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The bulk-boundary correspondence relates topologically protected edge modes to bulk topological
invariants and is well understood for short-range free-fermion chains. Although case studies have
considered long-range Hamiltonians whose couplings decay with a power-law exponent α, there has been
no systematic study for a free-fermion symmetry class. We introduce a technique for solving gapped,
translationally invariant models in the 1D BDI and AIII symmetry classes with α > 1, linking together the
quantized winding invariant, bulk topological string-order parameters, and a complete solution of the edge
modes. The physics of these chains is elucidated by studying a complex function determined by the
couplings of the Hamiltonian: in contrast to the short-range case where edge modes are associated to roots
of this function, we find that they are now associated to singularities. A remarkable consequence is that the
finite-size splitting of the edge modes depends on the topological winding number, which can be used as a
probe of the latter. We furthermore generalize these results by (i) identifying a family of BDI chains with
α < 1 where our results still hold and (ii) showing that gapless symmetry-protected topological chains can
have topological invariants and edge modes when α − 1 exceeds the dynamical critical exponent.
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Introduction.—The bulk-boundary correspondence is
a central concept in the study of topological phases of
matter [1–17]. This relates topologically stable edge
effects with topological features of the bulk Hamiltonian.
A simple manifestation of this is in certain translation-
invariant quantum chains with time-reversal symmetry,
where the Hamiltonian on a periodic chain can be used to
define a winding number which counts the number of
topologically protected Majorana zero modes localized at
the edge [1,4,18–21]. Research on this topic has predomi-
nantly focused on the short-range case where lattice
Hamiltonians couple sites up to some finite range. In
the past decade there has been significant interest in
quantum systems with long-range interactions [22,23].
This has been motivated by proposals for, and progress in,
experimental systems, such as Ref. [24] for effective free-
fermion chains. Here long range typically means that
couplings decay as a power of the distance [i.e.,
Hamiltonian terms acting between sites at distance r are

Oðr−αÞ]. Interesting physical effects have been observed
including algebraically localized edge modes and the
breakdown of the entanglement area law [25] and con-
formal symmetry at criticality [26].
Regarding topological edge modes in such long-range

chains, most results in the literature concern the canonical
Kitaev chain [27] with additional long-range hopping or
pairing terms [22,28–36]. (For interacting studies, see
Refs. [37,38].) The long-range Kitaev chain sits in the BDI
symmetry class of free-fermion Hamiltonians [4,8,18,39],
and it is straightforward to see that forα > 1 the bulkwinding
number remains well defined [30]. Very recently, Ref. [40]
treated the free-fermionic phase diagram in great generality
and gave a proof that the short-range phase classification is
preserved in the long-range case with α > d (in general
dimension and symmetry class). Work on the long-range
Kitaev chain showed that topological edge modes exist, but
only in particular models. This leaves open important
questions for topologicalMajorana zeromodes in long-range
chains: when do they exist, what is their connection to the
bulk invariant, and what are their localization properties at
the edge?
Here, we present the first systematic study of a whole

symmetry class, giving rise to a detailed bulk-boundary
correspondence in long-range chains. We focus on the
exemplary BDI class as mentioned above, although the
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results carry over for the AIII class [41] which famously
includes the Su-Schrieffer-Heeger chain [58].
We show that the bulk invariant corresponds exactly

to the number of topological edge modes and give a
rigorous method to find the edge-mode wave functions.
Additionally, we find that the bulk string-order parameters
for the short-range case continue to reveal the bulk top-
ology. We complement these results by outlining a prin-
ciple for calculating the finite-size energy splittings for the
zero modes in long-range chains, that we call singularity-
filling. Together with our analysis of the localization
properties of the edge modes, this brings a number of
disparate results in the literature into a coherent picture.
The methods we use are from the mathematical theory of

Toeplitz determinants (see, e.g., Ref. [59]), a key technique
in the analysis of the two-dimensional Ising model [60]. We
expect this approach to long-range chains to be fruitful
more generally.
We use the standard notation gðnÞ ¼ O(hðnÞ) when

gðnÞ ≤ const × hðnÞ for n sufficiently large, and gðnÞ ¼
Θ(hðnÞ) when gðnÞ ¼ O(hðnÞ) and hðnÞ ¼ O(gðnÞ).
Model.—Consider the BDI class of translation-invariant

spinless free fermions with time-reversal symmetry:

