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According to recent new definitions, a multiparty behavior is genuinely multipartite nonlocal (GMNL) if
it cannot be modeled by measurements on an underlying network of bipartite-only nonlocal resources,
possibly supplemented with local (classical) resources shared by all parties. The new definitions differ on
whether to allow entangled measurements upon, and/or superquantum behaviors among, the underlying
bipartite resources. Here, we categorize the full hierarchy of these new candidate definitions of GMNL in
three-party quantum networks, highlighting the intimate link to device-independent witnesses of network
effects. A key finding is the existence of a behavior in the simplest nontrivial multipartite measurement
scenario (three parties, two measurement settings, and two outcomes) that cannot be simulated in a bipartite
network prohibiting entangled measurements and superquantum resources—thus witnessing the most
general form of GMNL—but can be simulated with bipartite-only quantum states with an entangled
measurement, indicating an approach to device-independent certification of entangled measurements with
fewer settings than in previous protocols. Surprisingly, we also find that this (3,2,2) behavior, as well as the
others previously studied as device-independent witnesses of entangled measurements, can all be simulated
at a higher echelon of the GMNL hierarchy that allows superquantum bipartite resources while still
prohibiting entangled measurements. This poses a challenge to a theory-independent understanding of
entangled measurements as an observable phenomenon distinct from bipartite nonlocality.
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Quantum nonlocality [1] is a fascinating phenomenon
that can be convincingly demonstrated in experiments of
two spatially separated parties [2–5]. Quantum mechanics
also predicts nonlocal effects in experiments of three or
more spatially separated parties. Naturally, a three-party
experiment should only be considered genuinely multiparty
nonlocal (GMNL) if it exhibits some nonlocal behavior
beyond the two-party type, ruling out scenarios where, for
instance, two parties observe nonlocality with each other
while the third party’s statistics are not correlated with the
first two in any way.
A first approach to defining genuine multipartite

nonlocality, introduced by Svetlichny [6] and later
refined [7,8], proposes that a probability distribution of
experimental outcomes be considered GMNL if it cannot
be expressed as a convex mixture of distributions where
each one factors into a product of at-most-bipartite nonlocal
distributions. However, this definition admits anomalies
[9–11]: for instance, if one measuring party simultaneously
participates in two parallel but unrelated two-party Clauser-
Horne-Shimony-Holt (CHSH [12]) experiments, one with
the second party and the other with the third party, the
combined statistics of all three parties will be classified as
GMNL according to Svetlichny-type definitions.
Recently, some authors [10,11,13] have proposed new

definitions of GMNL based on whether a behavior can be
simulated by an underlying network of bipartite nonlocal
resources, possibly with access to local or classical

resources shared by all parties (shared randomness).
Figure 1 gives a schematic representation of such an
underlying network for the three-party scenario, where a
bipartite resource such as ωAB shared by Alice and Bob
could be an entangled Bell state ðj00i þ j11iÞ= ffiffiffi

2
p

, but
three-way nonclassical states such as the GHZ state [14] are
disallowed. According to the new paradigm, a three-party
behavior is considered GMNL if it cannot be induced by an

FIG. 1. A bipartite network model for a tripartite scenario.
Tripartite behaviors that cannot be induced by an underlying
bipartite network model of the above form—bipartite nonclass-
ical sources (ω) possibly supplemented with classical random-
ness shared by all three parties (SLR)—are considered genuinely
multipartite nonlocal (GMNL) according to recent new defini-
tions [10,11,13].
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underlying network like that of Fig. 1. The parallel-CHSH-
experiment example of the previous paragraph would here
be ruled (only) bipartite nonlocal.
The new definitions [10,11,13] differ on the impositions

