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Whether there exist finite-time blow-up solutions for the 2D Boussinesq and the 3D Euler equations are
of fundamental importance to the field of fluid mechanics. We develop a new numerical framework,
employing physics-informed neural networks, that discover, for the first time, a smooth self-similar blow-
up profile for both equations. The solution itself could form the basis of a future computer-assisted proof of
blow-up for both equations. In addition, we demonstrate physics-informed neural networks could be
successfully applied to find unstable self-similar solutions to fluid equations by constructing the first
example of an unstable self-similar solution to the Córdoba-Córdoba-Fontelos equation. We show that our
numerical framework is both robust and adaptable to various other equations.
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A celebrated open question in fluids is whether or not
from smooth initial data the 3D Euler equations may
develop finite-time singularities (the inviscid analog of
the Navier-Stokes millennium-prize problem). For non-
smooth C1;α initial data with 0 < α ≪ 1, finite-time self-
similar blow-up was proven in the groundbreaking work of
Elgindi [1] (cf. [2]). The question of finite-time blow-up
from smooth initial data remains unresolved.
In the presence of a cylindrical boundary, Luo and

Hou [3] (cf. Ref. [4]) performed compelling numerical
simulations proposing a scenario—sharing similarities with
Pumir and Siggia [5] (cf. Refs. [6,7])—for finite-time blow-
up of the axisymmetric 3D Euler equations. They simulated
the time-dependent problem and observed a dramatic
growth in the maximum of vorticity (by a factor of
3 × 108), strongly suggesting formation of a singularity.
The work is also suggestive of asymptotic self-similarity.
To confirm the existence of the finite-time singularity in

the Luo-Hou scenario, and find its self-similar structure, we
need to solve the self-similar equations associated with the
axisymmetric 3D Euler equations in the local coordinates
near the singularity, which poses an extreme challenge to
classical numerical methods as explained later. In this
Letter, we develop a new numerical strategy, based on
physics-informed neural networks (PINNs) that can solve
the self-similar equations in a simple and robust way. This
new method allows us, for the first time, to find the smooth
asymptotic self-similar blow-up profile for the Luo-Hou
scenario. To the best of our knowledge, the solution is also

the first truly multidimensional smooth backward self-
similar profile for an equation from fluid mechanics.
Singularity formation for 3D Euler equations with a cylin-

drical boundary is intrinsically linked to the same problem
for the 2D Bousinessq equations (cf. Refs. [4,8–10]), another
fundamental question in fluid mechanics, mentioned in
Ref. [11]. The mechanism for blow-up for the two equations
is believed to be identical. The 2D Boussinesq equations take
the form

∂tuþ u · ∇uþ∇p ¼ ð0; θÞ;
∂tθ þ u ·∇θ ¼ 0; divu ¼ 0; ð1Þ

where the 2D vector uðx; tÞ is the velocity and the scalar
θðx; tÞ is the temperature. We consider the spatial variable
x ¼ ðx1; x2Þ to be taken on the half plane x2 ≥ 0 and
impose a nonpenetration boundary condition at x2 ¼ 0
(x1 axis), namely, u2ðx1; 0Þ ¼ 0.
To search for singularity formation for the Boussinesq

equations (1), we look for backward [12] self-similar
solutions of the form u ¼ ð1 − tÞλUðyÞ and θ ¼
ð1 − tÞ−1þλΘðyÞ, where we define the self-similar coordi-
nates as y¼ðy1;y2Þ¼ ðx1;x2Þ=ð1− tÞ1þλ, with λ>−1 yet
to be determined. Under such a self-similar ansatz, the
Eq. (1) become

− λUþ ½ð1þ λÞy þ U� · ∇Uþ∇P ¼ ð0;ΘÞ;
ð1 − λÞΘþ ½ð1þ λÞy þ U� · ∇Θ ¼ 0; div U ¼ 0: ð2Þ
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The corresponding solution is expected to have infinite
energy [13]; however, we impose that the solution to
Eq. (2) has mild growth at infinity (see cost functions
in Supplemental Material) [14] which is an essential
requirement for such a solution to be cut off to produce
an asymptotic self-similar solution with a finite
energy [16].
Setting Ω ¼ curlU ¼ ∂y1U2 − ∂y2U1, Φ ¼ ∂y1Θ, and

