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The local equilibrium thermodynamics is a basic assumption of macroscopic descriptions of the out of
equilibrium dynamics for Hamiltonian systems. We numerically analyze the Hamiltonian Potts model in
two dimensions to study the violation of the assumption for phase coexistence in heat conduction. We
observe that the temperature of the interface between ordered and disordered states deviates from the
equilibrium transition temperature, indicating that metastable states at equilibrium are stabilized by the
influence of a heat flux. We also find that the deviation is described by the formula proposed in an extended
framework of the thermodynamics.
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Introduction.—The macroscopic dynamics of a
Hamiltonian system driven by nonequilibrium boundary
conditions is expected to be described by hydrodynamic
equations with local equilibrium thermodynamics [1–6].
However, there are exceptional cases, such as the shear flow
near a liquid-gas critical point [7], where suppression of
critical fluctuations by the shear flow modifies the thermo-
dynamic properties [8], and as a result, the local equilibrium
thermodynamics is violated. A natural question is whether
the violation of the local equilibrium thermodynamics occurs
except at critical points. The aim of this Letter is to provide a
definitive example by studying nonequilibrium dynamics
near the first-order transition point.
A first-order phase transition is a different type of

singularity than the critical point [9–12]. A characteristic
feature of a first-order phase transition is the existence of
hysteresis [13]. For an order-disorder transition [14,15],
the observed transition temperature when a material is
cooled from the disordered state is lower than the transition
temperature when the same material is heated from the
ordered state. Such transition temperatures, generally both
in cooling and heating, deviate from the equilibrium
transition temperature Tc. Thus, the supercooled disordered
or the superheated ordered states are often observed as a

transient dynamical process. These observations may
suggest that the metastable states become steady states
when the system sets up at nonequilibrium conditions. To
explore this possibility, we consider steady states in heat
conduction where two heat baths with temperatures T1 and
T2 are attached at the left and right sides of the system.
We assume that T1 and T2 satisfy T1 ≤ Tc ≤ T2 to

observe phase coexistence, where ordered and disordered
states appear at the low and high temperature sides,
respectively, with a unique interface separating the two
phases. Our main question in this Letter is whether the
temperature of the interface is equal to Tc. If the local
equilibrium thermodynamics is assumed to hold at each
point of the system, the interface temperature should be
equal to the equilibrium transition temperature. However,
the validity of this assumption is not obvious because of the
existence of metastable states. To our best knowledge, there
have been no experimental studies on this question, while a
rich variety of nonequilibrium phase-coexistence phenom-
ena have been studied including flow boiling heat transfer
and pattern formation in crystal growth [16–21].
We study the interface temperature by numerical

simulations of a model that exhibits phase coexistence
in steady heat conduction. Since there is no standard
model for order-parameter dynamics with conducting
energy, in this Letter, we propose the Hamiltonian Potts
model in two dimensions. We first confirm the coexist-
ence of ordered and disordered states in an isolated system
by numerically solving the Hamiltonian equation. Then,
imposing a heat flux at the boundary with the total energy
fixed, we produce the phase coexistence in steady heat
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conduction. A remarkable property in this system is that
the interface temperature deviates from the equilibrium
transition temperature. This indicates that metastable
states are stabilized. That is, metastability is controlled
by the heat flux. Furthermore, we find that the deviation is
well fitted by the formula proposed in an extended
framework of thermodynamics, which we call global
thermodynamics [22–24]. It provides a quantitative pre-
diction of the phase coexistence in the steady heat
conduction, in contrast to other extended frameworks
of thermodynamics [25–32].
Model and observables.—We study the Hamiltonian

Potts model with q-fold symmetry in two dimensions.
Let ϕaðrÞ, a ¼ 1; 2;…q − 1, be a q − 1 components field
defined in a rectangular region D≡ ½0; Lx� × ½0; Ly� with
Lx > Ly. We express ðϕ1;…;ϕq−1Þ as ϕ. The conjugate
momentum field of ϕaðrÞ is expressed by πaðrÞ, where π
represents ðπ1;…; πq−1Þ. We assume the total Hamiltonian
H as