HBDI ¼
i
2

X
m;n∈sites

tm−nγ̃nγm: ð1Þ

Here γn ¼ cn þ c†n [γ̃n ¼ iðc†n − cnÞ] are the real
[imaginary] Majorana fermions constructed from spinless
complex fermionic modes cn on each site. The real
coupling coefficients tn are called α-decaying [40] if
tn ≤ constð1þ jnjÞ−α. Assuming absolute summability of
the tn (implied by α > 1) we can solve the closed chain by a
Fourier transformation and Bogoliubov rotation [42]. This
information is summarized by the continuous complex
function:

fðzÞ¼
X∞
n¼−∞

tnzn; z¼ eik; 0≤ k< 2π: ð2Þ

The eigenmode with momentum k is defined by the
phase of fðeikÞ and has energy εk ¼ jfðeikÞj. Thus, the
Hamiltonian (1) is gapped when fðzÞ ≠ 0 on the unit circle.
In that case, the argument of fðzÞ is well defined, and we
have the winding number

ω ¼ lim
ε→0

n
arg½fðeið2π−εÞÞ� − arg½fðeiεÞ�

o
∈ Z: ð3Þ

This is the bulk topological invariant, which cannot
change without a gap closing if we enforce the absolute-
summability condition.
Bulk-boundary correspondence and edge-mode wave

function.—We now consider the Hamiltonian (1) with open
boundary conditions (we keep only the couplings that do

not cross the boundary). We first consider the limit of a
half-infinite chain, where edge modes have zero energy
(later we study finite-size splitting).
In this limit, the edge-mode wave functions are zero

eigenvectors of a Toeplitz operator, which can be solved
using the Wiener-Hopf method. More directly, define a real
Majorana zero mode as γL ¼ P∞

n¼0 gnγn that satisfies
½γL;HBDI� ¼ 0. Evaluating the commutator gives us a
Wiener-Hopf sum equation, which is straightforwardly
solved [61] using results of McCoy and Wu [60], leading
to the following result.

Theorem 1 (Bulk-boundary correspondence).—Take a
half-infinite open chain HBDI, where the related bulk
Hamiltonian has winding number ω and absolutely sum-
mable couplings, then there exist exactly jωj zero-energy
edge modes.
More constructively, writing fðzÞ ¼ zωbþðzÞb−ðzÞ [here

b�ðzÞ are the Wiener-Hopf factors defined below], then
for ω > 0 we have ω linearly independent normalizable

real edge modes given by γðmÞ
L ¼ P∞

n¼0 g
ðmÞ
n γn with gðmÞ

n ¼
(b−ð1=zÞ−1)n−m for 0 ≤ m ≤ ω − 1.
For ω < 0 the same results hold upon substituting

γn → γ̃n and b−ð1=zÞ−1 → bþðzÞ−1.
Here and throughout we use the notation that (hðzÞ)n ¼

ð2πiÞ−1 RS1 hðzÞz−ðnþ1Þdz is the nth Fourier coefficient
of a function hðzÞ. Key to our result is a canonical form
called the Wiener-Hopf decomposition. First define
f0ðzÞ ¼ z−ωfðzÞ, which is nonvanishing on the unit circle
and has a continuous logarithm logðf0ÞðzÞ. We fix the
normalization of HBDI such that the zeroth Fourier coef-
ficient ðlogðf0ÞÞ0 ¼ 0. Then we can always write

fðzÞ ¼ zωbþðzÞb−ðzÞ; ð4Þ

where the Wiener-Hopf factor given by b�ðzÞ ¼
e
P

∞
n¼1

ðlogðf0ÞÞ�nz
�n

is analytic strictly inside (outside) the
unit disk. We note that zω encodes the winding around
the unit circle and hence the topological invariant of the
system. Multiplying fðzÞ by zm shifts [62] the hopping
tn → tn−m, such that f0ðzÞ defines a topologically trivial
“version” of the system. This is analogous to the trivial
insulator and the Kitaev chain being related by a shift.
Theorem 1 extends the bulk-boundary correspondence

