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We analyze the onset of diffusive hydrodynamics in the one-dimensional hard-rod gas subject to
stochastic backscattering. While this perturbation breaks integrability and leads to a crossover from ballistic
to diffusive transport, it preserves infinitely many conserved quantities corresponding to even moments of
the velocity distribution of the gas. In the limit of small noise, we derive the exact expressions for the
diffusion and structure factor matrices, and show that they generically have off diagonal components. We
find that the particle density structure factor is non-Gaussian and singular near the origin, with a return
probability showing logarithmic deviations from diffusion.
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Introduction.—Hydrodynamics describes the approach
from local to global thermal equilibrium in generic many-
body systems [1,2]. While it is expected that in the absence
of Galilean or Lorentz symmetry, chaotic systems should
display diffusive hydrodynamics at long enough times,
one-dimensional systems can show nontrivial dynamics as
a result of proximity to integrability, leading to ballistic,
and under some circumstances even superdiffusive or
subdiffusive transport [3–23]. While recent advancements
have provided a cohesive theoretical understanding of the
hydrodynamics of integrable systems based on stable
quasiparticles under the framework of generalized hydro-
dynamics (GHD) [24–26], dynamics away from these fine-
tuned points still remain elusive. For small perturbations
away from integrability it is believed that generically there
will be a crossover from ballistic transport at short enough
time scales to conventional (i.e., diffusive) transport at the
longest timescales [27]. This is a general result that comes
from an agnostic approach to the collision integral based on
perturbation theory and Fermi’s golden rule [28,29]. While
the collision integral and resulting dynamics can be studied
analytically in great detail for certain integrability-breaking
perturbations, such as atom losses [30,31] and smoothly
varying noise [32], most often the best approach to the
problem is through a combination of phenomenological
insights and sophisticated numerics [33–36]. The main
difficulty can be traced back [27] to evaluating the matrix
elements of the integrability-breaking perturbation in
generic generalized equilibrium states, also called “form-
factors,” a daunting task that can only be performed for
small-momentum transfer perturbations or on finite small-
scale systems [37–41].
In this Letter we address the fate of transport in one of the

simplest integrable models in one dimension, the classical
hard-rod gas [42–45], subject to noisy backscattering
perturbations, i.e., stochastic perturbations that reverse
the momentum of particles—and thus correspond to large

momentum transfer. While we focus on the classical hard-
rod gas for concreteness, we note that the hydrodynamics
of all known integrable systems, quantum or classical, can
be mapped onto generalized hard-rod gases [46], so our
conclusions directly generalize to other models. Stochastic
backscattering leads to decay of infinitely many conserved
charges, including momentum, but also preserves infinitely
many residual conserved quantities corresponding to even
moments of the velocity distribution of the gas. The
resulting model thus displays features of both integrable
and chaotic dynamics. In Fig. 1 we show snapshots of what
the dynamics of the hard-rod gas looks like at the integrable
point, as well as in the presence of noisy backscattering.
The main results of this Letter are a derivation of the exact
expressions for the diffusion and structure-factor matrices
of this model. In doing so, we show that the rod density
structure factor is highly non-Gaussian and singular as a
result of the infinitely many residual conservation laws.
Hard-rod gas with stochastic backscattering.—The one-

dimensional hard-rod gas is an integrable model that can be

FIG. 1. Snapshots of the dynamics of hard rods. Left panel:
integrable limit. Right panel: nonintegrable dynamics with back-
scattering at a rate γ > 0. In red, trajectories of quasiparticles. In
the integrable limit, the velocity of quasiparticles gets renormal-
ized as a result of collisions with other quasiparticles. Same initial
conditions in both panels.
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best understood as a set of classical particles subject to a
hard-core repulsive potential

H0¼
XN
j¼1

p2
j

2
þ
X
j<k

Uðxj−xkÞ; UðδxÞ¼
�
0; jδxj>a;

∞; jδxj≤a;

