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Owing to the chirality of Weyl nodes characterized by the first Chern number, a Weyl system supports
one-way chiral zero modes under a magnetic field, which underlies the celebrated chiral anomaly. As a
generalization of Weyl nodes from three-dimensional to five-dimensional physical systems, Yang
monopoles are topological singularities carrying nonzero second-order Chern numbers c2 ¼ �1. Here,
we couple a Yang monopole with an external gauge field using an inhomogeneous Yang monopole
metamaterial and experimentally demonstrate the existence of a gapless chiral zero mode, where the
judiciously designed metallic helical structures and the corresponding effective antisymmetric bianiso-
tropic terms provide the means for controlling gauge fields in a synthetic five-dimensional space. This
zeroth mode is found to originate from the coupling between the second Chern singularity and a
generalized 4-form gauge field—the wedge product of the magnetic field with itself. This generalization
reveals intrinsic connections between physical systems of different dimensions, while a higher-dimensional
system exhibits much richer supersymmetric structures in Landau level degeneracy due to the internal
degrees of freedom. Our study offers the possibility of controlling electromagnetic waves by leveraging the
concept of higher-order and higher-dimensional topological phenomena.

DOI: 10.1103/PhysRevLett.130.243801

Singularities in momentum space, which emerge as low-
energy excitations from a multifold degenerate spectrum,
play a key role in topological physics [1,2]. For instance, a
Weyl semimetal hosts Weyl points (WPs) in the momentum
space, which support massless relativistic quasiparticles
with quantized Chern numbers c1 ¼ �1 [3–8]. Owing to
this topological charge, its quantized Landau band struc-
tures under a magnetic field feature a single gapless chiral
zero mode (CZM) [9–12], which underlies the celebrated
chiral anomaly effect [13,14] and the negative longitudinal
magnetoresistance [15].
Generalization of WPs to five-dimensional (5D) space

leads to either zero-dimensional Yang monopoles (YMs)
[16,17] or two-dimensional linked Weyl surfaces [18–22],
both of which possess nontrivial second-order topology
with second Chern number c2 ¼ �1. These higher-
dimensional singularities have been demonstrated in a
metamaterial platform constructed by judiciously designed
metallic helical structures, with three real momentum

dimensions and two bianisotropic material parameters as
synthetic dimensions [23,24]. Three-dimensional Fermi
hypersurfaces and 1D Weyl arcs at the 4D boundary of
the Yang monopole metamaterial (YMM) were observed,
which are key signatures of the nontrivial c2. Since YMs
generalize WPs in higher dimensions with second-order
topology, a natural question is how they would respond to a
gauge field as a result of their nontrivial c2 [25].
A series of recent papers [10,11,26–29] have shown that

an artificial gauge field could be applied to a singularity by
engineering the individual unit cell to shift the location of
the degenerate point spatially. Such designs are excellent
platforms for observing Landau levels and CZM induced
by the interaction of quasiparticles and artificial external
magnetic fields B⃗. However, limited by the available space-
time dimensions, previous demonstrations have been lim-
ited to 2D or 3D systems. In this Letter, a 5D gauge field A⃗
is implemented by a judiciously designed inhomogeneous
YMM with two synthetic dimensions represented by the
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antisymmetric bianisotropic terms. This gauge field indi-
cates a 4-form background pseudovector field T⃗ ∝ B⃗ ∧ B⃗
along the axial z direction, which matches the order of
the differential form of nontrivial non-Abelian curvature
F⃗ ∧ F⃗ [30,31] induced by YM, where F⃗ is the 2-form
Berry curvature and ∧ is the wedge product. This non-
Abelian curvature is mathematically equivalent to the tensor
gauge field G1234 discussed in Ref. [32]. We for the first
time experimentally demonstrate the existence of the gen-
eralized gapless CZM induced by the coupling between this
pseudovector field T⃗ and the second Chern singula-
rity in such a higher-dimensional second-order topological
system.
We start with the comparison betweenWP and YM under

a gauge field, as shown in Figs. 1(a) and 1(b). A typical WP
is described by HWP ¼

P
3
i¼1 vikiσi, with σi the Pauli

matrices. When coupled with a gauge field A⃗ ¼ Bijxiêj,
by choosing an axis ê3 along which the pseudo-
vector magnetic field B⃗ is aligned, the corresponding

magnetic field B⃗ ¼ B12ê3 ¼ B3ê3 induces supersym-
metric Landau levels in the nonrelativistic squared
Hamiltonian:

