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The notion of many-body quantum scars is associated with special eigenstates, usually concentrated in
certain parts of Hilbert space, that give rise to robust persistent oscillations in a regime that globally exhibits
thermalization. Here we extend these studies to many-body systems possessing a true classical limit
characterized by a high-dimensional chaotic phase space, which are not subject to any particular dynamical
constraint. We demonstrate genuine quantum scarring of wave functions concentrated in the vicinity of
unstable classical periodic mean-field modes in the paradigmatic Bose-Hubbard model. These peculiar
quantum many-body states exhibit distinct phase-space localization about those classical modes. Their
existence is consistent with Heller’s scar criterion and appears to persist in the thermodynamic long-lattice
limit. Launching quantum wave packets along such scars leads to observable long-lasting oscillations,
featuring periods that scale asymptotically with classical Lyapunov exponents, and displaying intrinsic
irregularities that reflect the underlying chaotic dynamics, as opposed to regular tunnel oscillations.
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The past decade has witnessed tremendous progress in
the understanding of the key mechanisms that inhibit
thermalization in complex quantum many-body systems.
While many-body localization generically arises in the
presence of a significant amount of disorder and/or inter-
action [1–5], nongeneric phenomena of weak ergodicity
breaking, typically manifested by persistent oscillatory
behavior of observables [6], can occur in systems that
globally exhibit eigenstate thermalization in the considered
parameter regime. Such ergodicity breaking behavior is
generally attributed to scarring [7], a concept that was
originally introduced in single-particle chaotic quantum
systems exhibiting two degrees of freedom [8,9]. A scar in
the proper sense refers to a quantum eigenstate that is
semiclassically anchored on an unstable periodic orbit [8,9]
instead of being equidistributed over the entire chaotic
phase space as predicted by the eigenstate thermalization
hypothesis [10,11]. As argued by Heller [8], such a scarred
eigenstate can exist provided the period T of the orbit is
relatively short and its Lyapunov exponent λ relatively
weak, i.e., Tλ≲ 2π, such that a wave packet that is
launched along this orbit will almost recover its original
shape after one period. Scars are not to be confused with
ordinary “regular” quantum states anchored on stable
periodic orbits, whose existence and characteristics are
most straightforwardly inferred from Einstein-Brillouin-
Keller quantization rules [12].
The recent discovery of many-body scars in quantum

simulators [6,13], followed by numerous theoretical studies
employing spin chains, PXP models, or dynamically
constrained systems (e.g. [7,14–24], see [25–27] for
recent reviews), calls for an investigation of those scar

characteristics in the high dimensional domain. In the
context of the widely considered spin-chain-like systems
such a study is, however, hampered by the fact that those
quantum Hamiltonians do not have an obvious classical
counterpart that would naturally arise from a semiclassical
evaluation of Feynman’s path integral [28]. Artificial
classical phase spaces can nevertheless be constructed
using the time-dependent variational principle [18], by
which means unstable periodic orbits associated with
many-body scars can indeed be identified.
To extend the investigations of many-body scars to

quantum systems possessing a true classical (chaotic) limit,
we propose here to study many-body scars in Bose-
Hubbard (BH) systems, whose high-dimensional classical
counterpart is well defined and given in terms of a discrete
nonlinear Schrödinger equation. Unlike other recent studies
on scarring in BH systems [21–23], we shall not consider a
dynamically constrained configuration owing to the pres-
ence of correlated hopping, periodic driving, or tilting, but
study unconstrained homogeneous rings of finite size,
square plaquettes in particular. The scars that we find there
are anchored on unstable classical staggered dimer con-
figurations, for which the exchange of population between
adjacent lattice sites is dynamically suppressed despite
nonvanishing hopping matrix elements. As is shown in
Fig. 1, a preparation of a quantum state on such a classical
configuration gives rise to persistent oscillatory behavior in
one-body observables, indicating the absence of thermal-
ization. Irregular features are identified in these oscillations
[panels (a),(b)], in line with the high dimensionality of the
underlying chaotic phase space in which the dynamics
takes place.
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We considerN interacting bosonic particles confined to a
one-dimensional periodic lattice of L wells. This system is
described by the BH Hamiltonian