Ψ ¼ ∂y2Θ, we rewrite Eq. (2) in vorticity form:

Ωþ ½ð1þ λÞy þ U� ·∇Ω ¼ Φ;

ð2þ ∂y1U1ÞΦþ ½ð1þ λÞy þ U� ·∇Φ ¼ −∂y1U2Ψ;

ð2þ ∂y2U2ÞΨþ ½ð1þ λÞy þ U� ·∇Ψ ¼ −∂y2U1Φ;

div U ¼ 0: ð3Þ

To help find the solution, we impose the following
symmetries: (U1;Φ;Ω) are odd and ðU2;ΨÞ are even in
the y1 direction. In addition, we impose U2ðy1; 0Þ ¼ 0
(the nonpenetration boundary condition). To guarantee the
uniqueness of the solution (removing scaling symmetry),
we constrain ∂y1Ωð0; 0Þ ¼ −1. Finally, to rule out extra-
neous solutions, we impose that ∇U, Φ, and Ψ all vanish at
infinity.

To describe the Luo-Hou scenario for the 3D Euler blow-
up in the presence of boundary, we write the axisymmetric
3D Euler equations:

ð∂t þ ur∂r þ u3∂x3Þ
�ωθ

r

�
¼ 1

r4
∂x3ðruθÞ2;

ð∂t þ ur∂r þ u3∂x3ÞðruθÞ ¼ 0; ð4Þ

where ður; uθ; u3Þ is the velocity in cylindrical coordinates
and ωθ is the angular component of the vorticity.
We introduce a cylindrical boundary at r ¼ 1, and restrict
to the exterior domain fðr; x3Þ ∈ r ≥ 1; x3 ∈ Rg. By
imposing the self-similar ansatz ðux3 ;urÞ¼ð1− tÞλUðy;sÞ,
ωθ ¼ ð1 − tÞ−1Ωðy; sÞ, ∂rðruθÞ2 ¼ ð1 − tÞ−2Ψðy; sÞ, and
∂x3ðruθÞ2 ¼ ð1 − tÞ−2Φðy; sÞ for self-similar coordinates
y ¼ ðy1; y2Þ ¼ ðx3; r− 1Þ=ð1− tÞ1þλ and s¼ − logð1− tÞ,
the 3D Euler equation (4) becomes

ð∂s þΩÞ þ ½ð1þ λÞy þ U� ·∇Ω ¼ Φþ E1;

ð∂s þ 2þ ∂y1U1ÞΦþ ½ð1þ λÞy þ U� ·∇Φ ¼ −∂y1U2Ψ;

ð∂s þ 2þ ∂y2U2ÞΨþ ½ð1þ λÞy þ U� ·∇Ψ ¼ −∂y2U1Φ;

div U ¼ E2; ð5Þ

where the errors E1 and E2 are given by the expressions

E1 ¼ −y2ðy2e−ð1þλÞs þ 2Þðy22e−2ð1þλÞs þ 2y2e−ð1þλÞs þ 2ÞΦe−ð1þλÞs=ð1þ y2e−ð1þλÞsÞ4
E2 ¼ −U2e−ð1þλÞs=ð1þ y2e−ð1þλÞsÞ

We look for solutions which are asymptotically self-similar:
i.e., in self-similar coordinates they converge to a stationary
state as s → ∞. For such solutions, at any fixed y, we have
E1; E2 ¼ Oðe−ð1þλÞsÞ and thus the errors decay exponen-
tially fast in self-similar coordinates assuming that λ > −1.
Thus, the self-similar equations (5) for Euler converge to
Bousinessq (3) as s → ∞. Namely, the self-similar solution
for Boussinesq is identical to the asymptotic self-similar
blow-up profile to Euler with cylindrical boundary.
A key difficulty of solving Eq. (3) lies in the unknown

parameter λ that needs to be solved simultaneously. We
search for smooth nontrivial solutions to Eq. (3), which
exist for discrete λ values. This problem is extremely
challenging using classical evolution (time-dependent)
based numerical methods (cf. Refs. [3,4,17–21]).
Physics-informed neural networks were recently devel-

oped [22,23] as a new class of numerical solver for partial
differential equations (PDEs) and have been widely used in
science and engineering [24]. In PINNs, neural networks
approximate the solution to a PDE by searching for a
solution in a continuous domain that approximately sat-
isfies the physics constraints (e.g., equations and solution
constraints). PINNs have been successfully used to solve