H2
WP;G ¼ v23k

2
3 þ v2k½ð2nþ 1ÞjB3j − sgnðv3Þc1B3σz�; ð1Þ

with n a non-negative integer [33]. The term v23k
2
3 arises

from the conserved axial wave vector k3, with v3 the
corresponding Fermi velocity. For convenience, we set
isotropic horizontal Fermi velocities vi≠3 ¼ vk. The last
term represents the Zeeman term induced by the magnetic
field. Except for the zeroth mode, for every eigenstate
of Weyl basis j1i, there is always another counterpart
eigenstate j2i with the same energy and a mode number
difference of 1, as shown in Fig. 1(c). At k3 ¼ 0, due to the
chiral symmetry fHWP; σ3g ¼ 0, these supersymmetric
structures [33,34] indicate that for a WP under a gauge
field there exist symmetric relativistic high-order Landau
levels and a single CZM. The group velocity of one-way

(a) (b)

(c) (e)(d) (f)

FIG. 1. Illustration of Landau Levels and CZM in WP and YM under a gauge field. (a) AWP in 3D space under an external magnetic
field B⃗. (b) The counterpart of (a) in 5D space—a YM under an external 4-form pseudovector T⃗ field. The upper left insets in (a) and
(b) show the linear dispersion spectrum near the singularity, and the upper right inset in (b) shows a 5D gauge field A⃗. (c) The
supersymmetric Landau levels corresponding to the nonrelativistic squared WP Hamiltonian. (d) The dispersion spectrum of the
relativistic WP Hamiltonian, with the red straight line representing the CZM. (e),(f) The counterpart of (c),(d) for YM, with two effective
magnetic field components BP1 ≈ BP2. The numbers on the right-hand vertical axis indicate the degeneracy of each set of Landau levels
if jBP1j ¼ jBP2j.
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CZM is determined by both the magnetic field B3 and the
chirality c1 of WP:

ωCZM ¼ sgnðc1B3Þjv3jk3; ð2Þ

as shown in Fig. 1(d) [10–12].
For a YM described by HYM ¼ P

5
i¼1 vikiΓi, with

fΓi;Γjg ¼ 2δij satisfying the Clifford algebra, it has a
globally doubly degenerate band structure and a fourfold
degenerate point [16,17]. The system contains much richer
internal structures due to a higher degree of freedom. In the
presence of a 5D gauge field A⃗, in general, there exist ten
2-form magnetic field components Bij and five 4-form
pseudovector field components Tk ∝ εijkmnBijBmn. By
applying a coordinate transformation, one can reduce a
uniform 2-form magnetic field to only two components
fBP1; BP2g individually operating on two separate sets of
orthogonal 2-planes, which are both perpendicular to an
axis ê3 along which the pseudovector field T⃗ is aligned
[see Sec. I in Supplemental Material (SM) [35] ].
The presence of these fields leads to the following

nonrelativistic squared Hamiltonian:

H2
YM;G ¼ Σ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξþ c2T3 sgnðv3ÞΓ3

p
; ð3Þ

where
P

2 ¼ −P
j v

2
jD

2
j with Dj ≡ ∂j − iAj, and

Ξ ¼ 1
2

P
i≠j v

2
i v

2
jB

2
ij. In a proper Fock space, the two

2-form magnetic field components give rise to supersym-
metric Landau levels in the nonrelativistic squared
Hamiltonian:

H2
YM;G ¼ v23k

2
3 þ v2k½jBP1jð2n1 þ 1Þ þ jBP2jð2n2 þ 1Þ

− ðjBP1jσ3 þ jBP2jσ0Þ ⊗ τ3�; ð4Þ

where fn1; n2g are two non-negative integers, as shown
in Fig. 1(e) with BP1 ≈ BP2 [33,38]. The generalized
Zeeman term contains two sets of Pauli matrices, where
σ and τ operate on the interband jii and intraband j�i
spaces, respectively. Because of the SO(5) rotation sym-
metry [39–41], the supersymmetric structure in the
squared YM Hamiltonian possesses much richer degen-
eracies than its lower-dimensional counterpart—the WP,
which possesses double degeneracy for all the nonzeroth
modes. In the YM system, the degeneracy depends on the
energy level, which will be 4N at the particular case
jBP1j ¼ jBP2j, with N ¼ n1 þ n2 ≠ 0.
Importantly, there exists an individual CZM, as shown in

Fig. 1(f). Interestingly, it is not the 2-form magnetic fields B⃗
but the 4-form pseudovector field T⃗ together with c2 of the
YM that finally determine the dispersion of CZM, with the
direction of the group velocity given by

