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Contagion processes on networks, including disease spreading, information diffusion, or social
behaviors propagation, can be modeled as simple contagion, i.e., as a contagion process involving one
connection at a time, or as complex contagion, in which multiple interactions are needed for a contagion
event. Empirical data on spreading processes, however, even when available, do not easily allow us to
uncover which of these underlying contagion mechanisms is at work. We propose a strategy to discriminate
between these mechanisms upon the observation of a single instance of a spreading process. The strategy is
based on the observation of the order in which network nodes are infected, and on its correlations with their
local topology: these correlations differ between processes of simple contagion, processes involving
threshold mechanisms, and processes driven by group interactions (i.e., by “higher-order” mechanisms).
Our results improve our understanding of contagion processes and provide a method using only limited
information to distinguish between several possible contagion mechanisms.
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Many phenomena can be described as contagions, such
as disease spreading, information diffusion, or propagation
of social behaviors [1–6]. Modeling contagion processes in
a population typically includes two main steps. First, one
describes how the state of the hosts (individuals who
receive and propagate the disease, or information, or
behavior) can evolve. For instance, one often assumes that
they can only be in one of few possible states, such as
susceptible (healthy), infectious (having the disease or
information and able to transmit it), or recovered (cured
and immunized). Second, the propagation is described
along the structure of interactions between hosts, often
encoded through a network in which nodes represent hosts
and links represent their interactions. The resulting network
epidemiology framework has been applied to the spread of
human and computer viruses [4,6,7], rumors [8,9], inno-
vations [10–14], or behavior [15].
Depending on the phenomenon, the fundamental propa-

gation mechanisms are different. To describe the spread of
infectious diseases, models of simple contagion, in which it
is enough to have a single interaction between a susceptible
and an infectious to lead to a transmission event, are
adequate [1,6]. In social contagion of behaviors, peer
influence and reinforcement mechanisms can play an
important role, and empirical evidence indicates that single
interactions are not sufficient to cause transmission [15–
20]. These cases are hence better described by so-called
complex contagion models, in which each transmission
event requires interactions with multiple infectious hosts
[12,18,21–23].
For both simple and complex contagions, most studies

start from a propagation mechanism and design models to

represent it and study how the structure of the interaction
network impacts the spread [6]. In general, these inves-
tigations focus on averages over realizations of the process,
and compare the phenomenology of processes and how
they depend on the network structure. However, when
empirical data related to a spreading process are observed, it
concerns a single instance and one cannot average over
multiple instances to obtain overall statistics. Therefore,
here we address the issue of determining, from the obser-
vation of a single instance of a contagion process on a
network, whether it is governed by a simple or complex
contagion, and whether threshold or group effects are
involved. Previous works have tried to identify the footprint
of different contagion models on real or simulated proc-
esses. Evidence of complex contagion has been found in
real data, observing the temporal evolution of the number of
infectious [18,20,24,25], or by investigating how the
contagion probability of a node depends on infectious
neighbors [17–19,26]. Other rather data demanding
techniques involve using deep learning [27] or comparing
spreading processes on different network structures [15,28].
However, we still lack a clear identification of the main
features distinguishing simple and complex processes.
Here, we put forward a new method based on the

correlations between the order in which successive nodes
in the network are reached by the spread and their basic
local properties. We show that paradigmatic models of
simple and complex contagion lead to different correlation
patterns, and how to exploit them to build a classification
tool able to determine whether a given instance of a
spread is due to a simple contagion, a threshold model,
or a higher-order contagion model. We investigate the
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robustness of our classifier with respect to incomplete data,
and the possibility to apply it to a process taking place on an
unknown network, i.e., different from the one(s) on which
the classifier has been calibrated, as knowing the detailed
structure of the network on which a contagion occurs is
often challenging [29–31].
Models of contagion.—We consider four contagion

processes on networks. For simplicity, we use SI models,
i.e., each node can only be in two states, susceptible (S) or
infected (I), and infected nodes do not recover. We consider
processes in discrete time, differing in the mechanism
determining how a node can switch from the S to the I state.
We first consider a simple contagion process [Fig. 1(a)]:

every susceptible node can be infected independently by
each of its infected neighbors with a probability per unit
time β. The disease spreads thus along the pairwise links
among nodes.
The second process [Fig. 1(b)] is the deterministic