Ĥ ¼ −J
XL

l¼1

ðâ†lþ1âl þ â†l âlþ1Þ þ
U
2

XL

l¼1

n̂lðn̂l − 1Þ ð1Þ

with bosonic on-site creation, annihilation, and number
operators â†l , âl, and n̂l ¼ â†l âl, where we have nearest-
neighbor hopping J, repulsive on-site interaction U > 0,
and periodic boundary conditions, l ∈ ZL. It formally
admits a well-defined classical limit where the system
is described by a condensate wave function ψ ¼
ðψ1;…;ψLÞ ∈ CL whose time evolution is governed by
the discrete nonlinear Schrödinger equation (DNLSE)

i _ψ l ¼ −Jðψ l−1 þ ψ lþ1Þ þUðψ�
lψ l − 1Þψ l ð2Þ

(setting ℏ ¼ 1). The latter is obtained as the saddle point
equation in the path integral formulation of the quantum
system [29–31], yielding the quantum-to-classical map-
pings âl↦ψ l, â

†
l ↦ψ�

l , and n̂lþ1=2¼ðâlâ†l þ â†l âlÞ=2↦
jψ lj2. As a purely classical description, Eq. (2) becomes
formally valid in the mean-field regime of large average site
occupancies N=L → ∞ and small U → 0, scaled such that
the effective dimensionless interaction parameter

γ ¼ ðN=Lþ 1=2ÞU=J ð3Þ

is kept fixed. Up to a scaling of the time t and a constant
shift in energy, γ is the only parameter of the DNLSE.
We now focus on site numbers L that are multiples of

four. In that case, the staggered dimer configuration,
generally characterized by a wave function of the form

ψ ¼ ðψ1;ψ2;−ψ1;−ψ2;ψ1;ψ2;−ψ1;−ψ2;…Þ ð4Þ

for a pair of complex amplitudes ψ1, ψ2, represents a fixed
point of the site occupancies in the framework of the
classical DNLSE (2). Despite a nonzero J > 0, hopping is
dynamically suppressed in this configuration, and the site
amplitudes ψ l feature only phase oscillations with frequen-
cies ωl ¼ Uðnl − 1Þ at constant nl ¼ jψ lð0Þj2. While this
resembles the Mott-insulator physics of U=J → ∞, it is
here a result of a fragile balance, crucially depending on the
equal populations and relative phase of π between next-
nearest neighbors. A slight deviation from the staggered-
dimer manifoldMSD, given by all ψ of the form (4), breaks
this balance, leading to population transfer that may further
push the system away from this manifold. As a result,
staggered dimer waves are, in a wide parameter range, at
the same time fundamental short and unstable periodic
modes, thus representing excellent candidates for scarring.
Semiclassically, the phenomenon of scarring is generally

described as concentration of particular eigenstates of the
Hamiltonian along unstable periodic orbits of the corre-
sponding classical system that are at least locally embedded
in a patch of chaotic motion. In the present context,
“periodicity” of a mean-field solution has to be understood
modulo a global phase, i.e., we call ψðtÞ periodic with
period T if for some (irrelevant) θ ∈ R

ψðtþ TÞ ¼ ψðtÞeiθ: ð5Þ

To test whether a given state is scarred by such a periodic
orbit ψðtÞ, or, more generically, by a family of such orbits
defined in a finite range of energy, we employ so-called
tube states [32,33] constructed as

jT ψðtÞi≡N
Z

T

0

dt ei½SðtÞ−πμðtÞ=2�jψðtÞiN: ð6Þ

Here we define the number-projected coherent state

jψiN ¼ 1ffiffiffiffiffiffi
N!