made on the underlying network. The strictest of these
definitions—that is, the one which would categorize the
largest class of behaviors as (only) bipartite nonlocal—is
that of Coiteux-Roy et al. [11]. This definition allows the
parties to perform entangled measurements, and also allows
superquantum nonsignaling bipartite resources [such as
Popescu-Rohrlich (PR) boxes [15] ] in the underlying
bipartite network. Tripartite behaviors ruling out this class,
which can be achieved with appropriate measurements on
the three-way entangled GHZ state [11,16], naturally also
rule out other definitions with more restrictions on the
networks such as a definition disallowing entangled
measurements [13], a definition disallowing superquantum
bipartite resources [10], or a fourth candidate definition
disallowing both. Recent experimental results [16–18] pro-
vide initial evidence, subject to fair-sampling-type assump-
tions, for the existence of three-party behaviors that cannot
be modeled by even the most general underlying bipartite
networks of Ref. [11]. Different perspectives on what
phenomena transcend that of (only) bipartite nonlocality
motivate a closer study of the new definitions of GMNL that
are less restrictive than that of Ref. [11]. To illustrate,
observe that device-independent and self-testing witnesses
of entangled measurements [19–21] are fundamentally
multipartite phenomena, requiring at a minimum two distant
parties and a third “entangling” party in between: any strictly
two-party setup involving entangled measurements on differ-
ent subsystems can always be easily simulated by a higher
dimensional setup that does not employ entangled measure-
ments [see Supplemental Material (SM), Sec. 1 [22] ].
Constraints derived under notions of GMNL that disallow
entangled measurements will indeed be intimately linked to
device-independent certificates of entangled measurements,
a crucial tool for teleportation and entanglement swapping
protocols in quantum networks [23]. A device-independent
perspective suggests disallowing superquantum nonsignal-
ing bipartite resources (i.e., PR boxes [15]) among the ω
sources in Fig. 1 as nonphysical, but a more foundational
perspective seeking a better theory-independent understand-
ing of the nature of entangled measurements, which have
recently been argued to remain poorly understood [24],
recommends consideration of the GMNL paradigm where
superquantum resources are allowed. We will consider
both viewpoints.
In this Letter, we study the full hierarchy of new

definitions of GMNL and classify their interrelationships
for the tripartite scenario. A main result of this work is the
demonstration of a quantum behavior, using entangled
measurements on bipartite-only quantum states, that wit-
nesses the most general form of multiparty nonlocality—that
disallowing entangled measurements and superquantum

resources in the Fig. 1 network—in the simplest possible
(3,2,2) scenario of three measuring parties, two measurement
settings per party, and two possible outcomes for each
measurement. This behavior demonstrates an important
separation between different definitions of GMNL, while
also providing a promising approach to the task of device-
independent certification of entangled measurements with
the fewest possible number of settings and outcomes—
reducing the number of settings from previous scenarios
achieving this task [19–21]. Note that as this behavior is not
considered GMNL according to the stricter definition of
Ref. [11], the non-fan-out inflation technique [25] used in
Refs. [11,16] is inapplicable for demonstrating the weaker
notion of GMNL studied here, and our proof uses a different
approach invoking self-testing [26].
This (3,2,2) behavior demonstrates GMNL according to

the definition where the ω in Fig. 1 are limited to quantum-
achievable resources. We continue the study by asking
whether this behavior is still GMNL according to a
paradigm in which superquantum resources (i.e., nonsignal-
ing Popescu-Rohrlich boxes [15]) are allowed for the
underlying bipartite network, while still prohibiting
entangled measurements and superquantum generalizations
thereof. We find—perhaps surprisingly—that bipartite PR
box networks can simulate the (3,2,2) behavior discussed
above without appealing to entangled measurements (or
superquantum generalizations of the notion). Hence, this
behavior exhibits only bipartite nonlocality according to the
GMNL definition allowing nonsignaling resources in Fig. 1.
Motivated by this finding, we asked whether such a

model exists for the more complicated behavior introduced
by Ref. [19], which has been studied in various forms
[20,21] as the canonical behavior certifying the presence of
an entangled measurement in a fully device-independent
manner. Similarly, we find a model for the behavior of
Ref. [19] using a network of bipartite PR boxes without
entangled measurements. Hence, none of these behaviors
bear a theory-independent signature of the phenomenon
of entangled measurements (i.e., without reference to the
axioms of quantum mechanics), raising questions about
exactly what such a signature might be, or if it exists.
We now give a precise formulation of the bipartite network