threshold model [12]: a susceptible node becomes infected
when the fraction of its neighbors that are infected reaches a
threshold θ, to mimic the fact that an individual may adopt
an innovation only if enough friends are already adopters.
We also consider two models of complex contagion that

involve higher-order contagion mechanisms, i.e., inter-
actions among groups of nodes [32]. First, the simplicial
model takes place on simplicial complexes and the higher-
order contagion is regulated by a parameter βΔ [Fig. 1(c)].
Second, the nonlinear hypergraph (NLH) model takes place
on hypergraphs and is regulated by parameters λ and ν
[Fig. 1(d)]. See Appendix and Fig. 1 for details.
Given an observed single realization of one of these

models on a network, our goal is to devise a method to

determine which model it corresponds to. To this aim, we
consider several empirical datasets as the substrates on
which the processes unfold. We use data representing
physical or online interactions between individuals in
several contexts: a workplace [33], educational contexts
[34–37], a scientific conference [33], a hospital [38], and an
email dataset [39,40]. These data are temporally resolved
but we consider the aggregated networkGD, the aggregated
hypergraph HD, and its projection on hyperedges of size at
most 3 H3

D (defined in the Appendix). The degree ki of an
individual is the number of links involving i in GD, while
we denote by kΔi the number of hyperedges of size 3 to
which i belongs in H3

D. We consider here for simplicity
unweighted networks and hypergraphs, but each link or
hyperedge can be weighted by the number of times that the
corresponding interaction has been observed during the
data collection. We discuss the case of weighted networks
and hypergraphs in the Supplemental Material (SM). In the
main text, we give mostly results obtained with the work-
place dataset and refer to the SM for the other datasets.
Results.—Simple contagion processes on networks are

characterized by hierarchical dynamics: large degree nodes
are reached early, and a cascade follows towards small
degree nodes [46]. In general, the order in which nodes are
infected can be influenced by their degrees, as illustrated in
Fig. 1 for single instances of each process. This is explored
further in Fig. 2(a), where we show the distribution of the
Spearman correlation C1 ¼ corrðo; kÞ between the order in
which nodes are infected and their degree k [47], computed
for each numerical realization of each model and for a wide
range of parameter values. The distributions are similar for
the simple and higher-order contagion processes, with

(a) (b) (c) (d)

(e) (f) (i) (j) (k)(g) (h) (l)

FIG. 1. The first row reports a toy network at an intermediate stage of the process (in which contagion events have taken place,
resulting in four infected nodes, shown in black) and how the different models of propagation would imply contagion of further nodes
(colored). Contagion events occur, respectively, (a) in simple contagion, along the network edges, with probability β per unit time for
each edge; (b) when a susceptible node sees a fraction of infected neighbors that is above a threshold θ (here θ ¼ 0.5); (c) both along
network edges (rate β) and if a susceptible is part of a simplex of three nodes in which the two others are infected (rate βΔ); (d) along
hyperedges, a susceptible node sharing a hyperedge with n infected becoming infected at rate λnν. The second row gives scatterplots of
ki vs oi and kΔi =ki vs oi for single numerical realizations of each model on the workplace dataset, where oi is the order in which the node
i, with degree ki and belonging to kΔi hyperedges of size 3, has been reached by the propagation in that realization. The values of the
corresponding correlation coefficients are given in the plots. Parameters: β ¼ 0.005 in panels (e) and (f), θ ¼ 0.007 in (g) and (h),
β ¼ 0.005, βΔ ¼ 0.8 in (i) and (j), ν ¼ 4, λ ¼ 0.001 in (k) and (l). The colored curves report the mean of all ki or kΔi =ki for each oi.
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similar ranges of (only negative) correlation values, while
the distribution of C1 obtained for the threshold process has
a broader support including positive values. We thus
consider the possibility to use the value of C1 to identify
whether a given realization results from the threshold
model or from another model. We use the parametric
Receiver Operating Characteristic (ROC) curve (see
Appendix) to summarize the quality of the classifier as
the area under the ROC curve (AUC), which is 0.5 for a
random classification and 1 for a perfect one. The ROC
curve for the workplace dataset is shown in Fig. 2(b), with a
very high AUC of 0.95.
To identify processes involving higher-order mecha-