p ðeψ · a†ÞN j0i ∝ Π̂Neψ·a
† j0i ð7Þ

centered about the phase-space point ψ, with eψ ≡
ψ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ · ψ�p

, j0i the vacuum state, and Π̂N the projector
to the N-particle sector. These tube states are forced to be
concentrated along the trajectory by placing a wave packet
jψðtÞiN at each of its points. The dressing with a phase

FIG. 1. Persistent oscillations reflecting quantum chaotic scar-
ring. (a),(b): time evolution of the on-site occupancy hn̂2i. When
initialized in staggered dimer product states jπmi [see Eq. (9)] the
system oscillates [blue lines, with (a) m ¼ 0 and (b) m ¼ 2]
between coupled partners (c) jπmi and (d) jπN−mi, symmetry-
related by 90° rotation of the plaquette. In contrast, classical
dynamics (as implemented by TWA, black) as well as quantum
evolution of initial Fock states j½ðN −mÞ=2�; ðm=2Þ; ½ðN −
mÞ=2�; ðm=2Þi (dotted gray) undergo fast thermalization (for
particle number N ¼ 40 and effective interaction γ ¼ 0.95).
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factor determined by classical dynamics, containing the
accumulated classical action S and Maslov index μ, ensures
constructive interference of neighboring wave packets and
is here especially devised for oscillatorlike systems [34].
Demanding the wave packets at t ¼ 0 and after time T to be
in phase gives the Bohr-Sommerfeld (BS) type quantization
condition

SðTÞ − πμðTÞ=2þ Nθ≡ 0 ðmod 2πÞ; ð8Þ

singling out a discrete set of quantized orbits and corre-
sponding tube states for each family of periodic orbits.
To ease discussions, we first focus on the simplest case

L ¼ 4, corresponding to a single square plaquette, and thus
consider the manifold of staggered dimers given by con-
densate wave functions of the form ψ¼ðψ1;ψ2;−ψ1;−ψ2Þ.
Then the above semiclassical construction yields quantized
tube states (6) with an intriguing structure. Specifically, one
finds that the mth quantized staggered dimer tube state
jT mi, m ∈ f0;…; Ng, starting with maximal population of
sites l ¼ 1, 3 at m ¼ 0, is very well described by a product
state of the form

jT mi ≃ jπmi≡ jðψ1;−ψ1Þið1;3ÞN−m ⊗ jðψ2;−ψ2Þið2;4Þm : ð9Þ

The two factors are states (7) on the Hilbert subspaces
living on sites (1, 3) and (2, 4), respectively [see Figs. 1(c)
and 1(d)]. As a direct product of number states on disjoint
subspaces, the states (9) do not show any phase coherence
between the two diagonals (1, 3) and (2, 4), as is classically
evident from the different phase velocities ω1 and ω2,
whereas the phase relation between the two opposite sites
within each diagonal is fixed to π.
A characteristic hallmark for the existence of many-body

scars anchored on staggered dimers can indeed be found by
the numerical propagation of quantum many-body wave
packets that are initialized on the states (9). As shown in
Fig. 1, persistent oscillations, displaying no decay over
very long time scales (blue lines), arise in the mean site
occupancies, in contrast to classical simulations based on
the truncated Wigner approximation (TWA) that would
predict rapid relaxation to thermal equilibrium (black).
Note that such a relaxation behavior would also occur
(gray) if the wave packet was initialized on a Fock state
jν1; ν2; ν1; ν2i having the same mean site occupancies
ν1 ¼ ðN −mÞ=2 and ν2 ¼ m=2 as the state (9). This
demonstrates the importance of the specific structure of
the staggered dimer states for the occurrence of scarring.
Further confirmation for the existence of genuine quan-