not only forward problems but also inverse problems
(e.g., identifying the Reynolds number from a given flow
and the Navier-Stokes equation [22]), demonstrating the
capacity of PINNs to invert for unknown parameters in
the governing equations. Here, we use a PINN to find not
only the self-similar solution profile but also the unknown
self-similarity exponent λ. To guarantee the success of
PINN, it is critical to understand the key symmetries of the
problem, its spurious solutions, as well as intuition of the
qualitative properties of the solution (e.g., its geometry and
asymptotics).
To find the self-similar solution for the Bousinessq

equation, we represent each of U1, U2, Ω, Φ, or Ψ in
the Bousinessq equations (3) by an individual fully con-
nected neural network with y1 and y2 as its inputs. We use 6
hidden layers with 30 units in each hidden layer for each
network and use the hyperbolic tangent function tanh as
the activation function. We impose the symmetry of each
variable (U1; U2;Ω;Φ;Ψ) by constructing the function
form qodd ¼ ½NNqðy1; y2Þ − NNqð−y1; y2Þ�=2 and qeven ¼
½NNqðy1; y2Þ þ NNqð−y1; y2Þ�=2, where NNq is the neural
network created for the variable q.
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To train the neural network, we need a cost function and
an optimization algorithm. For PINNs, the cost function is
composed of two types of loss. The first is the condition
loss, which evaluates the residue of the solution condition,
where the residue here is defined as the difference between
the neural network approximated condition and the true
solution condition. The condition loss can be written as

lossðjÞc ¼ 1

NðjÞ
c

XNðjÞ
c

i¼1

g2ðjÞðyi; q̂ðyiÞÞ; ð6Þ

where gðjÞðyi; q̂ðyiÞÞ indicates the residue of the jth
boundary condition at the ith position yi ¼ ðy1; y2Þi and
q̂ðyiÞ indicates the neural network prediction of the variable
q. The parameter NðjÞ

c indicates the total number of points
used for evaluating the jth boundary condition.
The second type of loss is known as the equation loss,

which evaluates the residue of the governing equation
averaged over a set of collocation points over the domain.
The residue of the equation fðkÞ is defined as the error in the
equation calculated with the neural network predictions.
The equation loss can be written as

lossðkÞf ¼ 1

NðkÞ
f

XNðkÞ
f

i¼1

f2ðkÞðyi; q̂ðyiÞÞ; ð7Þ

where fðkÞðyi; q̂ðyiÞÞ indicates the residue of the kth
equation evaluated at the ith collocation point. The param-

eter NðkÞ
f denotes the total number of collocation points

used for the kth equation. The residues of the boundary
conditions gðjÞ and equations fðkÞ involved in the cost
function are listed in the Supplemental Material [14].
We stress that all equations are local, which is an

advantage of our method versus alternate methods that
require a careful consideration of nonlocality in infinite
domains. In our implementation, to approximate an infinite
domain, we introduce the coordinates z ¼ ðz1; z2Þ ¼
ðsinh−1ðy1Þ; sinh−1ðy2ÞÞ [see Fig. 1(a)] and consider a
domain z ∈ ½−30; 30�2. In the y coordinates, this corre-
sponds to a domain ≈½−5 × 1012; 5 × 1012�2. The equations
written in z coordinates are given in the Supplemental
Material [14].
The equations and conditions provided so far can only

find the unique solution to Eq. (3) for a specified λ. Figure 1
in the Supplemental Material shows the PINN solution to
Eq. (3) for λ ¼ 3 [14]. The large equation residue at the
origin indicates the nonsmoothness of the solution at the
origin (see Supplemental Material). To search for the right λ
that guarantees the smoothness of solutions, i.e., avoiding
the local peaks in the equation residue, we impose the
smoothness constraint to penalize the gradient of equation
residues around the nonsmooth point (origin).