ð1Þ

where a denotes the rods’ length, and xj and pj denote
positions and momenta (setting massm ¼ 1). Starting from
a configuration with xjþ1 − xj ≥ a, the rods evolve freely
until they encounter another rod, xjþ1 − xj ¼ a, at which
point the two rods exchange velocity instantaneously.
Because of the simple kinematics of such elastic collisions,
the full distribution of velocities (or momenta) is conserved
by the evolution and the model is thus integrable.
Quasiparticles can be defined by tagging rods with fixed
momenta (see Fig. 1). Quasiparticles are displaced by an
amount a after each collision, so that they move with
an effective velocity that depends on the density of all
other rods with different momenta. The large-scale, coarse-
grained dynamics of hard rods is described by a
Boltzmann-type equation for the phase-space density
ρkðx; tÞ ¼ ðd2N=dxdkÞ given as [42–44]

∂tρþ ∂xðveffρÞ ¼ 0; veffk ½ρ� ¼ kþa
R
k0 ðk− k0Þρk0 ðx; tÞ
1−a

R
k0 ρk0 ðx; tÞ

:

ð2Þ

This kinetic equation can also be interpreted as a Euler-
scale GHD equation for the hard-rod gas [24,25,44]. There
are diffusive corrections to this equation, due to the
randomness of the scattering shifts arising from thermal
fluctuations of the initial state [44,47–52]; in what follows
we will ignore those as they are subleading in the limit of
weak integrability breaking [28]. The integrability of the
model can be seen from the infinite set of conservation laws
(as N → ∞) corresponding to the various moments with
respect to the velocities, with charge densities qn ¼

R
knρ.

We then introduce an integrability-breaking perturbation
in the following way: with rate γ, we stochastically back-
scatter rods by flipping the sign of their velocity. This
perturbation converts right-moving rods into left-moving
ones, and vice versa. Clearly, this perturbation leads to
momentum relaxation, and breaks the conservation of all
odd moments q2nþ1 of the velocity distribution. On the
other hand, all even charges q2n remain conserved: in other
words, the odd part of the velocity distribution decays,
while the even part remains conserved. Any even velocity
distribution is an equilibrium steady state under this
perturbation.
Generalized Boltzmann equation.—In the presence of an

integrability-breaking perturbation, such as backscattering
noise, Eq. (2) acquires a right-hand side, captured by a

collision integral Ik½ρ�. In what follows we shall be
interested in the linear response regime, so we write
ρkðx; tÞ → ρ�k þ δρkðx; tÞ, such that the stationary state,
ρ�, is an even function of momentum and uniform in
space [the latter condition follows from Eq. (2) subject to
∂tρ

� ¼ 0], ρ�k ¼ nfðkÞ, with n the density of particles and f
an even function. In this regime the resulting linearized
Boltzmann equation reads as [28]

∂tδρþ A∂xδρ ¼ −Γδρ; ð3Þ
where A and Γ are hydrodynamic matrices that act on
velocity space, with Γk;q ≡ −δIk=δρqjρ¼ρ� . The matrix A
follows from linearizing [Eq. (2)], and reads as [44]
A ¼ R−1veffR, with veffk ¼ veffk ½ρ��, R ¼ 1 − θ�T and
θ� ¼ ð1 − anÞ−1ρ� an effective occupation number, and
the kernel T acts as follows on a test velocity function
ðTψÞk ¼ −a

R
dk0ψk0 . All matrix operations in those

expressions act on velocity space. The operator Γ contains
the decay rates of the different conserved modes in the
original integrable model. Residual conserved quantities
thus correspond to zero modes of Γ. In the case of
backscattering noise, we have ðΓψÞk ¼ γðψk − ψ−kÞ. As
expected, this perturbation breaks the conservation of odd
charges, while preserving the remaining ones. Thus the
resulting model is of a new kind, where the system is
neither fully chaotic nor integrable: in the following we will
show that transport is entirely diffusive, despite the exist-
ence of infinitely many conservation laws. The observable
of interest will be the diffusion constant of conserved
modes. Since the system under consideration has infinitely
many conserved charges, the resulting diffusion constant
will be an infinite dimensional matrix. To derive an
expression for this, one can project Eq. (3) onto decaying
and conserved modes. The matrix A will mix all modes, so
the task is to solve the resulting system of equations. To
leading order in a gradient expansion, one can show that the
diffusion matrix reads as [53] (see also Refs. [28,29])