Hðϕ; πÞ ¼
Z
D
d2r

�
1

2

Xq−1
a¼1

½ðπaÞ2 þ j∇ϕaj2� þ VðϕÞ
�
; ð1Þ

where the potential VðϕÞ possesses q symmetric minima in
Rq−1. Let μk, 1 ≤ k ≤ q, be coordinates of the q vertices for
the regular (q − 1) simplex inRq−1 as illustrated in Fig. 1(a)
for the cases q ¼ 2, 3, and 4, where the centroid of the
simplex is located at the origin. The explicit form of μk is

given in Supplemental Material [33]. As a potential with
minima at μk, we set

VðϕÞ ¼ 1

2

Yq
k¼1

Xq−1
a¼1

ðϕa − μakÞ2: ð2Þ

This potential is regarded as a continuous extension of the
standard q-state Potts model. We thus expect that the
equilibrium statistical mechanics for H describes the same
phase transitions as those observed in the standard Potts
model. As for the standard q-state Potts model, the model
exhibits a first-order transition at a temperature Tc for q ≥ 5
in equilibrium [37]. In this Letter, we numerically study
the case q ¼ 11 for Lx ¼ 384 and Ly ¼ 64. The system is
spatially discretized with a grid spacing Δx ¼ 1=8 [33].
The Boltzmann constant is set to unity.
We define the local kinetic energy density per unit degree

of freedom and the local order parameter as

T̂ðrÞ ¼
Pq−1

a¼1½πaðrÞ�2
q − 1

; m̂ðrÞ≡Xq−1
a¼1

ϕaðrÞμa1; ð3Þ

where the direction of symmetry breaking is fixed to the μ1
direction in our numerical simulations by choosing specific
initial conditions [33]. Their average over the y direction
with x fixed is expressed as

½Â�x ¼
1

Ly

Z
Ly

0

dy ÂðrÞ; ð4Þ

where Â is T̂ or m̂.
Equilibrium phase coexistence.—We first examine the

equilibrium phase diagram by numerically investigating
the isothermal dynamics [33]. The first-order transition is
observed at T ¼ Tc ≃ 0.15, where the energy density
changes discontinuously at T ¼ Tc. The system is occupied
by the ordered and disordered states forT < Tc andT > Tc,
respectively. The phase diagram is shown in Fig. 1(b).
With the knowledge of the phase diagram, we concen-

trate on an isolated system with the total energy E fixed.
The time evolution is given by the Hamiltonian equation

∂tϕ
a ¼ δH

δπa
; ∂tπ

a ¼ −
δH
δϕa : ð5Þ

Note that

dH
dt

¼
Z
D
d2r

Xq−1
a¼1

∇ðπa∇ϕaÞ: ð6Þ

For conserving energy, we assume the Neumann boundary
condition in the x direction:

∂xϕjx¼0;Lx
¼ 0 ð7Þ

(a)

(b)

FIG. 1. (a) Examples of (q − 1) simplexes with q vertices in
(q − 1)-dimensional space: a line segment with μ1 and μ2 for
q ¼ 2 (left), a regular triangle with μ1, μ2, and μ3 for q ¼ 3
(middle), and a regular tetrahedron with μ1, μ2, μ3, and μ4 for
q ¼ 4 (right). (b) Phase diagram for the q ¼ 11 Hamiltonian
Potts model (1). The system shows the first-order phase transition
at T ¼ Tc when T is changed, while the ordered and disordered
states coexist in the range E1 < E < E2. Tc, E1, and E2 are
numerically estimated to be Tc ≃ 0.15, E1=ðLxLyÞ ≃ 0.66, and
E2=ðLxLyÞ ≃ 1.09 [33].
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for any y, and periodic boundary conditions in the y
direction.
We start from initial conditions with a single interface

and solve the Hamiltonian equation (5) until an equilibrium
state is realized [33]. Figure 2(a) shows a snapshot of the
local order parameter m̂ðrÞ in equilibrium with an interface
parallel to the y axis minimizing the interfacial energy. We
thus discuss the one-dimensional profile by using the
average over y defined by (4).
Let hÂiE be the long-term average of ÂðrÞ after equili-

bration, which corresponds to the expected value with
respect to the microcanonical distribution with E. We show
the order parameter profile mmcðxÞ ¼ h½m̂�xiE in Fig. 2(c),
which exhibits a typical interface structure. Here, the
superscript “mc” indicates “microcanonical.” The interface
position Xmc defined asmmcðXmcÞ ¼ 0.5 decreases approx-
imately linearly with E such that Xmc ¼ Lx for E ¼ E1

and Xmc ¼ 0 for E ¼ E2. There is no interface for E < E1

and E > E2.
The one-dimensional temperature profile TmcðxÞ ¼

h½T̂�xiE is homogeneous in x even for the phase coexistence

observed in E1 < E < E2. This homogeneous temperature
is equal to Tc obtained in isothermal systems as shown in
Fig. 3 [33]. All these results show that the phase coexist-
ence observed as an equilibrium state for the case E ∈
½E1; E2� is an important feature of the isolated system and
that the behavior is equivalent to the discontinuous change
observed in the isothermal system, as displayed in the
phase diagram in Fig. 1(b).
Nonequilibrium phase coexistence.—We now consider