lossðkÞs ¼ 1

NðkÞ
s

XNðkÞ
s

i¼1

j∇fðkÞðyi; q̄ðyiÞÞj2; ð8Þ

where NðkÞ
s indicates the total number of collocation points

close to the origin. The sum of Eqs. (6)–(8) defines the final
cost function,

Jðy;wÞ¼ 1

nb

Xnb
j¼1

lossðjÞc þ γ

�
1

ne

Xne
k¼1

lossðkÞf þ 1

ne

Xne
k¼1

lossðkÞs

�
;

where nb ¼ 8 and ne ¼ 6 are the total number of solution
conditions and governing equations used (see Supplemental
Material). The constant γ is a hyperparameter of PINNs,
known as the equation weight [25], which balances the
contribution of the condition loss and equation loss in the
final cost function Jðy;wÞ. For Boussinesq, we choose
γ ¼ 0.1 for optimal training performance.
The common optimization methods used for PINN

training are Adam [26] and L-BFGS [27]. Despite the fact
that no optimization method guarantees the convergence to
a global minimum, our empirical experience, consistent
with prior studies [28], shows that Adam performs better at
avoiding local minima, while L-BFGS has a faster con-
vergence rate throughout the training. Thus, we use Adam
first for 100 000 iterations and then L-BFGS for 250 000
iterations to search for the self-similar solution for the
Bousinessq equations. Figure 1(b) shows the convergence

FIG. 1. Solution for Eq. (3) found by PINN. fi indicate the
residues, which are of 5 orders of magnitude smaller than the
solution. The inferred value of λ is 1.917� 0.002 after systematic
test (see Supplemental Material [14]).
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of the cost function Jðy;wÞ throughout the training
iterations.
Figure 2 shows the approximate solutions to Eq. (3),

along with their corresponding equation residues. The
equation residues are approximately 5 orders of magnitude
smaller than that of the solution found. With the smooth-
ness constraint Eq. (8) the inferred exponent for the smooth
solution is λ ≈ 1.917. In the Supplemental Material we
show the robustness of the PINN prediction with different
random initialization and normalization condition [14]. We
also demonstrate convergence of the inferred λwith domain
size. The solutions found by the PINN are in agreement
with the asymptotics of the time-dependent solutions found
by Luo and Hou [3,4]. Extrapolating from Ref. [4], the
work is suggestive of a self-similarity exponent of λ ≈ 1.9,
in agreement with the exponent found by the PINN.
Similarly to Luo and Hou, the trajectories corresponding
to the self-similar velocity follow the geometry of a
hyperbolic point at the origin.
The spatial distribution of the collocation points plays a

critical role for the success of PINN training. To guide the
neural network to find the correct self-similar solution for
Bousinessq (3), we train the neural network to prioritize the
equation constraints around the origin. Toward this goal,
we divide the domain into two regions, one close to the
origin and one far; in each region the collocation points are
uniformly distributed. We increase the number of colloca-
tion points surrounding the origin. Otherwise, the neural
network prediction would likely be trapped in a local
minimum during the training.
The PINN-based scheme for finding self-similar blow-

up offers advantages in terms of both universality and
efficiency. For universality, the above PINN scheme can
be generally applied to solving various self-similar equa-
tions without the requirement of prior knowledge of
specific structure. For efficiency, the smooth self-similar
solution was in fact found by PINN throughout one single
training. There is no continuation scheme or time evolu-
tion required for the training, largely reducing the com-
putational cost of the method. An additional major
advantage of the PINN scheme, as we will later demon-
strate, is its ability to find unstable self-similar solutions

which would be incredibly difficult, if not impossible, to
find via traditional methods.
To validate our approach, we compare self-similar

solutions obtained to known results in the literature
(Supplemental Material [14]). We apply the PINN scheme
to find nonsmooth solutions to the Boussinesq equation,
which are in agreement with the explicit approximate
solutions of Chen and Hou [10] (see also Sec. 1.5 of the
Supplemental Material).
One of the simplest PDEs exhibiting self-similar blow-

up is the 1D Burgers equation, which can be solved
analytically. The equation provides an excellent sandbox
to test and refine the PINN. Section 2 of the Supplemental
Material shows that the PINN scheme can find stable,
unstable, and nonsmooth self-similar solutions to the
Burgers equation [14]. A common numerical strategy to
finding self-similar solutions is to introduce time depend-
ence into the problem: while this is straightforward in the
stable case, instabilities in the unstable case make finding
unstable self-similar profiles comparatively more difficult,
if not impossible. The PINN scheme does not suffer this
drawback and thus presents itself as a great method for
finding unstable smooth self-similar solutions. This latter
fact will be reinforced below where we demonstrate that
the PINN is successful in finding new unstable self-similar
solutions that have applicability to an important open
problem in mathematical fluid dynamics.
The generalized De Gregorio equation [29] is given by