model in which we rigorously derive our results. The three
parties Alice, Bob, and Charlie of Fig. 1 make choices of
measurements represented by respective random variablesX,
Y, and Z, and record measurement outcomes A, B, and C.
An experiment is then characterized by the behavior
PðA; B;CjX; Y; ZÞ, the settings-conditional outcome distri-
bution. Behaviors PðABCjXYZÞ that can be induced by a
network of the form in Fig. 1 are said to be notGMNL,where
the precise class of behaviors singled out differs based on the
nature of the bipartite sources ωPQ and the form of the
measurements allowed to Alice, Bob, and Charlie.
QB2 is the smallest class of behaviors in the hierarchy of

bipartite network models, which are summarized in Fig. 2.
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Here, the bipartite sources ωPQ are taken to be quantum
states ρPQ, so that the joint quantum state of the system is of
the form ρAB ⊗ ρBC ⊗ ρAC. The parties Alice, Bob, and
Charlie apply quantum measurements [positive operator-
valued measures (POVMs)] to their respective systems, but
must separately measure subsystems shared with different
players. This is a scenario of “quantum boxes” (motivating
the choice of name QB2), where quantum states are
effectively input-output machines as entangling dynamics
on the states are prohibited. Because of this, the POVM
elements of Bob (for example), which act on the state space
of the reduced system trAC½ρAB ⊗ ρBC�, are expressible in
the separable form (Ref. [27], Proposition 6.5),

X

i

ciRA
i ⊗ RC

i ; ð1Þ

where each RP
i is a rank-1 projector acting on the portion of

Bob’s state shared with player P and the ci are positive real
constants not greater than one (see SM, Sec. 2 [22]). The
class of separable measurements of form Eq. (1) is in fact
slightly larger than those measurements strictly admitting a
quantum box description [28].
The framework QB2 disallows superquantum resources

for the ωPQ in Fig. 1, which can be justified on practical
grounds: superquantum correlations such as those of the PR
boxes are generally expected to be nonphysical, and in the
device-independent certification perspective the validity

and completeness of quantum mechanics is generally
assumed. Quantum behaviors outside of QB2 require either
entangled measurements or three-way entangled states, and
so device independently witness the presence of at least one
of these resources.
If one accepts the position that only quantum resources

should be considered for the bipartite resources in Fig. 1,
but that entangled measurements should be permitted,
one arrives at the larger class of bipartite network behaviors
Q2. This corresponds to the notion of GMNL given in
Definition 2 of Ref. [10]. Q2 is precisely the boundary
for a behavior exhibiting tripartite entangled states device
independently; any tripartite quantum behavior lying
outside this set certifies the presence of a three-way-
entangled quantum state (in particular, a genuinely network
3-entangled state as defined in Ref. [29]).
Another option for extending the class QB2 is to allow

for superquantum resources such as PR boxes [15]
while instead maintaining the prohibition on entangled
measurements. For the observable phenomenon of
(bipartite) nonlocality, the most abstract definition of this
phenomenon—that without any appeal to the axioms of
quantum mechanics—involves black boxes that can violate
Bell inequalities while respecting the no-signaling con-
ditions. The framework NS2 allows the classical manipu-
lation whereby outputs of some of the bipartite boxes are
used as inputs to other bipartite boxes, expanding the scope
of simulable tripartite behaviors [30]. Finally, the largest
class GPT2 (standing for generalized probabilistic theories)
allows for both superquantum bipartite sources and
entangled measurements (and possibly superquantum gen-
eralizations thereof); this corresponds to the GMNL def-
inition of Ref. [11].
The containment relationships of the four sets are

summarized in Fig. 2. It is known that some of the
containments are strict: region R4 can be seen to be
nonempty due to the presence of PR box correlations in
NS2 while Tsirelson’s bound [31] rules these out ofQ2, and
the results of Refs. [11,16] demonstrate quantum behaviors
in region R6. It is conjectured in Sec. V C of Ref. [32] that
there are correlations outside NS2 but inside GPT2, but to
date we are unaware of an argument definitively proving
the existence of behaviors in either region R3 or R5.
The three-party behavior introduced by Ref. [19] and

further studied by Refs. [20,21] as a device-independent
certificate of entangled measurements can, due to this
certifying property, be situated in the current context as
lying outside QB2 but inside Q2; see Proposition 7 in
Ref. [32] for an extended discussion. (Whether these
behaviors are in region R2 or R3 requires further analysis;
we answer this question later.) The behavior of Ref. [19]
and all of its later-studied variants are characterized by
having more than two setting choices for at least one of
the parties. In contrast, the following result shows
that a behavior in Q2nQB2 can be found for the simplest