from the short-range to the long-range case: the bulk
winding number counts edge modes everywhere in the
space of Hamiltonians with absolutely summable couplings
[(α > 1)-decay implies absolute summability, but examples
like the Weierstrass function [65,66] can be used to
construct families with 0 < α ≤ 1]. Our result is also
constructive: we have the edge-mode wave function in
terms of Fourier coefficients of a particular function. To
construct the exact edge mode, one needs to first calculate
the Wiener-Hopf decomposition. However, we will see
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below that this can often be bypassed if one is interested
only in the asymptotic edge-mode profile.
In short-range models we expect exponentially localized

edge modes, corresponding to roots of fðzÞ [21,42,67].
Based on Theorem 1 we see that the localization follows
from analytic properties of the Wiener-Hopf factors. If
(b�ðz�1Þ)−1 is analytic to some distance outside the unit
circle, we will see exponential decay (this appears con-
sistent with previous such observations in the long-range
Kitaev chain at fine-tuned points [33]). Exponential locali-
zation was also observed in Ref. [38], but for a different
reason—there the short-range (parity-odd) edge modes
cannot couple to the long-range density-density inter-
actions in perturbation theory due to fermion parity
symmetry. In our long-range case, the edge modes are
generically algebraically decaying and guaranteed to be
normalizable due to the Wiener-Lévy theorem [60,65].
Example.—Consider fðzÞ ¼ zωLiαðzÞLiαð1=zÞ, where

LiαðzÞ¼
P∞

k¼1 z
k=kα is the polylogarithm of order α > 1.

The couplings tn are α-decaying and, moreover, tn ¼
Θðn−αÞ for n → �∞.
One can read off bþðzÞ ¼ LiαðzÞ=z and b−ðzÞ ¼

zLiαð1=zÞ. Suppose ω ¼ 1, then we have one edge
mode with

gn ¼
1

2πi

Z
S1

z−n

LiαðzÞ
dz¼ −

1

ζðαÞ2nα (1þ oð1Þ); ð5Þ

the second equality is derived using contour integration and
known asymptotics for LiαðzÞ on the real line (assuming
α ∉ N) [42,68].
For ω ¼ 2, we see we have two edge modes, with the

same leading order behavior. This means we can take the
difference n−α − ðn − 1Þ−α ¼ Θðn−α−1Þ, and have a faster
decaying strictly localized mode (see Theorem 2).
Singularity-filling for wave functions.—While the bulk-

boundary correspondence of Theorem 1 is our most general
result, we can give additional results in a broad class
of (α > 1)-decaying models. We say that 1=fð1=zÞ has
singularities at fksg1≤s≤r if it has asymptotic Fourier
coefficients (1=fð1=zÞ)n ¼

P
r
s¼1 e

inksn−Ωks (as þ oð1Þ)
as n → þ∞. We call Ωks > 1 the order of the singularity
at ks, and assume the oð1Þ term is “nice”; i.e., it can be
expressed as a sum of inverse powers of n [as is the case in
Eq. (5)]. We also assume that Ωmin ¼ minsfΩksg ∉ Z. This
implies that 1=fð1=zÞ has δ0 ¼ bΩmin − 1c continuous
derivatives [42,66,69].

Theorem 2 (Edge mode from singularity-filling).—
Consider the setup as in Theorem 1 with ω > 0, and
suppose in addition that 1=fð1=zÞ has singularities as
defined above. Define ν1;…; νω by the ω lowest levels
EsðnÞ ¼ Ωks þ n over all singularities s and n ∈ Z≥0
(“singularity-filling”) and define ν⋆ ¼ δ0 þΩmin − 1.