D ¼ P̄AðPΓPÞ−1AP̄; ð4Þ

where P projects onto the subspace of nonconserved
modes, and P̄ onto its complementary, i.e., onto the sub-
space of conserved modes.
Noninteracting limit.—To gain some intuition on the

problem at hand, we first solve the simple limit of free rods
(i.e., a ¼ 0). Intuitively, in that limit each rod is simply
undergoing a random walk with mean-free path vk=ð2γÞ. In
that limit we have Ak;k0 ¼ vkδðk − k0Þ with vk ¼ k, i.e., the
velocity of rods in the absence of interactions. The linea-
rized Boltzmann equation simply couples the ðk;−kÞ
modes:

�
∂t þ vk∂x þ γ −γ

−γ ∂t − vk∂x þ γ

��
δρk

δρ−k

�
¼

�
0

0

�
: ð5Þ
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Going to Fourier space ðω; qÞ, this reveals two eigenvalues
at low energy: ωq¼−i2γþOðq2Þ corresponding to the de-
caying mode δρ−k ≡δρk−δρ−k, and ωq¼−iDq2þOðq4Þ,
with D ¼ v2k=ð2γÞ, corresponding to the diffusive mode
δρþk ≡ δρk þ δρ−k. Similar equations have been discussed,
e.g., in the context of the hydrodynamics of stochastic
conformal field theories [54]. Away from the free particle
limit, the diffusive modes no longer correspond to this
particular combination, as the A matrix will connect modes
of different velocities k. To solve the hard-rod problem with
backscattering we take a step back and solve the limit when
there are only a discrete number of velocities, in which case
A becomes a finite dimensional matrix.
Discrete velocity distribution.—To analyze the case of

discrete number of particles it suffices to analyze the case of
only two particle species (a more detailed analysis may be
found in the Supplemental Material [53]). Consider a back-
ground state given by velocities in the set f�v1;�v2g,
and their respective probabilities fðp1=2Þ; ðp2=2Þg with
p1 þ p2 ¼ 1. We can write down an exact expression for
the discrete version of the hydrodynamic matrices above.
These read as T ¼ −aJ4, Γ ¼ γΓ1 ⊕ Γ2, with J4 the 4 × 4

matrix of all ones, and Γi ¼ ð 1
−1

−1
1
Þ, where the subindex i

refers to the subspace of velocities f�vig. The noise matrix
Γi is diagonalized with the matrix Oi ¼ ð1

1
1
−1Þ revealing a

zero mode corresponding to δρþi ¼ δρRi þ δρLi , with δρR=Li
denoting the density of particles (above the background
state) moving with velocity �vi, respectively. There is also
a decaying mode, corresponding to δρ−i ¼ δρRi − δρLi . Note
that contrary to the noninteracting case, these are not
normal modes of the hydrodynamic equations, since they
do not diagonalize the velocity matrix A. The diffusion
matrix is thus given as

Di;j ¼
X
k

Aðþ;iÞ;ð−;kÞΓ−1
ð−;kÞ;ð−;kÞAð−;kÞ;ðþ;jÞ; ð6Þ

where the different matrices are written in the basis of
� modes (i.e., the matrix A results from a rotation by
O ¼ O1 ⊕ O2). The resulting diffusion matrix has off
diagonal components, where some of these elements
may be negative [53]. However, the matrix has strictly
positive eigenvalues given by

Di ¼
ðveffi Þ2
2γ

; veffi ¼ vi
1 − an

; i ¼ 1; 2: ð7Þ

Thus, the diffusion constant of the long-lived modes of the
model, which are different from the conserved modes ρþi
since the diffusion matrix is not diagonal (in contrast to the
free particle case discussed above), is solely determined by
the effective velocity of the original modes (in the inte-
grable limit) and by the backscattering rate. This formula is
also consistent with previous findings in the Rule 54

cellular automaton [55], and is analogous to the free
particle case discussed above when replacing the velocities
by their renormalized counterparts. This result is fairly
intuitive: backscattering acts simply on the effective qua-
siparticles of the interacting model, so the mean-free path is
set by the effective velocity instead of the bare one; we will
come back to this intuition below.
We focus now on the structure factor of the density of

