

[24] Sarang Gopalakrishnan, Markus Müller, Vedika Khemani,
Michael Knap, Eugene Demler, and David A. Huse, Low-
frequency conductivity in many-body localized systems,
Phys. Rev. B 92, 104202 (2015).

[25] Philip J D Crowley and Anushya Chandran, A constructive
theory of the numerically accessible many-body localized to
thermal crossover, SciPost Phys. 12, 201 (2022).

[26] Vedika Khemani, S. P. Lim, D. N. Sheng, and David A.
Huse, Critical Properties of the Many-Body Localization
Transition, Phys. Rev. X 7, 021013 (2017).

[27] Vedika Khemani, D. N. Sheng, and David A. Huse, Two
Universality Classes for the Many-Body Localization Tran-
sition, Phys. Rev. Lett. 119, 075702 (2017).

[28] Scott D. Geraedts, Rahul Nandkishore, and Nicolas
Regnault, Many-body localization and thermalization: In-
sights from the entanglement spectrum, Phys. Rev. B 93,
174202 (2016).

[29] Benjamin Villalonga and Bryan K. Clark, Eigenstates
hybridize on all length scales at the many-body localization
transition, arxiv:2005.13558.

[30] S. J. Garratt, Sthitadhi Roy, and J. T. Chalker, Local
resonances and parametric level dynamics in the
many-body localized phase, Phys. Rev. B 104, 184203
(2021).

[31] Marko Žnidarič, Antonello Scardicchio, and Vipin Kerala
Varma, Diffusive and Subdiffusive Spin Transport in the
Ergodic Phase of a Many-Body Localizable System, Phys.
Rev. Lett. 117, 040601 (2016).

[32] J. J. Mendoza-Arenas, M. Žnidarič, V. K. Varma, J. Goold,
S. R. Clark, and A. Scardicchio, Asymmetry in energy
versus spin transport in certain interacting disordered
systems, Phys. Rev. B 99, 094435 (2019).

[33] M. Schulz, S. R. Taylor, A. Scardicchio, and M. Žnidarič,
Phenomenology of anomalous transport in disordered one-
dimensional systems, J. Stat. Mech. (2020) 023107.

[34] Mark H. Fischer, Mykola Maksymenko, and Ehud Altman,
Dynamics of a Many-Body-Localized System Coupled to a
Bath, Phys. Rev. Lett. 116, 160401 (2016).

[35] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.250405 for additio-
nal details and discussions, which includes Refs. [8–10,16].

[36] David Pekker, Bryan K. Clark, Vadim Oganesyan, and Gil
Refael, Fixed Points of Wegner-Wilson Flows and Many-
Body Localization, Phys. Rev. Lett. 119, 075701 (2017).

[37] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin, Criterion
for Many-Body Localization-Delocalization Phase Transi-
tion, Phys. Rev. X 5, 041047 (2015).

[38] Samuel J. Garratt and Sthitadhi Roy, Resonant energy scales
and local observables in the many-body localized phase,
Phys. Rev. B 106, 054309 (2022).

PHYSICAL REVIEW LETTERS 130, 250405 (2023)

250405-6

https://doi.org/10.1038/s41567-022-01887-3
https://doi.org/10.1038/s41567-022-01887-3
https://doi.org/10.1103/PhysRevB.92.104202
https://doi.org/10.21468/SciPostPhys.12.6.201
https://doi.org/10.1103/PhysRevX.7.021013
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevB.93.174202
https://doi.org/10.1103/PhysRevB.93.174202
https://arXiv.org/abs/arxiv:2005.13558
https://doi.org/10.1103/PhysRevB.104.184203
https://doi.org/10.1103/PhysRevB.104.184203
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevB.99.094435
https://doi.org/10.1088/1742-5468/ab6de0
https://doi.org/10.1103/PhysRevLett.116.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250405
https://doi.org/10.1103/PhysRevLett.119.075701
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/PhysRevB.106.054309

