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Above-barrier quantum scattering with truncated real potentials VðxÞ ¼ −jxjp provides an experimen-
tally accessible platform that exhibits spontaneous parity-time symmetry breaking as p is varied. The
unbroken phase has reflectionless states that correspond to bound states in the continuum of the
nontruncated potentials at arbitrarily high discrete real energies. In the fully broken phase there are no
bound states. There is a mixed phase in which exceptional points occur at specific energies and values of p.
These effects should be observable in cold-atom scattering experiments.
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Two topics of wide and interdisciplinary interest are
quantum and classical wave equations with complex
potentials (or susceptibilities) that are symmetric under
the product of parity and time reversal (PT ) and wave
equations with real potentials (or susceptibilities) that
support bound states in the continuum (BICs). In the
former case one has the interesting feature of real spectra
up to a symmetry-breaking transition despite the complex
nature of the potential, and in the latter one has the feature
of nondecaying localized states despite symmetry-allowed
coupling to the scattering continuum. A limitation in
realizing either PT systems or BICs exactly in quantum
experiments is the lack of fundamental complex potentials
in nature in the former case and the necessity of infinite-
range forces or substrates in the latter. Building on recent
work on reflectionless scattering, we show here that both of
these limitations can be circumvented by studying above-
barrier reflection of quantum particles from smooth,
“upside-down,” parity-symmetric, real potentials. First,
the reflectionless boundary conditions make the problem
non-Hermitian but PT symmetric, allowing a PT phase
transition in the spectrum as the potential is varied. Second,
each reflectionless state approximates a BIC in the scatter-
ing region, allowing one to straightforwardly probe the
energies of the BICs and their wave functions in scattering
experiments. We show that experiments testing both effects
are feasible using atomic condensates and current atomic-
trap technology.
For one-dimensional potentials, PT symmetry refers to

Schrödinger equations and boundary conditions that map
into themselves under combined x → −x and complex
conjugation. This condition is less restrictive than the
Hermiticity condition imposed in conventional quantum

mechanics and allows for complex potentials with anti-
symmetric imaginary parts. Essentially all research on this
topic has focused on Schrödinger equations with complex
potentials or classical wave equations with complex sus-
ceptibility. Here, as noted, we treat physically realizable
Schrödinger equations with potentials that have both P and
T symmetry but, due to the reflectionless boundary
conditions, the differential operator is non-Hermitian with
only PT symmetry.
There have been relatively few experimental demonstra-

tions of phenomena related to PT symmetry in quantum
mechanics because quantum potentials are real in the
absence of reservoir coupling. Such experiments have thus
been restricted to open systems coupled to reservoirs that
are treated statistically and introduce phenomenological
imaginary terms into the Schrödinger equation [1–6] or
have relied on postselection of data that can mimic the
effect of loss [7–9]. In contrast, there has been an intensive
experimental study of PT symmetry and its breaking in
systems described by classical wave equations, where
imaginary terms representing loss and gain are also
introduced into the equations to describe coupling to
reservoirs, but these tend to be more controllable and
relatively easy to fabricate and measure. Examples span
classical electromagnetism [10–15], acoustics [16,17],
electronics [18–21], and mechanical systems [22]. In
several cases these classical PT -symmetric systems have
shown potential utility for applications in laser technology
[23,24], sensing [25,26], and wireless power transfer
[27,28].
Our work builds off the work in Refs. [29,30], which

studied PT -symmetry phenomena in a class of nonrela-
tivistic quantum systems with complex potentials of the
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form VðxÞ ¼ x2ðixÞϵ and VðxÞ ¼ x4ðixÞϵ (ϵ real), which
satisfy the PT -symmetry condition. Importantly, for vari-
ous choices of even integers ϵ these potentials lead to
purely real upside-down PT -symmetric potentials of the
form VðxÞ ¼ −x2;−x4;−x6;−x8;…. It was shown that for
these real potentials with even integer power p ≥ 4 there
exist discrete weakly bound states for real energies Ei > 0,
but for p ¼ 2 there are no real-energy solutions, nonreal-
energy solutions. It was realized that real-energy solutions
correspond to reflectionless states [31], although due to the
unbounded-below nature of the potentials, the particles are
not approximately freely propagating at �∞, which inva-
lidates the assumptions of standard scattering theory. The
current work proposes a means to probe this quantum
physics in an experimentally realizable setup.
We show that the reflectionless states of a continuous