nisms, we need to take into account the participation of
nodes to higher-order structures. We thus consider the
correlation between the order in which nodes are infected
and the ratio kΔ=k between the number of hyperedges of
size 3 to which they belong and their degree: C2 ¼
corrðo; kΔ=kÞ [48]. Figures 1(f), 1(h), 1(j), and 1(l) illus-
trate the correlation C2 on specific instances of each
process, and Fig. 2(c) shows its distribution over multiple
instances. The distributions are similar for the simplicial

and NLH contagion cases on the one hand, and for the
simple and threshold models on the other hand. Very good
classification performances are attained, as quantified by
the ROC curves obtained when using C2 to classify
instances of the simplicial model [Fig. 2(d)] or of the
NLH model [Fig. 2(e)] against instances of simple and
threshold processes. We study in the SM [40] how this
performance depends on the model parameters.
We now combine the previous results using C1 and C2 to

build a global classifier. We consider in addition the
correlations between the order o of infection of nodes with
kΔ and with kj, their number of purely pairwise links
(excluding connections part of higher-order interactions):
respectively, C3 ¼ corrðo; kΔÞ and C4 ¼ corrðo; kjÞ. We
use a Random Forest (RF) classifier [49], a standard
machine learning method, to perform the overall classi-
fication of instances of the four models. The performance
of this classification task can be assessed by the confusion
matrix depicted in Fig. 3(a): it gives in row x and column y
the number of instances of a model x that are classified as

(a)

(b) (d)

(e)

(c)

FIG. 2. Results for the workplace dataset. (a) Distributions of
C1 for the four contagion models. (b) ROC curve when using C1

to classify threshold model processes against the other three.
(c) Distributions of C2 for the four contagion models. (d) ROC
curve when using C2 to classify simplicial against simple and
threshold models. (e) ROC curve when using C2 to classify NLH
against simple and threshold models. For the stochastic models
(simple, simplicial, and NLH) 1000 realizations are implemented
for each parameter setting, always starting with one random
infected node. For the deterministic threshold model we use only
one realization for each different initial condition, i.e., one for
each network node, for each parameter value. Parameters: β ∈
f0.005; 0.008; 0.014; 0.023; 0.039g for both simple and simpli-
cial models, βΔ ¼ 0.8, λ ∈ f0.0001; 0.001; 0.006; 0.011; 0.015g,
ν¼4, θ∈f0.01;0.02;0.03;0.04;0.05;0.06;0.07;0.08;0.09;0.10g.

(a)

(d) (e)

(b)

(c)

FIG. 3. (a) Confusion matrix with four classes: S (simple), C-S
(complex simplicial), C-NL (complex NLH), and C-T (complex
threshold). 3288 instances used for training and 1096 for testing
(with approximately the same number of instances for eachmodel).
(b) Confusion matrix merging C-S and C-NL into C-HO (complex
higher-order). 2466 instances used for training and 822 for testing.
(c) Accuracy of RF classification with classes S, C-T, C-HO at
varying β in simple and simplicial. 2247 instances used for training
and 750 for testing for each value of β. (d) Confusion matrix
obtained by combining results on nine different networks. The
relative accuracy assembling in classes S, C-T, C-HO is 0.84.
51 609 instances used for training and 17 203 for testing.
(e) Confusion matrix obtained by training the classifier on ten
surrogate networks (obtainedwith SDCmethod, seeRef. [40])with
statistical properties similar to the workplace dataset and testing
using processes run on the real data. The accuracy when consid-
ering three classes S, C-T, C-HO is 0.85. 33 220 instances used for
training and 4384 for testing. The parameters are set as in Fig. 2.
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resulting from model y. Simple and threshold model
instances are identified almost perfectly, while simplicial
and NLH model instances are confused more easily.
Merging the higher-order model realizations as one unique
class of Complex higher-order (C-HO) processes results in
a very high accuracy [Figs. 3(b) and 3(c)]. The classifier
yields similar results for simulations implemented on each
of the nine interaction networks we consider [40].
Up to now, we have considered that the classifier is