ωCZM ¼ sgnðc2T3Þjv3jk3: ð5Þ

Here, the condition guarantees the same Zeeman lift
direction in the interband space for the two constituent
WPs. This generalized CZM is topologically protected
by c2. While useful for obtaining the dispersion of the
CZM, this squared Hamiltonian cannot fully determine the
eigenstates and topological properties. Hence, a more
detailed equivalent lattice model in the Fock space is
performed [12]. It is verified that the CZM is also protected
by an equivalent topological invariant: a pair of opposite
nested first Chern number c1jv� defined on the Wannier
sectors [42–45] (see Secs. II and III in SM [35]).
In this work, we focus on this generalized CZM and

verify its existence through microwave experiments of
inhomogeneous metallic helical YMMs, as shown in
Fig. 2. The designed YMM [23] has degenerate electric
and magnetic resonances at the plasmonic frequency
ωp. Purely antisymmetric bianisotropic terms γxz ¼ −γzx
and γyz ¼ −γzy serve as two synthetic wave vector
dimensions k4 and k5, and purely antisymmetric tellegen
terms ςij ¼ −ςji serve as shifts of three real wave vectors:
Δkk ¼ −εijkωpςij (see Sec. IV in SM [35]). A periodic
metamaterial [23] just behaves like a 5DYM with fourfold
degeneracy located at ½K⃗YM;ωp�, in which the space of
Clifford operators Γi is spanned by two degenerate
longitudinal plasma modes fjEzi; jHzig with flat
dispersion and two transverse electromagnetic modes
fjExi; jEyig [brown lines in Fig. 2(d)].
For an inhomogeneous metamaterial, following the rules

of minimal coupling ∂j ↦ Dj ≡ ∂j − iAj in the usual
covariant derivative argument, a vector gauge field A⃗ can
be viewed as a space-dependent shift of the YM locations
K⃗YMðr⃗Þ in the 5D momentum space, with magnetic field
Bij ¼ i · ½Di;Dj� ¼ ∂iAj − ∂jAi caused by this spatial
shift [46]. Without loss of generality, we choose the axial
direction along the z direction. Therefore, the inhomo-
geneous YMM slow varying in the xy plane can introduce
an arbitrary nontrivial gauge field A⃗ðr⃗Þ ¼ Aiðx; yÞêi by
designing the space-dependent magnetoelectric tensor [47].
Compared with the homogeneous system, this inhomo-
geneous system not only introduces the magnetic fields Bij

that can couple with the first-order topological singu-
larity, but also contains a nontrivial 4-form field component
T3 ¼ 1

4
v4k · B⃗ ∧ B⃗ · ê3 ¼ 2v4kðB15B24 − B14B25 þ B12B45Þ

along the z direction, which interacts with the second-order
topological singularity of the YM and induces the gener-
alized CZM in 5D photonic YMM.
Figure 2(a) shows a schematic diagram for a specific

inhomogeneous YMM with only nonzero B15; B24 and all
other Bij ¼ 0. The shift of the YM only occurs in the
synthetic dimensions by varying the bianisotropy terms:
A4 ¼ −ωpγxzðr⃗Þ ¼ B24y and A5 ¼ −ωpγyzðr⃗Þ ¼ B15x,
which correspond to two individual space-dependent mass
terms in three real dimensions [48,49]. Note that such a
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configuration does not require any tellegen materials for
observing the CZM. The space-dependent bianisotropy
distribution is realized by a set of rotated metallic helical
units, as shown in Figs. 2(b) and 2(c). In each unit, four
precisely adjusted helical structures combined with their
mirror counterparts are collectively rotated to the angles
Φ1↦4¼ψ45þ½þδ45;þδ45þ90°;−δ45þ180°;−δ45þ270°�,
which can realize purely antisymmetric bianisotropic
terms satisfying γxzþ iγyz ∝ sinδ45 exp½iðψ45þ 45°Þ� [23].
Therefore, A⃗ðr⃗Þ can be realized in this inhomogeneous
photonic metamaterial through an appropriate spatial dis-
tribution of rotation angles ½δ45;ψ45�. In the experimental
demonstration, we design sin δ45 to be linearly varying with
radius, which varies from 0 to 1 through 20 units, and a
space-dependent phase distribution ψ45¼ atan2ðx;yÞ−45°.
This inhomogeneous YMM contains a uniform effective

magnetic flux density B15 ¼ B24 ≈ −1210 m−2 generated
by the spatially shifted A⃗ðr⃗Þ and a uniform 4-form
pseudovector field T3 ≈ ð0.011ωpÞ4 along the z direction,
which opens up a sufficiently large enough band gap of
approximately 0.39 GHz (see Sec. IV in SM [35]).
The local (left-hand panel) and global (right-hand panel)