FIG. 2. Summary of features for the different models of an
underlying network of bipartite-only systems in the tripartite
scenario. The Venn diagram illustrates the containment relation-
ships for the corresponding classes of behaviors.
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possible (3,2,2) scenario. All behaviors in any simpler
measurement scenario can always be simulated with
bipartite resources and shared local randomness (see
SM, Sec. 3 [22]).
Theorem 1.—There is a behavior PðABCjXYZÞ in Q2

with binary input and output random variables satisfying
the conditions PðB¼0jY¼1Þ>0, PY¼1;B¼0ðACjXZÞmax-
imally violates the CHSH inequality, and PðA ¼ BjX ¼ 0;
Y ¼ 0Þ ¼ 1. Furthermore, no behavior in QB2 can satisfy
these conditions.
The behavior in Q2 is obtained as follows: Alice

and Bob, and Bob and Charlie, each share a Bell pair
jΦþi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

. No Alice-Charlie state is used.
On setting Y ¼ 1, Bob performs an (entangled) Bell state
measurement on his two portions of the Bell pairs;
conditioned on observing the outcome corresponding to
jΦþi, which occurs with probability 1=4, Bob reports
outcome B ¼ 0 and all other Bell measurement outcomes
are binned into outcome B ¼ 1. Conditioned on B ¼ 0,
Alice and Charlie possess jΦþi on which they can
perform measurements maximally violating the CHSH
inequality with Alice measuring σz on setting X ¼ 0. On
setting Y ¼ 0, Bob measures (only) his qubit shared
with Alice in the same direction σz, which ensures
PðA ¼ BjX ¼ 0; Y ¼ 0Þ ¼ 1. The exact behavior
PðABCjXYZÞ is

1þð−1ÞA⊕BδX;0
8

if Y ¼ 0;
δB;1
4
þ ð−1ÞB

4
CHSHðACjXZÞ if Y ¼ 1;

where CHSHðACjXZÞ ¼ 2þ ð−1ÞA⊕C⊕XZ
ffiffiffi
2

p
=8.

That such behaviors cannot exist in QB2 follows by the
following intuition, which we make precise and prove in
Sec. 4 of SM [22]. Assume Bob can make only a separable
measurement on setting Y ¼ 1 (the proof does not assume
separability of any other measurement). This measurement
cannot create new entanglement between Alice and Charlie,
but Alice and Charlie must be measuring an entangled Bell
state to maximally violate CHSH, and so this must be a Bell
state they initially possess via ωAC. Then since Bob is not
entangled with ωAC, from his perspective Alice is measuring
a fully mixed state and it will be impossible for him to do any
better than blind guessing when trying to align his outcome
with Alice’s for setting Y ¼ 0.
As in Ref. [19], our rigorous proof relies crucially on

self-testing, but we encounter a notable complication in
the need to link a conditional post-Bob-measurement
CHSH violation to restrictions on Bob’s ability to align
with Alice’s outcome when he chooses a different meas-
urement setting, requiring a new argument that necessarily
cedes improved (but not perfect) prospects for Bob to align
outcomes with Alice. Our proof applies in full generality,
i.e., assuming only POVMs (see SM Sec. 6 [22], where
we borrow an argument from Ref. [33] instead of the

standard one [34] for POVM-to-projective-measurement
dilation) on potentially mixed states, and while we do
assume a maximal violation of the CHSH inequality, this
leads to a robust upper bound (strictly less than 1) on
PðA ¼ BjX ¼ 0; Y ¼ 0Þ such that robustness results for
self-testing [35] provide a clear approach for lifting the
argument to experimentally testable constraints, and
thereby a device-independent witness of entangled mea-
surements in the simplest possible (3,2,2) scenario.
We extend our analysis by asking whether this behavior

lies in regionR2 orR3. One might be tempted to think that
the (3,2,2) behavior described above cannot be simulated
in NS2, due to the well-known prohibition on “nonlocality
swapping” [36,37]. However, see Theorem 2.
Theorem 2.—There exists a behavior in NS2 meeting the