trained using data coming from one network, and applied
on processes run on the same network, and that the order of
contagion and the local properties of all nodes are known.
We now examine less idealized conditions. In particular, we
start by relaxing the hypothesis of a full knowledge of the
network structure, as measuring the full detailed structure
of networks on which spreading processes can occur, such
as contact networks, is a much more challenging task
[29,31] than getting information on purely local properties
[50]. First, we examine the case in which instances of the
contagion processes occurring on different datasets are
mixed: one can thus consider that the process to be
classified has taken place on an unknown network, but
that network has been used among others to train the classi-
fier. The resulting accuracy is still very high [Fig. 3(d)] for
the distinction between simple, threshold-based, and
higher-order based contagion processes. To understand
further the generalizability of the classifier, we also con-
sider the case of a process observed on a completely “new”
network, while the classifier has been trained using
processes run on other network(s). A first case consists
in using one or several of the available datasets for training,
and another for testing. The resulting accuracy depends on
the datasets chosen for training and testing [40], and
remains high in many cases, which indicates a certain
generalizability. These results also have limitations: the
unfolding of a spread depends on the network structure, so
that a classifier trained using one network cannot be blindly
applied to a completely different one. However, recent
works have also shown that statistical properties describing
a spreading process can be obtained even from limited
information on the network it unfolds on [51,52]. We thus
assume that the detailed structure of the dataset HD on
which the spread to be classified has occurred is unknown.
However, using the information on the degrees in H3

D
(assumed known anyway, as they represent the minimum
information needed to compute the correlations fed into the
classifier), we can generate surrogate data, i.e., synthetic
networks having similar degree distributions as H3

D. In
addition, we envision the case in which the group structure
of the data is known (e.g., classes in a school), as it is
known to be relevant to spreading processes [51,52] and
also build surrogate data reproducing this structure. We
consider in the SM [40] three possible ways to built such
surrogate datasets. In each case we train the classifier using
processes run on the surrogate data and classify processes

run on the original data. We show that large values of the
accuracy are recovered, as long as the algorithm for
creating the surrogate data performs sufficiently well
[see Fig. 3(e) for the workplace dataset, and [40] for a
more extensive analysis concerning all datasets and surro-
gate data types].
We finally report in the SM [40] results obtained when

relaxing the assumption of a complete observation of the
spreading instance. First, we assume that only a fraction of
the nodes (chosen arbitrary at random) can be observed.
The values of the correlations are thus computed using only
the order of infection and degrees of the observed nodes
(both for training and testing). In this case, the accuracy of
the classifier remains high, with values above 0.7 even
when only 20% of the nodes are observed. This can be
understood by the robustness of the correlations when
randomly removing a fraction of the data points. If instead
only the order of infection and the degrees of the first h
infected are known, the performances are more impacted.
To observe, e.g., the occurrence of a cascade from large to
small degrees, the first data points might indeed not be
sufficient, and having information beyond the initial phase
brings more accurate results.
Discussion.—We have developed a framework for clas-

sifying contagion processes on networks through the
observation of correlations between the order in which
nodes are reached and their local structural properties. The
classification task (i) uses only local information, without
the need to access the whole network structure, (ii) does not
use any information on the infection status of the nodes’
neighbors, (iii) is applied on single instances of a process,
and (iv) can distinguish between a simple contagion
process, a process driven by a threshold mechanism, and
a process involving contagion on higher-order interactions.
The proposed classifier yields a very good accuracy on
several real-world networks, remaining robust against
partial observation of the process. Moreover, although it
cannot be trained with and applied to processes run on
networks with very different properties, it can be applied on
a process occurring on an unknown network as long as it is
possible to generate surrogate data with similar statistical
properties to produce the training set.
Our Letter has several limitations worth discussing. First,

we have assumed to have access to the precise values of the
degrees for all observed nodes, as well as the precise
ordering of infection. To be more realistic, one could
simulate the use of estimated values by inserting noise
in the degree values. As the classifier is based on the
measure of correlations, we expect that its accuracy should
not be strongly impacted. It could however be affected by,
e.g., extreme errors such as hubs classified mistakenly as
low degree nodes or vice versa. Second, we have consid-
ered SI models, where nodes do not recover, and all nodes
are finally reached if the network is connected. More
realistic models consider that nodes do not remain
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infectious at all times. A preliminary study using the SIR
framework yields similar results [40], but we leave further
investigations of the role of the recovery parameters and of
more complex models to future works (e.g., including a
latency period and/or asymptomatic state).
Finally, we have considered a limited series of datasets as

