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We analyze the effect of decoherence, modeled by local quantum channels, on quantum critical states
and we find universal properties of the resulting mixed state’s entanglement, both between system and
environment and within the system. Renyi entropies exhibit volume law scaling with a subleading constant
governed by a “g function” in conformal field theory, allowing us to define a notion of renormalization
group (RG) flow (or “phase transitions”) between quantum channels. We also find that the entropy of a
subsystem in the decohered state has a subleading logarithmic scaling with subsystem size, and we relate it
to correlation functions of boundary condition changing operators in the conformal field theory. Finally, we
find that the subsystem entanglement negativity, a measure of quantum correlations within mixed states,
can exhibit log scaling or area law based on the RG flow. When the channel corresponds to a marginal
perturbation, the coefficient of the log scaling can change continuously with decoherence strength. We
illustrate all these possibilities for the critical ground state of the transverse-field Ising model, in which we
identify four RG fixed points of dephasing channels and verify the RG flow numerically. Our results are
relevant to quantum critical states realized on noisy quantum simulators, in which our predicted
entanglement scaling can be probed via shadow tomography methods.
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Introduction.—Quantum devices have advanced signifi-
cantly to the point of challenging classical computers in
sampling and simulation tasks [1–5]. In the context of
quantum many-body physics, they are promising exper-
imental platforms for realizing long-range entangled quan-
tum phases of matter including topological order [6,7] and
quantum critical states [8]. Furthermore, their controllabil-
ity at the single-qubit level enables the exploration of
quantum dynamics beyond simple time evolution with a
Hamiltonian, and one prominent example is dynamics
involving both unitary evolution and projective measure-
ments [9–15]. Nevertheless, quantum devices are noisy and
any states prepared are subject to decoherence. One
important question is which properties of quantum matter
survive in a noisy environment, and how does one under-
stand any residual order in the mixed state? Recently,
substantial progress has been made in understanding mixed
state versions of gapped quantum systems including
symmetry protected topological phases and topological
order [16–23].
In this work, we study quantum critical states under

decoherence, modeled by local quantum channels. A point
of inspiration is prior work [24–27] which found that
measurements (with outcomes recorded) can have a sig-
nificant effect on quantum critical states, in some cases
boosting long-range correlation. However, verifying such
effects typically requires postselecting on monitored pure
state trajectories. In contrast, quantum channels can be

viewed as an environmental measurement in which the
outcomes are averaged over, and we are interested in
properties of the resulting mixed state, thus avoiding the
need for postselection.
Naively one might expect that local quantum channels

cannot induce new universality classes since they can be
represented as finite depth unitaries acting on an enlarged
Hilbert space, and such finite depth unitaries cannot change
the nature of long-distance correlations. While this is true
for local, linear observables of the state, nonlinear quan-
tities like entanglement measures can be significantly
affected by local channels.
Indeed, a key finding of our work is that for entangle-

ment measures like Renyi entropies and entanglement
negativity, local quantum channels acting on quantum
critical states can drive phase transitions or, more techni-
cally, renormalization group (RG) flows, between different
conformal fixed points labeling different quantum chan-
nels. More specifically, we find that in computing such
measures, quantum channels map to boundary conditions
for multiple copies of the original conformal field theory
(CFT) describing the critical state. Under coarse graining,
such boundary conditions can flow to a variety of con-
formal fixed points whose classification can be much richer
than that of the single copy CFT.
Concretely, we find that the Renyi entropy of the

decohered state, which quantifies the entanglement between
system and environment, is extensive but has a subleading

PHYSICAL REVIEW LETTERS 130, 250403 (2023)

0031-9007=23=130(25)=250403(7) 250403-1 © 2023 American Physical Society

https://orcid.org/0000-0001-8573-000X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.250403&domain=pdf&date_stamp=2023-06-21
https://doi.org/10.1103/PhysRevLett.130.250403
https://doi.org/10.1103/PhysRevLett.130.250403
https://doi.org/10.1103/PhysRevLett.130.250403
https://doi.org/10.1103/PhysRevLett.130.250403