We can find a basis of mutually anticommuting
edge modes γ̂ðpÞL ¼ P∞

n¼0 ĝ
ðpÞ
n γn, where ĝðpÞn ¼ Oðn−ν̃pÞ,

for ν̃p ¼ minfνp; ν⋆g.
For ω < 0 analogous results hold where we now take

γn → γ̃n and fð1=zÞ → fðzÞ.
The idea of the proof is as in theω ¼ 2 example following

Eq. (5): we take linear combinations of edge modes that
cancel the dominant asymptotic term(s), and then use the
Gram-Schmidt process (with respect to the anticommutator)
to construct anticommuting modes [21,42]. We note that if
the Fourier coefficients of the Wiener-Hopf factors them-
selves have a nice expansion, then singularity-filling will
hold with no limiting ν⋆ [42].
Example.—The long-range Kitaev chain corresponds to

fLRKðzÞ ¼ μþ J½LiαðzÞ þ Liαð1=zÞ�
þ Δ½LiβðzÞ − Liβð1=zÞ�: ð6Þ

This model was studied for various choices of couplings
in Refs. [22,29,31–33,36]. Computing ð1=fð1=zÞÞn gives
the asymptotic behavior of the edge-mode wave function
in the ω ¼ 1 case: gn ¼ Oðn−Ω0Þ for Ω0 ¼ minðα; βÞ,
agreeing with results in the literature [42]. There are
no other singularities, so Theorem 2 implies that,
for 0 < δω < bΩ0 − 2c, fðzÞ ¼ zδωfLRKðzÞ will have
ω ¼ 1þ δω edge modes with a basis decaying
as n−Ω0 ; n−ðΩ0þ1Þ;…; n−ðΩ0þδωÞ.
Singularity-filling for finite-size splitting.—We now

consider finite-size energy splittings for the edge modes.
This quantity was considered in previous case studies of
long-range Kitaev chains [28,33,36], but has not, to our
knowledge, been explored in long-range systems with
multiple edge modes (i.e., jωj > 1).
In analogy with the singularity-filling for edge-mode

wave functions above, we have a conjecture for the finite-
size splittings for the edge modes. In this case, the levels
associated to singularities go up in steps of two.

Conjecture 1 (Splitting from singularity-filling).—Take
an open chain HBDI of size L, where the related bulk
Hamiltonian has winding number ω > 0 and 1=fð1=zÞ has
singularities as defined above.
We conjecture that the ω finite-size edge modes have

splittings ε1 ¼ ΘðL−ν1Þ;…; εω ¼ ΘðL−νωÞwhere the νk are
the ω lowest levels E0

sðnÞ ¼ Ωks þ 2n for n ∈ Z≥0.
For ω < 0 analogous results hold where we replace

fð1=zÞ → fðzÞ.
This conjecture is based on numerical experiments (see

Fig. 1) and theoretical results (see below). The underlying
theory indicates that for a family fðzÞ ¼ zωf0ðzÞ, there may
exist anωmax such that this holds only forω < ωmax. In fact,
given Ωmin > 5, and an assumption on the spectrum, we
can prove the conjecture up to ωmax ¼ 3. However,
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empirically we expect the conjecture to hold more gen-
erally, as observed in Fig. 1.
The conjecture allows us to understand how finite-size

effects hybridize the edge modes. For ω ¼ 1we see that the
predicted splitting comes from the dominant singularity
ε1 ¼ ΘðL−ΩminÞ. Since this has the same asymptotics as the
edge-mode wave function, this agrees with an intuitive
connection between the spatial profile of the wave function
and the induced splitting from the boundaries [42] that does
not generically hold for the higher-winding case. For ω ¼ 2

we expect to have two edge modes, one with ε1 ¼
ΘðL−ΩminÞ and one with either ε2 ¼ ΘðL−ðΩminþ2ÞÞ or
ε2 ¼ ΘðL−ΩnextÞ, depending on which has the slower decay.
In the case of higher winding numbers, our conjecture
predicts the hybridization of the boundary modes, which is
not in direct correspondence to the maximally localized
basis identified in Theorem 2.
We can also make quantitative predictions without

detailed calculation. Suppose we know for ω ¼ 1 that we
have an edge mode with splitting ΘðL−νÞ, then for ω ¼ 2
we infer that the second edge mode will have splitting
ΘðL−ν0 Þ where ν ≤ ν0 ≤ νþ 2. For fðzÞ ¼ znfLRKðzÞ we
have a singularity at z ¼ 1 only, and hence conjecture that
splittings form a sequence L−Ω0 ; L−ðΩ0þ2Þ;…; L−ðΩ0þ2nÞ.
To justify the conjecture, consider models fðzÞ ¼

zωf0ðzÞ with open boundary conditions; each such model
has a corresponding single-particle (block Toeplitz) matrix,
with determinant equal to