ωt þ auωx ¼ ωux; where u ¼
Z

x

0

Hω ¼ Λ−1ω;

and H is the Hilbert transform. The equation is a gener-
alization of the De Gregorio equation (a ¼ 1) [30] and has
been proposed as a one-dimensional model for an equation
for which there is nontrivial interaction of advection and
vortex stretching (modeling behavior of the 3D Euler
equations).
The case a ¼ 0, in the absence of advection, is known in

the literature as the Constantin-Lax-Majda equation. In this
simple case, exact self-similar blow-up solutions can be
constructed [31]. The case a ¼ −1 [known as the Córdoba-
Córdoba-Fontelos (CCF) model] was proposed as a model
of the surface quasigeostrophic equation and it also devel-
ops finite-time singularities [32]. In the case a < 0,
advection and vortex stretching work in conjunction lead-
ing to finite-time singularities [33]. The case a > 0 leads to
the competition of the two terms. By a clever expansion in
a, smooth self-similar profiles were constructed in Ref. [34]
for small, positive a, leading to finite-time blow-up. Via a
computer-assisted proof, Chen, Hou, and Huang [35]
proved blow-up for the De Gregorio equation (a ¼ 1).
Lushnikov et al. [36] represent the most thorough

numerical study of the generalized De Gregorio equation
to date. In Ref. [36], self-similar solutions were found in the

FIG. 2. (a) Spatial distribution of the collocation points.
Here (z1, z2) are the rescaled coordinates: y1 ¼ sinhðz1Þ and
y2 ¼ sinhðz2Þ. 10 000 collocation points in total are used for
training. (b) Decrease of the total loss over the training iterations.
The inset shows the loss curve in a log-log scale.
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whole range a ∈ ½−1; 1� and beyond. We use their reported
parameters as benchmarks for our results. In Ref. [37],
we show that PINN can accurately reproduce the findings
of Ref. [36].
Returning to the specific case of CCF (a ¼ −1), an

interesting question is to add fractional dissipation ð−ΔÞα=2
and ask for which values of α do singularities occur. Blow-
up is known to occur for 0 ≤ α < 1

2
, whereas for α ≥ 1 the

problem is global well posed [38–40]. The behavior in the
range 1

2
≤ α < 1 remains an important open problem.

Assuming the ansatz ω ¼ ð1 − tÞ−1Ωðx=ð1 − tÞ1þλ; sÞ
for s ¼ − logð1 − tÞ, then in the self-similar evolution
equation for Ω, the dissipative term takes the form
e½ð1þλÞα−1�sð−ΔÞα=2Ω. Analogous to how self-similar
Boussinesq solutions can be used to construct asymptotic
self-similar solutions to Euler with boundary, self-similar
inviscid CCF solutions satisfying the condition ð1þ λÞα −
1 < 0 may be employed to construct asymptotic self-
similar solutions to dissipative CCF. Since λ ≈ 1.18078
for the stable self-similar solution to inviscid CCF, such a
solution is ill suited to prove blow-up in the parameter
range 1

2
≤ α < 1. Motivated by known work on the Burgers

equation [41,42] and compressible Euler [43,44], one could
conjecture the existence of a discrete hierarchy of unstable
solutions with decreasing λ. By windowing the parameter λ,
including additional derivatives of the governing equation
in our residues, and using the constraint Ωð0.5Þ ¼ 0.05 to
renormalize, the PINN discovers an unstable self-similar
solution corresponding to λ ≈ 0.60573 (see Fig. 3). Such a
solution would allow us to prove blow-up for dissipative
CCF for the range α < 1=ð1þ λÞ ≈ 0.61. Moreover, such a
result is suggestive of a possible strategy of addressing the
Navier-Stokes millennium prize [45], i.e., via unstable self-
similar solutions to 3D Euler (the same strategy has proved
successful for dissipative Burgers and compressible Navier-
Stokes [44,46,47]). One expects that the PINN may be
adapted to find higher order unstable solutions to CCF as

well as unstable solutions to the Boussinesq equation—this
is a subject of future work.
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