phase coexistence in heat conduction. Recall that the position
of the interface is uniquely determined in isolated systems for
given E ∈ ½E1; E2�, whereas it is neutral and not under
control in isothermal systems at T ¼ Tc. Thus, energy-
conserving heat conduction could be preferable to standard
heat conduction for a detailed study of thermodynamic
properties. From the thermodynamic equivalence for heat
conducting states as well as equilibrium states [24,33], we
expect that the obtained results for the energy-conserving
heat-conduction systems will explain the phase coexistence
observed in standard heat-conducting systems.
We construct a heat-conducting system where the energy

flows in at x ¼ Lx and flows out at x ¼ 0, while keeping
the energy H constant. That is, we impose a constant heat
flux ðJLy; 0Þ at x ¼ 0 and ðJLy; 0Þ at x ¼ Lx. Recalling
(6), we set

∂xϕ
ajx¼0;Lx

¼ −
JLyπ

ajx¼0;LxR Ly

0 dy
Pq−1

b¼1ðπbÞ2jx¼0;Lx

; ð8Þ

which is a nonequilibrium generalization of (7).
We study the case J ¼ −0.00002 [38]. Figure 2(b) is a

snapshot of the order-parameter density field m̂ðrÞ in the

(a)

(b)

(c)

FIG. 2. (a),(b) Snapshot of the order parameter density m̂ðrÞ in
equilibrium with J ¼ 0 [panel (a)] and the steady state with J ¼
−0.00002 [panel (b)] for E=ðLxLyÞ ¼ 0.88. (c) One-dimensional
order parameter profiles mmcðxÞ and mssðxÞ. The interface
positions Xmc and Xss are obtained as mmcðXmcÞ ¼ 0.5 and
mssðXssÞ ¼ 0.5, respectively. The interface thickness ξss is
estimated by using mssðxÞ ¼ a − b tanh½ðx − x0Þ=ξss�. Inset:
Dependence of Xmc and Xss on the energy density E=ðLxLyÞ.

FIG. 3. One-dimensional temperature profile TssðxÞ for J ¼
−0.00002 and TmcðxÞ for J ¼ 0, where E=ðLxLyÞ ¼ 0.88. The
blue dashed line represents the interface position Xss. The red
dashed line represents the position x� for Tssðx�Þ being the
equilibrium transition temperature Tc. We note that the position
x� is not at the interface region, i.e., x� < Xss − ξss ≃ 0.444L.
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steady state, which can be compared with the equilibrium
case shown in Fig. 2(a). The interface in the steady state is
shifted slightly to the left of the equilibrium interface.
In Fig. 2(c), we display the order-parameter profile
mssðxÞ ¼ h½m̂�xiE;J, where h·iE;J represents the long-term
average in the steady state with E and J. For the interface
position Xss defined by mssðXssÞ ¼ 0.5, we find that
jXss − Xmcj=L ≃ 0.05. The inset plots Xss for an energy
density E=ðLxLyÞ. The relative difference jXss − Xmcj=L
becomes smaller as E approaches E1 or E2.
In Fig. 3, we plot the temperature profile TssðxÞ ¼

h½T̂�xiE;J. An important feature is that the position x�
satisfying Tssðx�Þ ¼ Tc is inside the ordered regions,
i.e., x� < Xss − ξss, where ξss is the interface thickness
as indicated in Fig. 2(c). That is, superheated ordered states
appear in a region where TðxÞ > Tc and mðxÞ > 0.5. This
means that the local equilibrium thermodynamics is vio-
lated due to the heat flux. In other words, the temperature at
the interface θ≡ TssðXssÞ deviates from Tc.
To study the violation more quantitatively, in Fig. 4(a),

we plot θ as a function of E with J ¼ −0.000 02 fixed. It is
notable that the interface temperature θ deviates from the
equilibrium transition temperature Tc for E ∈ ½E1; E2�. The
deviation becomes a maximum around the midpoint of
½E1; E2�, where the interface position is around Lx=2. The
superheated regions disappear for E → E1 or E2, where the
system becomes occupied by an ordered or disordered
state. To examine the parameter dependence, we compare
the numerical results for the violation with the formula