particles which is the observable of interest, giving us
access to diffusion constant and conductivities. This reads
as Sðx;tÞ¼hδρðx;tÞδρð0;0Þic, with δρ ¼ δρþ1 þ δρþ2 , and
the label c refers to the connected part of the correlator.
With the aid of the eigenvector matrix that diagona-
lizes D given by W with components Wi;i ¼ 1 − anpi,
Wi;j≠i ¼ −anpi, and the equilibrium charge fluctuation
matrix C ¼ hδρδρi ¼ R−1ρ�RT in the eigenmode basis, we
can compute the structure factor matrix for the conserved
modes Si;jðx; tÞ ¼ hδρþi ðx; tÞδρþj ð0; 0Þic. The exact expres-
sions for these may be found in the Supplemental Material
[53]. The rod density structure factor is then given as
Sðx; tÞ ¼ P

i;j Si;jðx; tÞ, and we find the simple expression

Sðx; tÞ ¼ nð1 − anÞ2hgðx; 2DitÞi; ð8Þ

where h·i ¼ P
i pi· and gðx; σ2Þ ¼ ðe−ðx2=2σ2Þ=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Þ.

This expression is also consistent with the sum ruleR
dxSðx; tÞ ¼ P

i;j Ci;j. In Fig. 2 we present the results
from simulating numerically the hard-rod gas where rods
take in velocities v1 ¼ 1, v2 ¼ 1=2 with probabilities
p1 ¼ p2 ¼ 1=2. The parameters used in the simulation
are backscattering rate γ ¼ 0.005, system size 2L ¼ 20,
number of hard rods N ¼ 400, and hard-rod length
a ¼ 0.01. We use periodic boundary conditions, and
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FIG. 2. Structure factor(discrete case). The background state is
given by a uniform superposition of states with velocities v1 ¼ 1,
v2 ¼ 1=2 (and p1 ¼ p2 ¼ 1=2). The theory predictions follow
Eq. (8) with the respective diffusion constants D1, D2. For
comparison we also show the free theory results, corresponding
to the a → 0.
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subtract off initial fluctuations due to finite size effects. For
comparison we also present the results from the free theory
predictions, corresponding to the limit a → 0, showing that
the dynamics is both chaotic and interacting. The small
discrepancies from the theory predictions are the result of
the dynamics not having fully thermalized on the time-
scales of the simulation.
General case.—When the spectrum of velocities is

continuous, for instance, given by a Gaussian packet
centered around k ¼ 0, the approach taken for a discrete
spectrum is still helpful. Indeed it is straightforward to
extend the previous analysis to the case of an arbitrary
discrete spectrum of velocities by induction from the
studied case of two particle species [53]. In particular,
the diffusion constant of each of the hydrodynamic modes
in the presence of backscattering will be given by Eq. (7).
This result still carries over to the continuum.
The tractability of this problem can be understood in

terms of the simple action of the backscattering perturba-
tion in terms of the normal modes of GHD, that is, the
modes δρ̃ ¼ Rδρ that diagonalize the matrix A. Formally,
the problem is dramatically simplified by the fact that
½R;Γ� ¼ 0, where R ¼ 1 − θ�T is the matrix that diago-
nalizes A (whose eigenvalues correspond to the effective
velocities). The physical meaning of this constraint is
that effectively, backscattering noise acts simply on the
quasiparticles dressed by interactions. In that basis, the
Boltzmann equation (3) now reads as

∂tδρ̃k þ veffk δρ̃k ¼ −γðδρ̃k − δρ̃−kÞ; ð9Þ

where δρ̃k ≡ ðRδρÞk and veffk ¼ veffk ½ρ��. We note that this
simplification occurs only if the backscattering rate is
velocity independent, since ðTγÞk ≠ ðγTÞk in general.
Further, the requirement that ðRδρÞ−k ¼ δρ̃−k follows from
the equilibrium occupation number being an even function
θ�k ¼ θ�−k (as it should in equilibrium), and from the
symmetry of the scattering kernel Tk;−k0 ¼ T−k;k0 . The
generalized Boltzmann equation (9) is a direct generaliza-
tion of Eq. (3) in the presence of interactions, where the
effective velocities are now dressed by the effects of
interactions. The problem therefore reduces to the non-
interacting one [Eq. (5)]: backscattering leads to a 2 × 2
problem in the ðk;−kÞ basis of GHD normal modes. The
residual hydrodynamic modes δρ̃þk ≡ δρ̃k þ δρ̃−k satisfy