class of truncated upside-down real potentials, distinct
from those considered previously, show all the character-
istics of PT -symmetric systems: specifically, the presence
of unbroken, mixed, and broken phases and spontaneous
symmetry-breaking transitions at exceptional points (EPs),
despite the absence of imaginary terms in the potential. We
detect the signature of the weakly bound BICs above such
potentials with energies given precisely by those predicted
for the unbounded-below integer cases considered in
Ref. [32]. This constitutes the first theoretical prediction
of such PT -symmetry phenomena in an experimentally
realizable quantum system described fully by Schrödinger’s
equation.
We consider potentials of the form VðxÞ ¼ −jxjp for

p ∈ R, truncated to constant energy outside of the domain
−L ≤ x ≤ L [see Fig. 1(a)]. [We consider energy truncation
in Sec. IV of the Supplemental Material (SM) and obtain
similar results [33].] Unlike the potentials studied in
Refs. [29,30], these potentials are real and parity symmetric
for all p but nonanalytic at the origin (except at even integer
p values). For convenience we smooth the potential to
make it continuously differentiable at the truncation point

by introducing a potential Vðx; wÞ, where the real param-
eter w determines the sharpness of the truncation (see
Sec. II A of the Supplemental Material [33]). Motivated by
a different truncation of the unbounded upside-down
potentials used in Ref. [32], we present a qualitatively
different approach that replaces those potentials with real
potentials having odd and noninteger powers p. We also
consider a standard scattering geometry for which the
potential goes smoothly to zero in the asymptotic region.
Their nonanalytic behavior distinguishes this class of real
potentials from the analytic complex potentials studied in
Refs. [29,30], which can be continued in the complex
plane. The potential VðxÞ ¼ −jxjp cannot be continued in
x, although VðxÞ and its eigenvalues are analytic in p.
We first verify that the reflectionless states of these

truncated VðxÞ ¼ −V0jxjp potentials obey PT symmetry.
We introduce V0 here to clarify the choice of units. Since
the potential is real, it is both P and T symmetric, and the
problem superficially appears to be Hermitian; however, we
now investigate the effect of the reflectionless boundary
conditions. The 1D Schrödinger equation is

0 ¼ −
ℏ2

2m
ϕ00ðxÞ þ ½VðxÞ − E�ϕðxÞ;

where m is the mass of the relevant quantum particle.
Measuring E from the top of the barrier, we introduce the
length scale x0 ≡ ðE=V0Þ1=p, where, for values of p for
which the infinite potential has bound states, we choose the
ground-state energy E ¼ E0. Henceforth, x denotes the
position in units of x0 leading to VðxÞ ¼ −E0jxjp; finally,
we take energy units with E0 ¼ 1 to recover VðxÞ ¼ −jxjp.
(In the case of no bound states E can be chosen arbitrarily.)
Assuming that the potential and kinetic energy are of the
same order and hence of order E0, we find that x0 ∼
ðh2=mV0Þ1=ðpþ2Þ, E0∼V0x

p
0 ∼ðh2=mÞðp=ðpþ2ÞÞVð2=ðpþ2ÞÞ

0 .
Now we look for a solution with a right-moving

(a) (b)

FIG. 1. (a) Upside-down potential VðxÞ ¼ −x4 (dashed blue line combined with the curving bold red line) is one of a class of real
potentials VðxÞ ¼ −jxjp for p ∈ R (dashed multicolor lines). Red line shows the truncated potential for p ¼ 4, length L ¼ 2, and
smoothing w ¼ 1000. (b) Reflectionless scattering mode spectra of the truncated −x4 potential are real and converge with increasing L
to the exact weakly-bound-state energies Ei of the nontruncated potential (gray lines, i ¼ 0–4 shown). Inset: scattering wave function for
E ¼ E0 RSM of the truncated VðxÞ ¼ −x4 potential (gray line, Re½ψ �; thick red line, jψ j2) with predicted j1=xj decay.
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wave only, which satisfies the reflectionless boundary
conditions

ϕ0ð−LÞ ∼ ikϕð−LÞ; ϕ0ðLÞ ∼ ikϕðLÞ ðw → 0Þ;

where k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEþ VbÞ=ℏ

p
, where Vb ¼ jVð�LÞj is the

barrier height. These conditions map into left-moving
waves under either P or T separately, but map back into
themselves under the product of P and T . An implication
of the PT symmetry is that any reflectionless solutions
either must have a real energy or must occur in complex-
conjugate pairs. If the former holds, the PT symmetry is
said to be unbroken; if the latter holds, it is broken. If both
types of solutions exist for a given p, the spectrum is
mixed. Solutions with broken PT symmetry do not yield
reflectionless states.
For the infinite-length and depth potentials studied in