Q
L
j¼1ð−ε2jÞ, where εj are single-

particle energies. Assuming (α > 1)-decay, it can be
shown, using Toeplitz determinants, that for the trivial
model f0ðzÞ this product is finite in the limit L → ∞, while

for ω ≠ 0, the corresponding determinant decays to zero
with L [with power depending on ω and Fourier coeffi-
cients of 1=fðzÞ [42] ]. Our method is to use the scaling of
this determinant to predict the edge-mode splitting. For
example, for ω ¼ 1 we interpret

YL
j¼1

ð−ε2jÞ ¼ const × L−ν(1þ oð1Þ); ð7Þ

as predicting a single edge mode with finite-size splitting
ε1 ¼ ΘðL−νÞ. For multiple edge modes (and ω > 0), we
further assume inductively that the ω − 1 edge modes
shared between the models zωf0ðzÞ and zω−1f0ðzÞ have
the same energy splitting power law in each model, and
hence the additional decay in the determinant for zωf0ðzÞ
comes from the ωth edge mode [70].
This is plausible since for periodic boundaries the

models defined by fðzÞ have spectrum independent of
ω, and we expect the system with open boundaries to differ
from the bulk only “near the edge.” With finite-range
interactions we believe this could be proved using results
about eigenvalues of banded block Toeplitz matrices [71];
for long-range chains we take it as an assumption that the
scaling to zero with L comes only from edge modes rather
than the bulk band. In an earlier work the idea appeared in
reverse: utilizing the existence of exponentially localized
edge modes in short-range chains to predict asymptotics of
block Toeplitz determinants [72].
We thus convert the question of finite-size edge-mode

splitting to a question about asymptotics of Toeplitz
determinants. While there are several assumptions required
to connect this theory to the edge mode splittings, the
underlying singularity-filling picture for Toeplitz determi-
nant asymptotics is in many cases fully rigorous. We outline
some of these results in the Supplemental Material [42]; see
Refs. [59,69,73,74] for important information.
Novel topological probe.—A remarkable consequence is

that the finite-size splitting of the lowest energy mode
depends on the total number of edge modes. In fact, we can
turn this into a probe of ω: by perturbing a short-range
chain fsðzÞ (with winding ω) by a long-range test function,
its finite-size splitting exponent will allow us to findω (note
that this is the scaling of the lowest one-particle energy; no
further information about the spectrum is required). An
example test function would be fLRKðzÞ, with Δ ¼ 0. Then
for the function fðzÞ ¼ fsðzÞ þ ϵfLRKðzÞ, for ϵ small, our
picture gives a finite-size splitting L−½αþ2ðjωj−1Þ�.
String-order parameters.—We now consider the peri-

odic chain. Define the finite fermion parity string by
O0ðnÞ ¼

Q
n−1
m¼1 iγ̃mγm. Then consider further string oper-

ators, OκðnÞ, of the form O0ðnÞγnγnþ1 � � � γnþκ for κ > 0
and O0ðnÞγ̃n � � � γ̃nþjκj−1 for κ < 0 (up to phase factors).
It is know that the set ofOκðnÞ form order parameters for

the gapped phases in the short-range case [75]. In the long-
range case we have the following.

FIG. 1. Finite-size splitting from singularities. (a) As an
example of our general results, we consider a long-range chain
whose hopping coefficients define the complex function fðzÞ
[Eq. (2)] with singularities of fð1=zÞ−1 depicted. According to
Conjecture 1, the power-law exponents associated to these
singularities dictate the finite-size energy splitting of the jωj
Majorana edge modes. (b) We illustrate this for ω ¼ 4, where we
show the numerically obtained splittings for system size L. Their
power-law decays ∼1=Lνi are accurately predicted by the
“singularity-filling” of Conjecture 1. For ω > 0 the singularities
associated to branch cuts inside the unit disk matter [i.e., Ω0 ¼
4.5 (blue) and Ωπ ¼ 3.1 (red)]; for ω < 0 this is reversed [42].
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Theorem 3 (String order).—Consider a gapped
(α > 1)-decaying HBDI, in the thermodynamic limit with
periodic boundaries, and write fðzÞ=jfðzÞj ¼ zωeWðzÞ.
Then,