term dictated by a “g function” in CFT. This g function
characterizes the channel with respect to Renyi entropy and
dictates the direction of RG flow between two channels: a
channel with a larger g can flow to a channel with smaller g if
weakly perturbed by the latter. Moreover, near a RG fixed
point, the g function has a universal scaling form determined
by critical exponents. One natural consequence of our
formalism is that the Renyi entropy of a subsystem A of
the decohered state has a subleading logarithmic scaling with
jAj and its coefficient is given by scaling dimensions of
certain boundary condition changing operators. Furthermore,
Renyi negativity of the subsystem (a measure of entangle-
ment within the mixed state) can obey either logarithmic
scalingor area lawbasedon the universal properties of theRG
fixed point. In the former case, the coefficient of log scaling
can either change continuously with decoherence strength or
remain the same as the initial pure critical state, depending on
whether the channel corresponds to a marginal or irrelevant
perturbation, respectively. We demonstrate all these features
for the one-dimensional transverse-field Ising critical point
and conclude with a discussion of experimental relevance to
quantum simulators.
Quantum channels.—We first review useful facts about

quantum channels [28]. A quantum channel represents the
most general quantum process including decoherence.
Formally, it is a completely positive trace-preserving
map ρ → N ðρÞ acting on density matrices. For a quantum
channel, one may define its dual channel N �, which
is a linear map on operators satisfying Tr½ρN �ðOÞ� ¼
Tr½N ðρÞO�; ∀O.
Here we consider a spatially uncorrelated noise model

defined on a qubit chain. The noise can be modeled as a
product of single-qubit channels N ¼⊗L

j¼1 N j, where
each N j is a channel acting on the jth qubit.
We focus on the dephasing channel N j ¼ D½j�

p;v⃗, which
represents an environment-qubit coupling with the jth
system qubit along the σv⃗ ≔ vxσx þ vyσy þ vzσz direction.

The action of D½j�
p;v⃗ on the density matrix ρ of a qubit is

D½j�
p;v⃗ðρÞ ¼

�
1 −

p
2

�
ρþ p

2
σ½j�v⃗ ρσ½j�v⃗ : ð1Þ

The channel is self-dual; i.e., D½j��
p;v⃗ ¼ D½j�

p;v⃗. The parameter
p ∈ ½0; 1� controls the strength of the noise: when p ¼ 0, it
is the identity channel and leaves states unchanged; while if
p ¼ 1, it turns any quantum state into a classical ensemble.
General formalism mapping information-theoretic

quantities to quantum quench problem.—We consider a
critical ground state jψi under decoherence of the above
type, resulting in density matrix ρ ¼ N ðjψihψ jÞ. We study
information-theoretic quantities including nth-Renyi
entropy and entanglement negativity, and we map these
quantities to quantum quench problems in CFT⊗2n, i.e., a
2n-copied CFT.

We start with the Renyi entropy of a subsystem A:

SðnÞA ðρÞ ≔ ð1=ð1 − nÞÞ log TrðρnAÞ, where ρA ¼ TrĀρ. This
is a measure of both quantum and classical correlation
between A and the rest of the system Ā together with the
environment. It reduces to the von Neumann entropy after
taking the replica limit n → 1. The partition function

ZðnÞ
A ≔ TrðρnAÞ can be rewritten as

ZðnÞ
A ¼ Trðρ⊗nτn;AÞ ¼ Tr½N ðjψihψ jÞ⊗nτn;A�; ð2Þ

where τn;A ¼ Q
j∈A τn;j forward permutes the replicas for

sites in A, and acts as identity for sites in Ā. Next, we use
the dual channel to rewrite

ZðnÞ
A ¼ Tr½ðjψihψ jÞ⊗nBN ;A�; ð3Þ

where BN ;A ≔ N �⊗nðτn;AÞ ¼⊗j∈A N �⊗n
j ðτn;jÞ. Finally, we

use the standard folding trick for defect CFT [29] to treat
each operatorO as a state jO⟫ in the doubled Hilbert space,
whose inner product is defined as ⟪O1jO2⟫ ¼ TrðO†

1O2Þ.
Thus, under the folding,

ZðnÞ
A ¼ ⟪ðψ ⊗ ψ�Þ⊗njBN ;AIĀ⟫: ð4Þ

The bra state jðψ ⊗ ψ�Þ⊗n⟫ is 2n copies of the critical
state, while the ket state jBN⟫ is a product state, since the
operator BN ;A factorizes among j. Thus, we have reformu-
lated the Renyi entropy as a quantum quench problem from
a product state jBN⟫ to a 2n-copied CFT, whose path
integral representation on the spacetime manifold is shown
in Fig. 1 (top).
The other quantity that we consider is nth (n is odd)