Ref. [30], the real solutions are BICs, peaked at the origin
and decaying weakly [ϕðxÞ ∼ 1=x as x → �∞ for the case
p ¼ 4]. The striking finding was that an upside-down,
repulsive potential can nonetheless create bound quantum
states, albeit weakly bound. This contrasts strongly with the
standard exponentially decaying bound states of attractive
real potentials. For the finite potentials (after truncation)
considered here, we have a scattering geometry, and the
reflectionless above-barrier states propagate as plane waves
at infinity and are not square integrable. A recent general
theory of reflectionless scattering modes (RSMs) [42,43]
predicts an infinite set of discrete reflectionless solutions
for generic potentials with PT symmetry that also occur at
real energies or in complex-conjugate pairs. The hypothesis
behind the current work is that the RSMs of these truncated
potentials will exhibit a resonant peak in space near the top
of the barrier with the same spatial profile as the BICs of the
unbounded potentials and at nearly the same energy.
To test this hypothesis, we apply RSM theory to quantum

mechanics. Until now this theory has been applied to
electromagnetic or optical systems [42,43], but the method
is general and can be applied to quantum-scattering systems
in any number of dimensions. We derive a specifically

quantum formalism for the RSM theory in Sec. III of the
SM [33]. An attractive feature of the theory is that it
calculates directly the discrete complex spectrum of
reflectionless energies (referred to as R-zeros). One need
not solve the scattering problem and search for zero
reflection. The R-zero spectrum is similar but distinct from
the more familiar spectrum of complex-energy resonances,
which satisfy purely outgoing boundary conditions.
General RSM theory simplifies for the current case of a

1D (two-channel) geometry, and the reflectionless energies
can be found by a simple modification of the method of
perfectly matched layers (also referred to as complex
scaling [44] or as complex absorbing potentials [45]),
which we use here. Real-energy solutions correspond to
steady-state harmonic scattering and thus imply a zero of
the reflection coefficient at the calculated input energy.
Complex-energy solutions do not give zero reflection under
uniform harmonic excitation but, if the R-zero is isolated
and near the real axis, it will be detectable via a narrow dip
in the reflection below the background, near the real part of
its energy. Hence we can study these R-zero spectra and the
corresponding eigenfunctions for the truncated potentials
and compare their properties to the unbounded potentials
studied previously. We find striking agreement between the
two systems.
As shown in Fig. 1(b) and Sec. IV of the SM [33], the

low-energy RSM energies for p ¼ 4 are real and agree with
the bound-state energies found for the infinite system with
7–8 digits of accuracy for sufficiently large L. Even for the
shortest truncation length L considered, the ground-state
energy is accurately found, and higher eigenenergies
converge to known infinite-system values with increasing
length L. Once the incident energies are known, these
results are easily tested and confirmed by quantum-
scattering calculations, as shown in Fig. 2 and in Secs. I
and V of the SM [33]. Similar convergence is found with
results obtained by energy truncation at jVmaxj (see Sec. IV
of the SM [33]).
Not only are the energies accurately predicted [32], but

also the eigenfunctions in the interaction region perfectly

2 3 4 5 6 7 8
0

5

10

15

p

En
er
gy

Truncated
In nite–length
Asymptote

0 1 2 3 4 5 6 7
10–10
10–8
10–6
10–4
0.01
1

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Energy

|R
2

p=1.2
p=2
p=2.2
p=4
p=6
p=7.8

(a) (b)

FIG. 2. (a) RSM spectrum of the class of truncated VðxÞ ¼ −jxjp potentials, showing that the lower-energy RSMs agree closely with
the known energies of the weakly bound states of the infinite-length potentials for even p (red circles), and (b) reflection coefficient
calculations for the same, showing nonmonotonic behavior for p > 2 and deep dips toward zero (inset).