lim
N→∞

jhOκð1ÞOκðNÞij ¼ δκωe
P

k≥0
kWkW−k : ð8Þ

Thus the Oκ act as order parameters in the long-range
case. The idea of the proof is as follows: the string-
correlation functions hOκð1ÞOκðNÞi are Toeplitz determi-
nants generated by z−κfðzÞ=jfðzÞj. The function
fðzÞ=jfðzÞj generates the correlation matrix of the chain,
and it was proved in Ref. [40] that for an α-decaying chain
with α > 1, the correlation matrix is (α − ε)-decaying for
any ε > 0. This is sufficient regularity for us to use the
results of Ref. [73] to prove Theorem 3 [42].

Gap closing and edge modes at critical points.—For
HBDI with finite-range couplings, topological edge modes
can persist at critical points [21,76]. We give some results in
this direction for the long-range case.
Suppose we have a gapless bulk mode with dynamical

critical exponent zdyn. In the continuum limit, the dimen-
sion of the long-range term in the action δS ∼

R
ψ̃ðxÞψðyÞ×

ðx − yÞ−αdtdxdy is ðzdyn þ 1 − αÞ, which is irrelevant for
α > zdyn þ 1. On the lattice, we hence expect that for
gapless models of the form fcritðzÞ ¼ ðz − 1ÞzdynfgapðzÞ
[which has the aforementioned low-energy description if
fgapðzÞ is nonvanishing on the unit circle], the edge modes
will be stable as long as fðzÞ is ðα > zdyn þ 1Þ-decaying.
Indeed, our Theorem 1 can be adapted to show that this
fcritðzÞ has ω localized edge modes where ω is the winding
number of fgapðzÞ. This follows from expanding ðz − 1Þzdyn
in fcritðzÞ, and interpreting this as a sum of ðzdyn þ 1Þ
gapped Hamiltonians, all sharing the sameω edge modes as
per Theorem 1.
The above functional form can arise by interpolating

between topologically distinct gapped Hamiltonians. For
instance, between two phases with winding numbers ω ¼ 1
and ω ¼ 2, there will generically be a single gap
closing with a linearly dispersing mode if α > 2.
More precisely, if this occurs at momentum k ¼ 0, then
fgapðzÞ ≔ ½fðzÞ=ðz − 1Þ� should define a gapped model
with ω ¼ 1. We can then apply the above discussion to
infer the existence of the localized edge mode at criticality.
We have confirmed this for an explicit example [42].
Outlook.—We have shown how general analytic methods

can be used to establish the bulk-boundary correspondence
in a class of long-range chains and give insights into edge-
mode localization and finite-size splitting. This included
examples with α < 1 and certain gapless models.
Key questions remain within this class. What happens in

the general case when α < 1 and the integer winding
classification breaks down? Can we establish general

stability results in critical lattice models, and do these
coincide with our field-theoretic analysis? We expect
extensions of analytic techniques used above to provide
further insights. Moreover, it is worth exploring how
broadly our results can be generalized, including to other
free-fermion classes (beyond BDI and AIII) [4,8,18] and
higher-dimensional models.
The extension to long-range multiband cases would be

interesting, likely requiring block Toeplitz operators. In the
short-range BDI and AIII classes, edge modes were
constructed in Ref. [67], where the bulk topological index
is the winding of the determinant of a chiral block of the
Hamiltonian. Symmetric matrix-Wiener-Hopf factoriza-
tions (for the short-range case) have been used to study
fermionic zero modes [77,78]; these ideas should be useful
also in long-range systems. In Ref. [79] Wiener-Hopf
techniques are used to exclude edge modes in long-range
bosonic systems.
From the mathematical side, it would be most interesting

to find a proof of the singularity-filling conjecture. It would
be interesting to see if this picture generalizes beyond the
studied cases, perhaps even to interacting models with
algebraically decaying edge modes, and whether their
finite-size splitting also depends on the value of the
topological invariant.
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