tum scarring on staggered dimers is obtained via several
(semi-)classical indicators, which are evaluated in Fig. 2 as
functions of the imbalance z ¼ ðn1 − n2Þ=ðn1 þ n2Þ. For
the chosen intermediate coupling γ ¼ 0.95, Eq. (3), we find
that quantum scars are likely to occur, independently of N,
for imbalances z≳ z� with z� ≃ 0.33 (dotted vertical line),

where dynamics is chaotic as indicated by Fig. 2(a). The
likelihood for scarring increases when approaching the
maximally imbalanced limit due to ever shorter periods T.
This is demonstrated in Fig. 2(b), where we use an a priori
indicator 2πχ=λþΣT > 1 for periodic orbits to support
quantum scars, generalizing the heuristic Heller criterion [8]
for two-dimensional single-particle systems [34,35]. Here,
λþΣ ≡ Σ>

j λj is the sum of positive stability exponents, and
χ ≡Q

>
j 2λj=ðλth þ λjÞ is a heuristic factor to suppress

close-to-regular or mixed dynamics with a threshold chosen
as λth ¼ 0.3J.
Additionally, we investigate in Fig. 2(c) the phase-space

localization of the corresponding tube states by means of
the phase-space inverse participation ratio (IPR)

Ijϕi ≡N
Z

d2Lψδðkψk2 − L=2 − NÞQjϕiðψÞ2 ð10Þ

of a state jϕi, defined in terms of the Husimi function
QjϕiðψÞ≡ jhϕjψiN j2. We compare the IPR of tube states to

FIG. 2. Indicators for scarring. (a) Dominant stability expo-
nents, λ1;2 ≥ 0, along the staggered-dimer manifold. Central
orbits of Bohr-Sommerfeld (BS)-quantized tubes are marked
by dots. Inset: Husimi section of one quantized tube T −

2 in the
manifold mapped to a Bloch sphere. (b) Heuristic rating for the
likelihood of quantum scarring based on the Heller criterion (see
text). (c) Inverse participation ratio (10) of BS-quantized tube
states (black dots) and random-wave states (green dots) on local
constant-energy layers (see text). As a guide to the eye, a running
median is added (solid green).
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the one of random-wave states spread across the local
layers of constant energy in which the corresponding
relevant orbits are embedded. These locally ergodic states
are obtained similar to the tubes (6) but with slightly
perturbed initial conditions, putting wave packets jψðtÞiN
with random phases after finite time steps dt ↦ Δt and
following the classical dynamics long enough to saturate
the local constant-energy surface. While in the regime
z≲ z� of mixed regular and chaotic dynamics the tubes are
found to fill up thin constant-energy layers alike random
waves, they are, as seen in Fig. 2(c), significantly more
localized than the latter in the dominantly chaotic regime
z > z�, thereby confirming their nonclassical scarlike
nature [36].
To confirm the existence of actual quantum scarring of

staggered dimer solutions, we perform exact diagonaliza-
tion and examine all individual eigenstates for their phase-
space localization and overlap with tube states. Figure 3
shows again the case γ ¼ 0.95, for which the energy range
relevant for staggered dimers lies in the central spectrum of
highly excited states, as indicated by the highlighted region
of the inset. We focus on the subspectra with the symmetry
ðþ;þÞ, denoting fully even parity with respect to the two
diagonal exchange operations (sites 1 ↔ 3 as well as
2 ↔ 4) of the plaquette. For even particle number N this

symmetry class is shared by the staggered dimer tube states
of even BS quantization indexm [oddm gives tube states of
odd parity ð−;−Þ]. We find a small number of eigenstates
that are anomalously localized as compared to the majority
of eigenstates with comparable energy. As confirmed by
strong overlaps with tube states, a big part of these can be
directly identified as a class of staggered-dimer-like states.
Apart from some genuinely “regular” states featuring a
high IPR due to localization on classically stable phase-
space structures (which are, hence, not scars according to
the definition of this concept [8]), this class also contains
eigenstates that are strongly concentrated along unstable
staggered-dimer solutions embedded in chaotic portions of
the phase space. Since their number scales proportionally to
N as does the number of tube states (9), they constitute a
vanishing fraction of the full spectra with Hilbert-space
dimension ∼NL−1 as N → ∞. We thus find all criteria for
genuine quantum scarring fulfilled. Note that even in the
deep quantum regime of very few particles, where quan-
tum-to-classical correspondence is no longer expected to
hold, we can unambiguously identify direct descendants of
genuine quantum scars by maintaining the link between
tube states and eigenstates while successively lowering
N [34].
Let us discuss the absence of regularity in the oscillatory