Renyi entanglement negativity NðnÞ
A ðρÞ ≔ ð1=ð1 − nÞÞ

logðTrðfρTAgnÞ=TrðρnÞÞ for a subsystem A, where ð·ÞTA

is the partial-transpose operation that swaps the bra and ket

FIG. 1. Entanglement quantities of decohered critical state
involve overlaps between copies of CFT and boundary states
determined by the quantum channel (see main text). Top:
path integral representation of partition function used to
compute Renyi entropy Eq. (4). Note that the denominator is
hψ⊗njψ⊗ni ¼ 1. Bottom: path integral representation of the
analogous object for Renyi negativity Eq. (5).
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states in ρ for sites within A. NðnÞ
A is a measure of quantum

correlation between A and the rest of the system Ā [30,31].
A similar derivation shows that

NðnÞ
A ðρÞ ¼ 1

1−n
log

⟪ðψ ⊗ ψ�Þ⊗njBN ;AB̃N ;Ā⟫

⟪ðψ ⊗ ψ�Þ⊗njBN ;A∪Ā⟫
; ð5Þ

where B̃N ;Ā ¼⊗j∈Ā N �⊗n
j ðτ−1n;jÞ. Thus the calculation of

NðnÞ
A is mapped to a quantum quench from another product

initial state to the same 2n-copied CFT; see Fig. 1
(bottom). In such quantum quench problems, it has been
shown [32–35] that a short-range correlated state can be
described by a conformal boundary condition at long
distances. We will assume that this is the case for product
states jBN⟫ and jB̃N⟫ [36].
The g function.—We now focus on the simplest quantity,

SðnÞðρÞ ¼ 1

1 − n
logZðnÞðLÞ; ð6Þ

where L is the total system size. This is the Renyi entropy
of the whole system or, alternatively, the Renyi entangle-
ment entropy between system and environment. In a
boundary CFT, the partition function ZðnÞðLÞ depends
on UV details, but one can define a UV-independent g
function [48–50],

log gðnÞðLÞ ¼
�
1 − L

d
dL

�
logZðnÞðLÞ; ð7Þ

which plays a similar role for boundary RG flow as
the central charge c function plays for bulk RG flow. It
satisfies the following two properties. First, log gðnÞðLÞ is a
monotonically decreasing function of L. Second, for
conformal boundary conditions (RG fixed points),
log gðnÞðLÞ ¼ log gðnÞ is independent of L, which equals
the universal Affleck-Ludwig boundary entropy [51]. At
these fixed points, solving the differential equation (7) gives
logZðnÞðLÞ¼ ð1−nÞαðnÞLþ loggðnÞ, where ð1 − nÞαðnÞ is a
nonuniversal integration constant. One of our main results,

SðnÞðρÞ ¼ αðnÞL −
1

n − 1
log gðnÞN ; ð8Þ

then follows from Eq. (6). Given a lattice wave function, we

may compute gðnÞN ðLÞ numerically using Eq. (7). We identify

a channel N as a RG fixed point if gðnÞN ðLÞ becomes a

constant gðnÞN as L exceeds a few lattice spacings. The
identity channel I is always a RG fixed point

with log gðnÞI ¼ 0.
Let N p be a family of quantum channels parametrized

by p. We denote the g function of N p as gðnÞp ðLÞ. Let
p ¼ pc be a RG fixed point with the g function gc, then

gðnÞp ðLÞ ¼ ḡðnÞðjp − pcjL1=νÞ; ð9Þ

where ν is the analog of the “correlation length exponent”
in critical phenomena. If ν > 0, then the fixed point N pc

is
unstable, and it flows into another fixed point with the g
function g0 < gc. In such cases, the scaling function ḡðnÞ is a
monotonically decreasing function.
Subsystem entropy.—Now we consider the entropy of a

subsystem, whose corresponding quantum quench problem
is from a spatially inhomogeneous initial state; see Fig. 1
(top). Such an initial state can be described in CFT by
inserting boundary condition changing operator ϕðnÞ