conditions of Theorem 1.
Proof.—Figure 3(a) gives an example of a PR box

network that results in the behavior PðABCjXYZÞ given by
δA;B
4

if Y ¼ 0;
δB;1
4
þ ð−1ÞB

2
PRðACjXZÞ if Y ¼ 1;

where PRðACjXZÞ ¼ ðδA⊕C;XZ=2Þ. This behavior satisfies
the conditions of Theorem 1 with the modification that
PY¼1;B¼0ðACjXZÞ violates the CHSH inequality beyond
the Tsirelson’s bound to the nonsignaling maximum of 4.
A convex mixture of this behavior with classical behaviors
can induce violations of the CHSH inequality to only the
quantum maximum of 2

ffiffiffi
2

p
. ▪

A possible idea for why the (3,2,2) behavior might fail to
bear a theory-independent signature of an entangled meas-
urement is that tripartite quantum behaviors outside QB2

only signify either the presence of entangled measurements
or three-way entangled sources, and it is only with the
additional assumption of the absence of three-way entangled
sources that the (3,2,2) behavior certifies entangled mea-
surements specifically. Indeed, Jordan’s lemma ensures that
any (3,2,2) behavior can be simulated with (nonentangled)
measurements on qubits [38] and we provide in SM Sec. 5
an explicit example satisfying the conditions of Theorem 1
with a GHZ state [22]. The assumption of the absence of
three-way entangled sources is also required in Refs. [20,21]
for noise-robust device-independent certification of
entangled measurements, and while the assumption can
be well motivated physically in appropriate setups, it can
be argued to technically represent a weakening to a semi-
device-dependent scenario. However, this assumption is not
invoked in the original argument concerning the noise-free
behavior of Ref. [19]. But we find that even the original
behavior of Ref. [19] is simulable with networks of bipartite
PR boxes.
In the scenario of Ref. [19], reformulated as a Bell game,

Alice and Charlie still have binary settings and outcomes,
but now Bob has three settings Y ∈ f0; 1; 2g, each with
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four outcomes modeled as a binary pair B ¼ ðBA; BCÞ.
When Y ∈ f0; 1g, two subgames are won if A ⊕ BA ¼ XY
and C ⊕ BC ¼ ZY; these are two parallel CHSH games
played by Alice-Bob and Bob-Charlie. When Y ¼ 2, the
winning condition is A ⊕ C ¼ XZ ⊕ ðXBA ⊕ BCÞ; this
constitutes four variants of an Alice-Charlie CHSH game,
corresponding to each potential value of B. As argued in
Ref. [19], a strategy utilizing bipartite Bell states and a

Bell basis measurement for Y ¼ 2 can win all the CHSH
games to the quantum maximum [cos2ðπ=8Þ ≈ 85%],
whereas no strategy without an entangled measurement
can do so even if tripartite entangled states are available.
However, a network of PR boxes as in Fig. 3(b) fulfills the
following theorem.
Theorem 3.—The Bell game of Rabello et al. [19]

described above can be won with probability 1 by a
behavior in NS2.
The results of this Letter provide a minimally complex

approach to witnessing entangled measurements, situated
in the wider context of classifying different notions
of genuine multipartite nonlocality. The techniques of
Theorem 1 may also be useful in other paradigms: for
example, in the triangle network without global shared
randomness, the behavior of Ref. [39] was conjectured to
require entangled measurements but was only recently
proven to do so [40]. And the results of Theorems 2 and
3 indicate that claims of nonsimulability by PR boxes for
behaviors invoking entangled measurements (such as is
suggested for the behavior in Ref. [39], but this remains
unproven) must be carefully evaluated. Whether any
tripartite behaviors exist in region R3 of Fig. 2 remains
an open question with important implications for a theory-
independent understanding of entangled measurements.
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and W. K. Wootters, Teleporting an Unknown Quantum
State via Dual Classical and Einstein-Podolsky-Rosen
Channels, Phys. Rev. Lett. 70, 1895 (1993).

[24] N. Gisin, Entanglement 25 years after quantum teleporta-
tion: Testing joint measurements in quantum networks,
Entropy 21, 325 (2019).