PHYSICAL REVIEW LETTERS 130, 250404 (2023)

250404-3



mimic the behavior predicted for the infinite system, as
shown in the inset of Fig. 1(b). The eigenfunctions are
symmetric around the origin and exhibit the predicted j1=xj
decay with three-digit accuracy. Thus, the intriguing
weakly bound BICs of the infinite potential are directly
observable in the truncated system. Note the rapid increase
in the spatial oscillation frequency of the eigenfunction as
the particle accelerates toward the asymptotic region, where
the force vanishes.
RSM theory also allows us to search for a PT quantum

phase transition within the class of potentials VðxÞ ¼ −jxjp
as p is varied, a phenomenon suggested by the earlier work
on complex PT potentials cited above [29,30]. In Fig. 2(a)
we plot the low-lying real-energy eigenvalues of this class
of potential as p is varied between 2 ≤ p ≤ 8. The PT
symmetry and analyticity of the eigenvalues implies that as
p is varied, eigenvalues cannot disappear or individually
move into the complex plane, but can meet at certain
parameter values and then, generically, move into the
complex plane as conjugate pairs. These degeneracy points
are the exceptional points, at which eigenvectors also
coalesce, a non-Hermitian phenomenon. We find that for
p ≥ 4 there are only eigenvalues at real energies up to a
high energy, above which the effect of our truncation
becomes visible. This indicates that the behavior found for
the infinite system at the discrete integers p ¼ 4, 6, 8
(infinite number of real-energy bound states) is generic and
continuous in p.
In the interval 2 < p < 4 we see a series of EPs, which

occur at higher p for higher energies; after the EPs, the
eigenvalues separate and become complex-conjugate pairs.
We only plot real energies, but in Sec. VI of the SM we
show the full evolution in the complex plane [33]. For
much of the interval 2 < p < 4 there is only a single real
RSM; above p ≈ 3.44 a finite number of pairs of real
reflectionless energies appear, emerging from the EPs.
This corresponds to a partially broken PT -symmetry
phase, similar but distinct from the behavior of the real
eigenenergies of the complex potentials studied in
Ref. [30]. Finally, for p ≤ 2, there are no real reflectionless
energies (the unpaired ground states are pushed up to
infinity at p ¼ 2). This monotonically decreasing, non-
resonant scattering behavior above the inverted harmonic
potential has been known since the early days of quantum
mechanics [46]. Our results show that the behavior
changes qualitatively for any sharper polynomial barrier,
and it is only the regime p ≤ 2 that has fully broken PT
symmetry.
Quantum-scattering results shown in Fig. 2(b) dramati-

cally confirm the identification of a distinct transition
between the fully broken PT phase (p ≤ 2) and the
partially broken phase (2 < p ≤ 4). Up to p ¼ 2, we see
a slower than exponential, but monotonic, decay of the
reflection coefficient as a function of energy. At p ¼ 2, the
asymptotic decay is exponential, and above it the decay is

nonmonotonic with deep dips at the predicted reflection
zeros (resolved only to a finite depth). However, as
predicted by the RSM spectra in Fig. 2(a), for p ¼ 2.2
there is only one such dip compared to p ≥ 4 where there
are many. Note also that the peak reflection for p ¼ 6, after
the first zero, has a reflection coefficient of ≈ 0.08, which
should be measurable in experiments.
In this mixed regime the potential is still quite smooth

and the above-barrier scattering is weak, making detection
of the EPs challenging. If there is sufficient accuracy in
measuring the reflection ð∼10−3 − 10−4Þ, the approach to
the EP at p ≈ 3.44 can be detected by varying p in the
interval 3.2 > p > 3.8 and observing the merger of the two
reflection dips around p ¼ 3.4 (Fig. 3, inset). A signature
of the EP that is currently too difficult to observe is the
quartic line shape near the zero, predicted by the general
RSM theory [42,47]; this effect is confirmed by our
quantum calculations [see SM, Fig. 9(c) [33]].
To analyze further how the physics changes with the

shape of the potential, we employ an approach to identify
the origin of above-barrier reflection, which we call WKB
force analysis. This method has been used previously to
improve the accuracy of calculations of above-barrier
reflection [48] and other quantum simulations [49]. Here
we use the technique to determine the spatial origin of
above-barrier reflection in these quantum potentials and the
effect of truncation.
The method begins by observing that WKB wave func-

tions, although approximate solutions of the Schrödinger
equation, cannot capture above-barrier reflection in 1D.
Starting with a positive momentum solution at −∞, the
local WKB momentum pðx; EÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m½E − VðxÞ�p
can