substrate, and the classifier performance depends on the
network characteristics and on the networks used to
produce the training set. Other datasets might have different
properties, such as, e.g., geometric embeddings, which
could impact the spreading properties; additional features
might then be added to the classifier. Overall, it is expected
that the classifier cannot be fully general (trained using a
randomly chosen network and tested on another one), since
the properties of a spread depend on the network’s
structure. As obtaining detailed knowledge of the structure
of networks on which spreading processes occur is chal-
lenging [29,31], we have started to explore the general-
izability of the classifier to a new dataset, showing the
possibility to train it using surrogate datasets which respect
the known statistical properties of the new data. These
considerations open the door to future studies investigating
how different network structures affect the classifier’s
performance, which properties are the most important
for building surrogate data, and to find new algorithms
to this aim.

A. B. and M.M. acknowledge support from the Agence
Nationale de la Recherche (ANR) project DATAREDUX
(ANR-19-CE46-0008).

Appendix A: Higher-order models of contagion.—
Higher-order models of contagion can be defined on
hypergraphs or simplicial complexes, in which a hyperedge
of size m represents an interaction among a group of m
nodes (simplicial complexes are hypergraphs H such that,
for each hyperedge—simplex—e ¼ fi1;…; img, all sub-
sets of e are also hyperedges of H). We use the simplicial
contagion [21] model, considering simplices up to the
second order, i.e., interactions between three nodes, and
neglecting structures of higher orders (which thus appear
only as decomposed into second order simplices). Each
susceptible node can be infected by an infectious neighbor
with rate β (as in the simple contagion), but also if it
belongs to a simplex of three nodes in which the two others
are infectious. This second process happens with rate βΔ

[Fig. 1(c)] and is thus specific to the existence of hyper-
edges (no such process takes place on “empty” triangles
which are cliques in the projected networks but not
hyperedges). In addition, we consider the nonlinear hyper-
graph (NLH) model [23], which includes contagion proc-
esses in interactions of arbitrary sizes: if in a hyperedge of
size m there are n infected individuals, each of the
remaining m − n susceptible nodes is independently
infected with probability λnν at each time step [Fig. 1(d)],
with λ and ν free parameters. The case ν ¼ 1 reduces to a

simple contagion, while the nonlinearity for ν ≠ 1 leads to
reinforcement (for ν > 1) or inhibition (for ν < 1) effects
and thus to a complex contagion phenomenology, as
explored in [23].

Appendix B: Aggregated networks, hypergraphs, and
degrees.—All the data that we use are temporally resolved,
giving the specific time of each interaction and, for each
dataset D, we consider the aggregated network GD: each
link in GD represents the fact that the two corresponding
individuals have been in contact at least once during the
data collection. The degree ki of an individual is then the
number of links involving i in GD. Similarly, we define the
aggregated hypergraph HD: a hyperedge of size m repre-
sents a simultaneous group of m nodes observed at least
once: the availability of temporally resolved data allows us
thus to distinguish in the aggregated network between
hyperedges and cliques. We also consider the hypergraph
H3

D restricted to hyperedges of size at most 3: each
hyperedge of larger size in HD is simply decomposed into
all its groups of nodes of size 3, and we denote by kΔi the
number of hyperedges of size 3 to which i belongs in H3

D.

Appendix C: ROC curve.—The receiver operating char-
acteristic curve is a parametric method to assess the
possibility to classify data. Let us consider the case of
classification between threshold and nonthreshold models
observing instances of correlation C1. The curve is built as
follows: given the parameter c ∈ ½−1; 1�, we classify each
instance having C1 ≥ c as resulting from a threshold
model. If the instance was really produced by the threshold
model, it is a true positive (TP), and else a false positive
(FP). If the instance instead has a correlation C1 < c, it is
classified as resulting from one of the simple, simplicial, or
NLH processes: if this is correct, it is a true negative (TN),
while if it was a threshold process it is a false negative (FN).
The ROC curve presents, as c varies, the true positive ratio
TPR ¼ TP=ðTPþ FNÞ, i.e., the fraction of instances of
threshold model that are correctly classified, versus the
false positive ratio FPR ¼ FP=ðFPþ TNÞ, i.e., the fraction
of instances of the other models that are wrongly classified.
This example of classification leads to the resulting curves
reported in Figs. 2(b), 2(d), and 2(e).
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