behavior of the mean site occupancies, shown in Fig. 1.
They oscillate due to the (anti-)symmetry of eigenstates
with respect to the rotation of the lattice by one site,
induced by the operator R̂1, such that scar states in the
Hamiltonian’s eigenspectrum exhibit a strong overlap with
the two linear combinations jT �

mi ∝ ð1� R̂1ÞjT mi. Hence,
the preparation of the quantum system on a staggered-
dimer state with broken symmetry, such as jT mi, is
expected to give rise to Rabi-like oscillations between
jT mi and R̂1jT mi, with a frequency that corresponds to the
level splitting of the two eigenstates jT �

mi. This simplified
reasoning is to be amended due to the fact that several
eigenstates can generally be scarred with the same
orbit [8,33]. An initial product state jπmi gives thus rise
to a superposition of corresponding frequencies and ampli-
tudes, resulting in beatings that do not feature a clean
harmonic behavior. In a semiclassical picture, the beating
period can be estimated to be related to the classical rate to
leave (or approach) the vicinity of one of these orbits, i.e.,
to be proportional to their inverse stability exponents
λj [37]. We confirm this scaling for the regime of weak
to moderate interactions [34] where all classical stability
exponents tend to be equal to a unique Lyapunov exponent,
λj ≃ λL, such that a uniform time scale ∼λ−1L emerges. Most
notably, this oscillatory behavior is in stark contrast to the
more pronounced and regular oscillations that one finds in a
regime of locally stable or close-to-stable classical dynam-
ics, where by definition scars cannot occur [34].

FIG. 3. Phase-space localization of eigenstates as measured by
the IPR (10) for γ ¼ 0.95 and N ¼ 28 in the central energy range
where staggered dimer waves are located [highlighted regions in
the full-range spectra ðþ;þÞ shown as inset]. The overlap
jhϕjT �

mij2 of eigenstates jϕi with the symmetric and antisym-
metric tube states, whenever greater than 0.1, is indicated by the
size of triangles pointing up and down, respectively. In the
unstable regime z≳ z�, these are shown in blue and red,
respectively, with shading marking the eigenstates that have
the largest overlap with the respective tube states T �

0;2;4;6;8

(regular states, for z < z�, are shown in gray without shading).
Vertical lines mark the energies of quantized orbits. Locally
ergodic random waves about MSD are shown as the running
median in green [see Fig. 2(c)].
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Scarring on the staggered dimer configuration (4) is not
restricted to the four-site plaquette but can be found also for
larger systems [34], such as the L ¼ 8 site BH ring, where
scars are anchored on wave functions of the form

jðψ1;−ψ1;ψ1;−ψ1Þið1;3;5;7ÞN−m ⊗ jðψ2;−ψ2;ψ2;−ψ2Þið2;4;6;8Þm ,
as well as the L ¼ 12 site ring. In both cases, similar
irregular long-period oscillations are encountered as for the
four-site plaquette [34]. The staggered-dimer modes in
those high-L BH rings are found to have very similar
Lyapunov exponents λj ∼ γJ and periods T ∼ π=γJ, yield-
ing a γ-independent Heller-type indicator 2π=λþΣT ∼
2=ðL − 2Þ that scales inversely with the number of chaotic
degrees of freedom transverse to the mode. This would
a priori predict a decreasing likelihood for the existence of
staggered-dimer scars with increasing L. However, we
expect this effect to be counterbalanced by the increasing
number ν ¼ L=4 of discrete rotational symmetries that
staggered dimer configurations feature. The associated
quantum states live in the corresponding symmetry sub-
spaces whose dimensions are consequently lowered by a
factor ∝ 1=L with respect to the full Hilbert space and
which thus exhibit a reduced density of states as compared
to the latter. This reduction factor is expected [34] to
effectively enhance the otherwise deficient Heller-type
indicator to a sufficient extent, yielding support for the
existence of staggered dimer scars in the thermodynamic
long-lattice limit; see, e.g., scarring within a 1.35 × 106-
dimensional Hilbert space in the specific case of a L ¼ 12
site BH ring [34].
In summary, we present solid evidence for the existence