θTh ¼ Tc þ jJj
�
1

κo
−

1

κd

�
XðLx − XÞ

2Lx
; ð9Þ

which was proposed in the global thermodynamics frame-
work [23], where κo and κd are the heat conductivities of
ordered and disordered states, respectively, and X is the
position of the interface. The formula (9) can be derived for
the order-disorder transition [33]. In Fig. 4(a), we simulta-
neously plot θ and θTh, where the latter is obtained by
substituting Xmc into X in (9). We find that θ directly
measured in numerical simulations is in qualitative agree-
ment with θTh determined by the formula (9). The dis-
crepancy is due to a nonlinear effect of jJj as shown in the
inset of Fig. 4(a).
Finally, we investigate the finite size effects. We find that

the violation of local equilibrium becomes weaker for
smaller Lx or larger Δx. Instead of the original system
consisting of 3073 × 512 grid points with Δx ¼ 1=8, we
study smaller systems consisting of 1537 × 256 grid points
and 768 × 128 grid points, keeping the value of Δx fixed.
The results are shown in Fig. 4(b). The interface temper-
ature deviates from the theoretical curve and eventually
reaches the equilibrium transition temperature. This indi-
cates that long-wavelength fluctuations play an important
role in the violation of local equilibrium properties.

A similar trend is observed for rough systems with larger
values of Δx for the same system size. The interface
temperature becomes closer to Tc as Δx increases from
1=8 to 1=2. This implies that regularity of the short
wavelength fluctuations of the continuum fields is also
necessary for the violation, which is in stark contrast to the
properties in equilibrium. We do not observe the violation
of local equilibrium with smaller or rougher systems. These
observations suggest that hydrodynamic fluctuations on
some scales play an important role for the violation of the
local equilibrium at the interface.
Concluding remarks.—In this Letter, we studied non-

equilibrium phase coexistence under a heat flux using the
two-dimensional Hamiltonian Potts model with q ¼ 11.

(a)

(b)

FIG. 4. (a) Interface temperature as a function of the energy
density E=ðLxLyÞ for J ¼ −0.000 02. The green points are
numerical values θ≡ TssðXssÞ and the red points are the theoretical
predictions θTh in (9), substituting the numerically determinedXmc

forX. The blue line corresponds to the green line in Fig. 1(b). Inset:
θ − θTh are plotted for jJj at E=ðLxLyÞ ¼ 0.86 that gives the peak
value. θ − θTh approaches the red line representing a relationship
proportional to jJj2. (b) Finite size effects of the numerically
determined θ for ðLx; Ly;ΔxÞ depicted in the box with
J ¼ −0.000 02. Several symbols are overlapped [33].
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We found that a super-heated ordered region stably appears
in the heat-conducting state. This indicates that the meta-
stable states are controlled by the heat flux. Our numerical
results also quantitatively support the validity of global
thermodynamics. We hope this work triggers further
experimental and theoretical research, such as engineering
thermodynamic metastable states. In conclusion, we
present three remarks.
Although we expect that the violation of local equilib-

rium thermodynamics is generically observed in other
models and experiments, we need to carefully choose the
system conditions. For example, liquid-gas coexistence
under heat conduction was studied using molecular
dynamics simulations, and no violation was observed
[39,40]. We conjecture that the system sizes were too
small to allow long-wavelength fluctuations that would
lead to the violation of local equilibrium thermodynamics.
So far, we do not estimate a crossover system size beyond
which the violation is observed. As a reference, we remark
that a long-range correlation of hydrodynamic fluctua-
tions in a sheared system is observed only when the
particle number exceeds a crossover value of 107 [41]. We
thus expect that the same order of particles are necessary
for the violation. To confirm this conjecture is left for
future study.
From a theoretical viewpoint, an important first study is

to derive the stationary distribution of the heat conduction
system. In the linear response regime, the Zubarev-
McLennan representation is a generalization of the micro-
canonical distribution, where the correction term is
expressed in terms of entropy production [3,4], as dis-
cussed for phase coexistence in heat conduction [42].
Developing a method for estimating this correction term
explicitly for microscopic or mesoscopic models is an
important goal.
The most critical challenge is the observation of the

violation of local equilibrium thermodynamics in labora-
tory experiments. As an example, for the liquid-gas
coexistence for water at 1 atm pressure, the interface
temperature was calculated to be 96 °C when the temper-
atures of the heat baths attached to the left and right sides
were 95 and 105 °C [23]. This means that super-cooled gas
stably appears near the interface due to the heat flux. We
believe that observation of this phenomenon is of funda-
mental importance.
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