dispersions of this metamaterial are shown in Fig. 2(d).
Locally, a nonzero angle δ45 behaves like an effective
mass, which opens a band gap and constructs two pairs of
degenerate bands near YM. Meanwhile, globally this inho-
mogeneous metamaterial supports a single Ex-polarized
confined state near the original YM, which is the CZM
induced by the nontrivial field T3 and protected by c2. This
eigenstate corresponds to a localized zero-order Hermite-
Gauss field distribution, as shown in Fig. 2(e). Thus, a
polarization-dependent dispersion spectrum can be mea-
sured to verify this CZM.
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FIG. 2. Illustration of Inhomogeneous Yang metamaterial. (a)–(c) The configuration of an inhomogeneous YMMwith A4 ¼ B24y and
A5 ¼ B15x. The inset in (a) represents the magnitude and angle distribution of the bianisotropy vectors, and the color map labels the
spatial distribution of ψ45. (b),(c) The top view and side view of the metallic helices, respectively. The spatial distribution of the two
angles δ45 and ψ45 is precisely designed to achieve an arbitrary gauge field distribution. (d) The local (left) and global (right) dispersion
of the designed inhomogeneous metamaterial along the axial direction kz. The brown line represents the dispersion of the original
YM (left) and CZM (right). (e) The field distribution of CZM at the original YM location.
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The sample is constructed by stacking up 160 printed
circuit board layers (40 unit cells along the z direction), as
shown in Fig. 3(a). A linearly polarized wave is launched
by a horn antenna located below the center of the bottom
layer, while the field distribution inside the vertical slits is
detected by the near-field scanning of a monopole antenna
aligned to a copolarization direction. Figure 3(b) shows the
simulated and measured copolarization field distribution at
the plasma frequency around 14.66 GHz in different
polarization setups. The Ex-polarized field can propagate
through the metamaterial, while the Ey-polarized field
decays rapidly along the z direction, agreeing with our
theoretical prediction that this inhomogeneous metamate-
rial supports a single Ex-polarized CZM, but behaves as a
band gap for the Ey-polarized excitation. A significant
contrast about 30 dB between different polarizations is
observed in the measured transmitted power near the
plasma frequency, as shown in Figs. 3(e) and 3(f). The

dispersion spectra of the two polarizations along kz,
obtained through Fourier transformation of the field
patterns, show a significant difference near the plasma
frequency from about 14.55 to 14.71 GHz, both in
simulation and in the experiment, as shown from the
comparison between Figs. 3(c) and 3(d). Such difference
in dispersion spectrum between the two polarizations is
consistent across a series of measurements at different in-
plane locations. In comparison, the dispersion spectrum
and transmitted power are both nearly polarization inde-
pendent at frequencies away from the plasma frequency
(see Sec. V in SM [35] for experimental details). This
contrast provides direct evidence for the presence of
polarized zeroth mode near YM.
In summary, we have explored the interaction of higher-

order topological singularities with a gauge field in a 5D
system, and we experimentally demonstrated the existence
of CZM by employing an inhomogeneous metamaterial

(b)

(c) (d)

(e)

(f)

(a)

FIG. 3. Experimental observation of the polarization-dependent dispersion of the 5D CZM. (a) Photograph of the top surface of the
sample, fabricated with printed circuit board technology, with one unit cell indicated by the black square. Two 3-mm-wide vertical slits
are cut through the center of the sample to measure the field distribution inside the metamaterial. (b) The simulated (left) and measured
(right) electric field distribution in the slits by different polarized excitations at the plasma frequency. The data z ∈ ð0; 20Þ units and
z ∈ ð20; 40Þ units are from two independent measurements. (c),(d) The simulated (left) and measured (right) dispersion spectra by
(c) Ex-polarized and (d) Ey-polarized excitations. In both cases, the direction of the probe antenna is aligned to the polarization of the
wave launched by the horn antenna, and Ex=Ey polarization is detected in the XZ=YZ slit, respectively. (e),(f) The (e) simulated and
(f) measured transmitted power for different polarizations obtained from integration along the corresponding slit. The KYM positions of
the experimental data are normalized individually.
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platform. Under a gauge field, the YMs with nontrivial c2
provide a much richer Landau structure than its 3D
counterpart, due to the interplay between 2-form magnetic
fields B⃗ and 4-form pseudovector fields T⃗. Interestingly,
the formation of the CZM directly results from the
interaction between c2 and the pseudovector T⃗ field,
which serves as a new manifestation of the intriguing
topological properties of YM. Our work provides new
approaches for electromagnetic control by exploiting the
combination of higher-dimensional topology and artifi-
cially engineered gauge fields.
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