of genuine scars in a preeminent bosonic many-body
system that is not subject to any dynamical constraint,
namely, a homogeneous disorder-free BH ring. These scars
form in the vicinity of the classical staggered dimer
configuration (4) where population exchange between sites
is dynamically suppressed despite a nonvanishing hopping
parameter. The time evolution of quantum states launched
on such staggered dimers reveals an intriguing feature that
we conjecture to be generic for many-body scars in a high-
dimensional chaotic phase space, namely, the existence of
persistent long-period oscillations that do not exhibit a well
identifiable regularity. This feature is open to experimental
verification within state-of-the-art quantum simulators
employing ultracold bosonic atoms in optical lattices [5].
There, staggered-dimer product states (9) can be created by
quantum quenches starting, e.g., from spatially separated
left- and right-diagonal sublattices that are brought together
at t ¼ 0 to form the plaquette. We believe that scarring is a
generic phenomenon in high-dimensional bosonic many-
body systems exhibiting chaotic dynamics, and our study
lays proper foundations for their unambiguous identifica-
tion and characterization.
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Greiner, Science 364, 256 (2019).

[6] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V.
Vuletić, and M. D. Lukin, Nature (London) 551, 579 (2017).

[7] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
and Z. Papić, Nat. Phys. 14, 745 (2018).

[8] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
[9] E. B. Bogomolny, Physica (Amsterdam) 31D, 169 (1988).

[10] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[11] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[12] M. V. Berry and M. Tabor, Proc. R. Soc. A 349, 101 (1976).
[13] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G.

Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N.
Maskara, W.W. Ho, S. Choi, M. Serbyn, M. Greiner, V.
Vuletić, and M. D. Lukin, Science 371, 1355 (2021).

[14] S. Moudgalya, N. Regnault, and B. A. Bernevig, Phys. Rev.
B 98, 235156 (2018).

[15] M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201
(2019).

[16] S. Chattopadhyay, H. Pichler, M. D. Lukin, and W.W. Ho,
Phys. Rev. B 101, 174308 (2020).

[17] J.-Y. Desaules, A. Hudomal, C. J. Turner, and Z. Papić,
Phys. Rev. Lett. 126, 210601 (2021).

[18] W.W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev.
Lett. 122, 040603 (2019).

[19] V. Khemani, C. R. Laumann, and A. Chandran, Phys. Rev. B
99, 161101(R) (2019).

[20] S. Choi, C. J. Turner, H. Pichler, W.W. Ho, A. A.
Michailidis, Z. Papić, M. Serbyn, M. D. Lukin, and D. A.
Abanin, Phys. Rev. Lett. 122, 220603 (2019).

[21] A. Hudomal, I. Vasić, N. Regnault, and Z. Papić, Commun.
Phys. 3, 99 (2020).

[22] H. Zhao, J. Vovrosh, F. Mintert, and J. Knolle, Phys. Rev.
Lett. 124, 160604 (2020).

[23] G.-X. Su, H. Sun, A. Hudomal, J.-Y. Desaules, Z.-Y. Zhou,
B. Yang, J. C. Halimeh, Z.-S. Yuan, Z. Papić, and J.-W. Pan,
Phys. Rev. Res. 5, 023010 (2023).