½∂2t þ 2γ∂t − ðveffk Þ2∂2x�δρ̃þk ¼ 0; ð10Þ

which exhibits a crossover from ballistic transport at short
times (γt ≪ 1), to diffusive transport with diffusion con-
stant Dk ¼ ðveffk Þ2=2γ at long times (γt ≫ 1). Diffusion
is induced by the decay of the nonconserved charges
(“−” modes) with decay rate 2γ.
Anomalous structure factor.—Focusing on the long time

limit of the conserved modes, the resulting structure factor

follows from that in Eq. (8), with npi → ρ�k the hard-rod
phase space density at equilibrium. Taking ρ�k ¼ npðkÞ
with pðkÞ a Gaussian (thermal) velocity distribution cen-
tered at 0 and with variance σ2, the rod density structure
factor reads as

Sðx; tÞ ¼ nð1 − anÞ3
πσ

ffiffiffi
γ

t

r
K0

�
1 − an

σ

ffiffiffi
γ

t

r
jxj

�
; ð11Þ

with K0ðxÞ ¼
R∞
0 e−jxj cosh tdt the modified Bessel of

second kind. In Fig. 3 we compare the theory predictions
with the numerical results showing excellent agreement.
We trace back this singular behavior to the presence of
infinitely many conserved charges, each with a different
diffusion constant, conspiring to produce a profile that
is evidently non-Gaussian. In particular, the structure
factor shows a singularity of logarithmic nature at the
origin independently of the rods’ length, following from
K0ðaxÞ ¼

x→0
− γEuler − logðax=2Þ þOðx2 log xÞ, a > 0, with

γEuler Euler’s constant. This implies that the return prob-
ability (structure factor near the origin) is anomalous, with
a logarithmic correction to the expected diffusive behavior

Sðx ≈ 0; tÞ ∼ log tffiffi
t

p ; ð12Þ

which we also observe in numerical simulations (Fig. 3).
The effective diffusion constant of hard rods in this
limit is found as D ¼ ð1=2tÞ R dxx2Sðx; tÞ which yields
D ¼ nσ2=2γ, independently of the rods’ length.
Conclusion.—In this Letter we have explored the effects

of backscattering noise in the hard-rod gas. We find that the
density of rods spreads diffusively as a linear combination
of Gaussians of different widths, corresponding to the
different diffusion constants of the normal modes of the
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FIG. 3. Anomalous structure factor.—The background state is
given by a a Gaussian (thermal) velocity distribution centered at 0
and variance σ2. The theory predictions follow Eq. (11). Inset:
scaling of structure factor at x ¼ 0 (return probability) along with
theory predictions (ignoring an offset for visual purposes), where
α ¼ nð1 − anÞ3=2πσ, follows also from Eq. (11).
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hydrodynamic theory. For a thermal velocity distribution,
this leads to a singular structure factor with a logarithmic
correction to the return probability. Our results generalize
to other similar integrable models, such as the Lieb-Liniger
model, so long as ½R;Γ� ¼ 0, with the important caveat that
the backscattering operator acts on the system’s quasipar-
ticles, not on the physical particles. Understanding better
the relationship between these two backscattering sources
and the relevance of backscattering in experimental setups
of strongly interacting, confined Bose gases is left as future
work. Another future extension of our Letter would be to
study diffusive corrections to backscattering that arise from
the integrable dynamics itself [i.e., incorporating Navier-
Stokes corrections [44,47–52] to the GHD equation (3)]. In
this case, the expectation is that such diffusive and higher
order corrections will be subleading when compared with
the contributions coming from backscattering, since the
latter contribute 1=γ in the limit of small noise, γ → 0. A
more interesting setup would be to study backscattering in
the presence of a harmonic trap, which has been shown to
break integrability [45,56]. The harmonic trap introduces a
new timescale after which the system thermalizes. This
timescale is anomalously large, and it would be interesting
to see whether backscattering can speed this up by breaking
all odd charges in the reachable timescales seen in this
Letter.
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