IN and

ϕðnÞ
NI ¼ ϕðnÞ�

IN at the intersections [52–54]. There are 2m
insertions if A contains m disjoint intervals. In particular, if
A is a single interval with length LA, then the partition
function ZðnÞðLÞ is

hϕðnÞ
IN ð0ÞϕðnÞ�

IN ðLAÞi ¼C

�
L
π
sin

πLA

L

�
−2ΔðnÞ

IN
; ð10Þ

where ΔðnÞ
IN is the scaling dimension of ϕðnÞ

IN and C is a
normalization constant. Equation (10) together with Eq. (6)
gives another main result [55]:

SðnÞðρAÞ ¼ αðnÞLA þ
2ΔðnÞ

IN

n − 1
log

�
L
π
sin

�
πLA

L

��
þOð1Þ:

ð11Þ

In order to numerically verify the formula, it is useful to
consider the Renyi mutual information IðnÞðA; BÞ ¼
SðnÞðρAÞ þ SðnÞðρBÞ − SðnÞðρABÞ. Choosing B ¼ Ā to be
the complement of A, we obtain

IðnÞðA; ĀÞ ¼ 4ΔðnÞ
IN

n − 1
log

�
L
π
sin

�
πLA

L

��
þOð1Þ; ð12Þ

in which the volume law pieces have canceled each other.

Similar results hold for Renyi negativity NðnÞ
A ðρÞ, except

that the boundary condition changing operator is different.
For two disjoint intervals A ¼ ½x1; x2�; B ¼ ½x3; x4�, we

can show that IðnÞðA;BÞ is only a function of the cross ratio
η ¼ ðX12X34Þ=ðX13X24Þ, where Xij ¼ sinðπjxi − xjj=LÞ.
At small η, we may fuse the two boundary condition

changing operators ϕðnÞ
IN × ϕðnÞ�

IN ¼ I þOðnÞ þ � � �, where
OðnÞ is the second lowest operator in the operator product
expansion. This implies the scaling:

IðnÞðA;BÞ¼ const×ηΔ
ðnÞ
O ðη≪ 1Þ: ð13Þ

Note that OðnÞ is a boundary operator at the boundary
condition jBI⟫, which we may unfold to get a bulk local
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operator in the n-copied CFT. Thus, ΔðnÞ
O must be a sum of

n scaling dimensions in the original CFT.
Critical Ising model under dephasing noise.—As an

example, we study the effect of dephasing noise on the
ground state of the 1D transverse-field Ising model:

H ¼ −
XL
i¼1

σx;iσx;iþ1 −
XL
i¼1

σz;i: ð14Þ

For the dephasing noise Dp;v⃗, we restrict the direction to
the XZ plane, i.e., v⃗ ¼ ½sinðπθ̃=2Þ; 0; cosðπθ̃=2Þ�, where
0 ≤ θ̃ ≤ 1. For Renyi index n ¼ 2, we find four RG fixed
points: (1) identity channel I ¼ D0;v⃗, with log gI ¼ 0,
(2) complete dephasing in Z direction Dz, with log gz ¼ 0,
(3) complete dephasing in X direction Dx, with log gx ¼
− log 2, and (4) complete dephasing Dzx at θ̃ ≈ 0.8, with
log gzx ¼ −2 log 2. For complete dephasing, the entropy
reduces to the “classical Shannon entropy” of Ref. [56],
which considered cases (2) and (3).
We also observe the RG flow between these four fixed

points, which manifests the monotonicity of the g function.
Near the Dz, Dx fixed points, we can turn on a small
perturbation to θ̃ and observe the RG flows to theDzx fixed

point. The universal data collapses indicate the critical
exponents ν ≈ 2.0, 1.0 for the two respective channels; see
Fig. 2 and Ref. [36]. Another example is the RG flow from
I fixed point to complete dephasingDzx andDx by turning
on a small p [36]. Finally, all dephasing channels Dp;z

have the same log g ¼ 0, which suggests they constitute a
continuous family of fixed points connected by marginal
deformations. These RG flows are summarized in Fig. 3.
We have also checked that the RG flows in this example
are the same for higher Renyi indices such as n ¼ 3,
although consistency between Renyi indices is not a priori
true [57].
The mutual information between subsystems at the four

RG fixed points is shown in Fig. 3. For complementary
intervals, we find that they all satisfy Eq. (12) with the same