[24] A. Hudomal, J.-Y. Desaules, B. Mukherjee, G.-X. Su, J. C.
Halimeh, and Z. Papić, Phys. Rev. B 106, 104302 (2022).

[25] M. Serbyn, D. A. Abanin, and Z. Papić, Nat. Phys. 17, 675
(2021).

PHYSICAL REVIEW LETTERS 130, 250402 (2023)

250402-5

https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1126/science.aau0818
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1016/0167-2789(88)90075-9
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1098/rspa.1976.0062
https://doi.org/10.1126/science.abg2530
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevB.101.174308
https://doi.org/10.1103/PhysRevLett.126.210601
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevLett.122.220603
https://doi.org/10.1038/s42005-020-0364-9
https://doi.org/10.1038/s42005-020-0364-9
https://doi.org/10.1103/PhysRevLett.124.160604
https://doi.org/10.1103/PhysRevLett.124.160604
https://doi.org/10.1103/PhysRevResearch.5.023010
https://doi.org/10.1103/PhysRevB.106.104302
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1038/s41567-021-01230-2


[26] Z. Papić, in Entanglement in Spin Chains—From Theory to
Quantum Technology Applications, edited by A. Bayat, S.
Bose, and H. Johannesson (Springer, New York, 2022).

[27] S. Moudgalya, B. A. Bernevig, and N. Regnault, Rep. Prog.
Phys. 85, 086501 (2022).

[28] M. C. Gutzwiller, Chaos in Classical and Quantum
Mechanics (Springer, New York, 1990).

[29] T. Engl, J. Dujardin, A. Argüelles, P. Schlagheck, K. Richter,
and J. D. Urbina, Phys. Rev. Lett. 112, 140403 (2014).

[30] R.Dubertrand andS.Müller,New J. Phys.18, 033009 (2016).
[31] K. Richter, J. D. Urbina, and S. Tomsovic, J. Phys. A 55,

453001 (2022).
[32] E. G. Vergini, Phys. Rev. Lett. 108, 264101 (2012).
[33] F. Revuelta, E. G. Vergini, R. M. Benito, and F. Borondo,

Phys. Rev. E 85, 026214 (2012).
[34] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.130.250402 for details

on the tube state construction (A), the multidimensional
generalization of Heller’s criterion (B), quantum scarring
when approaching low N (C), the emergence of a uniform
time scale (D), the comparison with regular tunnelling
oscillations in the self-trapping regime (E), and quantum
scarring in larger chains (F).

[35] Q. Hummel and P. Schlagheck, J. Phys. A 55, 384009
(2022).

[36] In principle, minor chaotic layers in the mixed regime, e.g.,
for 0.2 ≲ z≲ 0.25 in Figs. 2(a) and 2(b), may also be able to
host quantum scars for sufficiently large total particle
number N. For all investigated parameters, however, a clear
characterization of tube states as strongly embedded within
locally ergodic patches by means of Eq. (10) was only
possible for the steadily chaotic regime z≳ z�.

[37] Q. Hummel, B. Geiger, J. D. Urbina, and K. Richter, Phys.
Rev. Lett. 123, 160401 (2019).

PHYSICAL REVIEW LETTERS 130, 250402 (2023)

250402-6

https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1088/1361-6633/ac73a0
https://doi.org/10.1103/PhysRevLett.112.140403
https://doi.org/10.1088/1367-2630/18/3/033009
https://doi.org/10.1088/1751-8121/ac9e4e
https://doi.org/10.1088/1751-8121/ac9e4e
https://doi.org/10.1103/PhysRevLett.108.264101
https://doi.org/10.1103/PhysRevE.85.026214
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250402
https://doi.org/10.1088/1751-8121/ac8085
https://doi.org/10.1088/1751-8121/ac8085
https://doi.org/10.1103/PhysRevLett.123.160401
https://doi.org/10.1103/PhysRevLett.123.160401