[25] E. Wolfe, R. Spekkens, and T. Fritz, The inflation technique
for causal inference with latent variables, J. Causal Infer. 7,
20170020 (2019).

[26] I. Šupić and J. Bowles, Self-testing of quantum systems: A
review, Quantum 4, 337 (2020).

[27] J. Watrous, The Theory of Quantum Information (Cambridge
University Press, Cambridge, England, 2018).

[28] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E.
Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters,
Quantum nonlocality without entanglement, Phys. Rev. A
59, 1070 (1999).

[29] M. Navascués, E. Wolfe, D. Rosset, and A. Pozas-Kerstjens,
Genuine Network Multipartite Entanglement, Phys. Rev.
Lett. 125, 240505 (2020).

[30] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu,
and D. Roberts, Nonlocal correlations as an information-
theoretic resource, Phys. Rev. A 71, 022101 (2005).

[31] B. S. Tsirelson, Some results and problems on quantum
Bell-type inequalities, Hadronic J. Suppl. 8, 329 (1993).

[32] X. Coiteux-Roy, E. Wolfe, and M.-O. Renou, Any physical
theory of nature must be boundlessly multipartite nonlocal,
Phys. Rev. A 104, 052207 (2021).

[33] A. Peres, ed., Quantum Theory: Concepts and Methods
(Springer, Dordrecht, 2002).

[34] M. Nielsen and I. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[35] J. Kaniewski, Analytic and Nearly Optimal Self-Testing
Bounds for the Clauser-Horne-Shimony-Holt and Mermin
Inequalities, Phys. Rev. Lett. 117, 070402 (2016).

[36] A. J. Short, S. Popescu, and N. Gisin, Entanglement swap-
ping for generalized nonlocal correlations, Phys. Rev. A 73,
012101 (2006).

[37] J. Barrett, Information processing in generalized probabi-
listic theories, Phys. Rev. A 75, 032304 (2007).

[38] L. Masanes, Extremal quantum correlations for N parties
with two dichotomic observables per site, arXiv:quant-ph/
0512100.

[39] M.-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin,
and S. Beigi, Genuine Quantum Nonlocality in the Triangle
Network, Phys. Rev. Lett. 123, 140401 (2019).

[40] P. Sekatski, S. Boreiri, and N. Brunner, Partial self-testing
and randomness certification in the triangle network, arXiv:
2209.09921.

PHYSICAL REVIEW LETTERS 130, 250201 (2023)

250201-6

https://doi.org/10.1103/PhysRevLett.109.070401
https://doi.org/10.1103/PhysRevLett.109.070401
https://doi.org/10.1103/PhysRevLett.126.040501
https://arXiv.org/abs/2004.09194v2
https://doi.org/10.1103/PhysRevLett.127.200401
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.104.012210
https://doi.org/10.1103/PhysRevA.104.012210
https://doi.org/10.1007/BF02058098
https://doi.org/10.1103/PhysRevLett.129.150401
https://doi.org/10.1103/PhysRevLett.129.150401
https://doi.org/10.1103/PhysRevLett.129.060401
https://doi.org/10.1103/PhysRevLett.129.060401
https://doi.org/10.1103/PhysRevLett.129.150402
https://doi.org/10.1103/PhysRevLett.129.150402
https://doi.org/10.1103/PhysRevLett.107.050502
https://doi.org/10.1103/PhysRevLett.121.250506
https://doi.org/10.1103/PhysRevLett.121.250507
https://doi.org/10.1103/PhysRevLett.121.250507
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.250201
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.3390/e21030325
https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevLett.125.240505
https://doi.org/10.1103/PhysRevLett.125.240505
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1103/PhysRevA.104.052207
https://doi.org/10.1103/PhysRevLett.117.070402
https://doi.org/10.1103/PhysRevA.73.012101
https://doi.org/10.1103/PhysRevA.73.012101
https://doi.org/10.1103/PhysRevA.75.032304
https://arXiv.org/abs/quant-ph/0512100
https://arXiv.org/abs/quant-ph/0512100
https://doi.org/10.1103/PhysRevLett.123.140401
https://arXiv.org/abs/2209.09921
https://arXiv.org/abs/2209.09921