Δð2Þ
IN ¼ 1=16. For the identity channel, the operator ϕð2Þ

IN is
the branch-point twist operator, with the scaling dimension
c=8 ¼ 1=16. The fact that the scaling dimensions coincide
for dephasing channel and identity channel was also
observed numerically in Ref. [58]. In order to distinguish
the channels, we compute the Renyi mutual information
IðnÞðA;BÞ of two disjoint intervals. We see that the scaling

dimensions of Δð2Þ
O vary among the four fixed points. These

dimensions can be understood analytically in terms of local
operators in the two-copied Ising model [36].
Finally, we study the Renyi negativity Nð3Þ

A of a sub-
system A under dephasing noise; see Fig. 4. For Z
dephasing, we find a logarithmic scaling with continuously
changing coefficients, which is an indication of a continu-
ous set of RG fixed points. For X dephasing, even with a
small strength p, the Renyi negativity obeys an area law, in
agreement with the previous observation that the channel
flows to complete dephasing. We also observe that a weak
Y dephasing is an irrelevant perturbation, indicated by both
the g function and the scaling of Ið2ÞðA; ĀÞ and Nð3ÞðA; ĀÞ.
Indeed, we find in Fig. 4 that for Y dephasing with small p,
the coefficient of the log scaling of negativity does not
change with respect to the initial pure critical state, i.e., the
one with I channel.

FIG. 2. g function (universal subleading constant of Renyi
entropy) for complete dephasing channel Dp¼1;v⃗ applied to
critical Ising ground state, where v⃗ ¼ ½sinðπθ̃=2Þ; 0; cosðπθ̃=2Þ�
in the XZ plane. Left: gðθ̃; LÞ for different L (legend). Right: data
collapse for 0 ≤ θ̃ ≤ 0.6, indicating RG flow from Dz to Dzx.

FIG. 3. Fixed-point channels for Ising model and their universal properties. Left: g function of the four fixed points among dephasing
channels and their RG flow. The dashed line indicates a continuous set of fixed points and the solid lines indicate direction of the RG

flow. Center: Ið2ÞðA; ĀÞ of a single interval at the four fixed points. All four slopes are estimated to be close to 4Δð2Þ
IN ≈ 1=4. Right:

Ið2ÞðA; BÞ of a two disjoint intervals at the four fixed points. The scaling dimension Δð2Þ
O is close to 1=4; 1; 1=8; 1=4 for the four fixed

points I ;Dz;Dzx;Dx, respectively.
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Discussion.—In this work we have established a notion
of RG flow between quantum channels acting on a critical
wave function, and we have demonstrated its consequences
on the entanglement structure of the resulting mixed states.
We have shown that a g function gives the volume-
independent part of the Renyi entropy at the RG fixed
points and established its monotonicity under the RG flow.
We have illustrated all this in the example of the transverse-
field Ising model under dephasing noise, although gener-
alization to other noise models such as depolarizing noise is
straightforward and also yields interesting phenomena (see
Ref. [36] for details).
Our notion of RG flow can be naturally applied to

measurement-induced quantities of a critical wave func-
tion, such as those considered in Refs. [25,26]. Another
direction is to classify the conformal boundary conditions
for the fixed-point quantum channels in the CFT and take
the replica limit, along the lines of Ref. [59]. Regarding the
holographic correspondence between a CFT on the boun-
dary of a spacetime and a gravitational theory in the bulk, it
would be interesting to explore the holographic dual of
quantum channels acting on the boundary; many recent
works have considered coupling the boundary CFT to a
bath, and perhaps our formalism could be related to replica
wormholes [60–62]. In another direction, while this work
only considered one layer of local quantum channels, it
may also be interesting to explore the entanglement
dynamics of random local channels [37] on quantum
critical (and other long-range entangled) states.
Finally, we discuss the experimental relevance of our

work. Quantum critical states have already been realized on
programmable quantum simulators (see, e.g., Refs. [8,38]
for the realization of a critical transverse-field Ising ground
state), and such platforms may be naturally subject to
biased noise in which one type of channel (e.g., dephasing
in a particular direction) dominates (see Refs. [63–65] for
details on different hardwares). Alternatively, the noise

channels can also be realized by local unitary gates
acting on system and ancillas. The entanglement properties
(Renyi entropy and negativity) of the resulting mixed states
can be probed using recent techniques of shadow tomog-
raphy [39,40] which use randomized measurements to
estimate moments of a (partially transposed) density
matrix. Our predictions can be realized on near-term
quantum simulators, and we discuss the experimental setup
in detail in Ref. [36].
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Note added.—Recently, we noticed a related independent
work [66].
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