never change sign if E > Vmax. In addition, it can be
shown that given a potential VðxÞ, the WKB wave
functions exactly satisfy a Schrödinger equation to which,
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FIG. 3. PT -symmetry transitions at exceptional points in the
RSM spectrum for p≈3.44;EEP¼8.4 and p ≈ 3.94; EEP ¼ 20.2.
Inset shows that the scattering near these EPs indicates coales-
cence of two RSMs as shape of the potential is varied (p ¼ 3.8,
yellow line; p ¼ 3.6, olive line) into a single EP and R-zero
(p ¼ 3.4, teal line; p ¼ 3.2, blue line; p ¼ 3, purple line) at a
reflection coefficient of order ∼10−4.
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in addition to VðxÞ, one adds an energy-dependent potential
correction VWKBðx; EÞ of order ℏ2 of the form

VWKBðx; EÞ ¼ −ℏ2

�
5

32m

�
V 0ðxÞ

E − VðxÞ
�

2

þ V 00ðxÞ
8m½E − VðxÞ�

�
:

If we employ the reflectionless WKB states in the actual
potential VðxÞ to calculate above-barrier reflection using
the Born approximation, the reflection from the potential
VðxÞ at energy E arises solely from the additional scattering
induced by VWKBðx; EÞ. Thus, VWKBðx; EÞ reveals the
spatial location of above-barrier scattering; VWKB is local-
ized in a region around the potential maximum and
vanishes far from the origin as 1=x2, even if VðxÞ extends
to infinity; thus, it can be used to analyze both the
unbounded potentials VðxÞ ¼ −jxjp and their truncated
versions.
First, we calculate VWKBðx; EÞ for upside-down infinite-

length potentials. We study the shape of VWKBðx; E; pÞ as p
varies with E ¼ 1.477 (the ground state for p ¼ 4). As
shown in Fig. 4 and Sec. VII of the SM [33], there is a
qualitative change in VWKB with p, and this change is
insensitive to the value of E. For p ≤ 2, VWKB has a single
peak at the origin, which is divergent due to nonanalytic
behavior at the origin for p < 2. This is because VWKB
depends on V 0 and V 00, at least one of which diverges for
p < 2. At p ¼ 2; VðxÞ is analytic and for small x the peak
of VWKB is an inverted parabola. However, for p > 2, the
peak splits into two peaks, symmetrically displaced from
the origin, creating a small central well in VWKB; this well
becomes deeper as p → 4, where it creates an approx-
imately parabolic “trap.” This is the signature of the
quantum phase transition. For p > 4, the trap gets flatter
at the center, making the scattering more localized at
x ≈�1, while VðxÞ itself tends to a (semi-infinite in
height) square-well potential, which has an infinite set of
reflectionless above-barrier resonances.
In Sec. VII of the SM, we show the same analysis of

VWKBðx; EÞ for the truncated potential; the qualitative

change in the shape in the central region is completely
unchanged; additional spikes are seen away from the
central region due to the truncation, but these spikes
decrease as the truncation length increases [33].
In summary, quantum above-barrier scattering experi-

ments in real “upside-down” potentials bring the physics of
weakly bound BICs and the PT -symmetry-breaking phase
transition within reach of experimental observation. An
exciting candidate for realizing such experiments is the
scattering of condensates off of laser-engineered optical
potentials. Similar experiments have already been reported
[50,51], where a potential barrier of order 100 nK in height
and several micrometers in length has been probed by a
condensate of alkali atoms with energy width 1 nK [52]
generated by techniques such as rapidly scanned lasers
[53], digital micromirror devices [54,55], intensity masks
[56], and holographic methods [57–60]. The qualitative
features of the reflection spectra we predict are shown in
Sec. I of the SM to be robust to smooth changes in the
potential [33]; hence these phenomena will be relatively
insensitive to experimental nonidealities in creating the
potential as long as the leading term near the maximum is
approximately correct. A particularly robust feature is the
presence of a ground-state BIC or RSM with E0 only
weakly varying for p ≥ 4. In Sec. I of the SM [33] we
discuss this further and show that as p is varied between
p ¼ 4, 6, 7.8 the secondary peak in the reflection after the
RSM varies from ∼2% to 17%, an effect that should be
observable in experiments. Given the ubiquity of quantum
reflection in near-threshold quantum systems, the occur-
rence of such phenomena may not be limited to the
VðxÞ ¼ −jxjp potentials, but instead may be present in a
wide range of quantum systems and could be relevant to
such technologies as quantum sensing.
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