
Unitarity of Symplectic Fermions in α Vacua with Negative Central Charge

Shinsei Ryu 1,* and Junggi Yoon 2,3,4,†
1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Asia Pacific Center for Theoretical Physics, POSTECH, Pohang 37673, Korea

3Department of Physics, POSTECH, Pohang 37673, Korea
4School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea

(Received 6 February 2023; accepted 23 May 2023; published 15 June 2023)

We study the two-dimensional free symplectic fermion theory with antiperiodic boundary condition.
This model has negative norm states with a naive inner product. This negative norm problem can be cured
by introducing a new inner product. We demonstrate that this new inner product follows from the
connection between the path integral formalism and the operator formalism. This model has a negative
central charge, c ¼ −2, and we clarify how two-dimensional conformal field theory with negative central
charge can have a non-negative norm. Furthermore, we introduce α vacua in which the Hamiltonian is
seemingly non-Hermitian. In spite of non-Hermiticity, we find that the energy spectrum is real. We also
compare a correlation function with respect to the α vacua with that of the de Sitter space.
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Introduction.—Unitarity, as a primary postulate of
quantum theory, has played a central role in producing
momentous achievements in physics such as the optical
theorem for the S matrix and the Page curve in the black
hole [1]. On the other hand, an open quantum system, which
features nonunitarity, has been recently spotlighted. There,
the physical properties of nonunitary models have been
extensively investigated, such as topological phases [2–6]
and phase transitions [7–11] of non-Hermitian systems.
In two-dimensional conformal field theory (CFT2), the

central charge is known to be a powerful criterion for
unitarity; a CFT2 with negative central charge has negative
norm states and therefore is nonunitary. CFTs with negative
central charge have provided fruitful laboratories to under-
stand nonunitary physics.
The symplectic fermion theory, i.e., the anticommuting

scalar field theory, has been thoroughly studied as an
example of CFT2 with central charge c ¼ −2 [12,13] and
as an example of a logarithmic CFT for the case of periodic
boundary condition [14]. It was proposed in [15,16] that a
new inner product can cure the negative norm states of the
symplectic fermion; therefore this model with the new inner
product was claimed to be unitary [15,16]. However, the
tension between the negative central charge and the absence
of the negative norm states has not been explicitly resolved.
Recently the three-dimensional free symplectic fermion has

attracted great interest as a holographic dual of higher spin
gravity in four-dimensional de Sitter space [17–25]. In this
de Sitter/CFT context, the new inner product has not been
fully used.
In this Letter, we investigate the free symplectic

fermion with antiperiodic boundary condition to show
that CFT2 with negative central charge can be unitary.
Here, the unitaritymeans that the time evolution preserves
the inner product. We review the new inner product that
resolves the issue of the negative norm state in the model
[15,16]. We demonstrate that this new inner product in the
operator formalism follows from the path integral for-
malism. Therefore, if we define the model in the path
integral, this inner product is not an ad hoc choice but the
unique one for the operator formalism. The symplectic
fermion, which is unitary with respect to the new inner
product in spite of the negative central charge, is a
counterexample of the well-known proposition that a
CFT2 with a negative central charge should have negative
norm states. We clarify how the proposition can be
avoided. Furthermore, we introduce slð2;RÞ invariant α
vacua parameterized by an infinite set of real parameters
αn where n is a positive half-integer. In this α vacuum the
Hamiltonian is seemingly non-Hermitian with respect to
the new inner product so that the energy spectrum is not
necessarily real. We find that the energy spectrum is real
in spite of the non-Hermiticity. We observe that the two-
point function with respect to the naive norm in the α
vacua of the symplectic fermion has divergence similar to
that in the two-point function of the antipodal points in the
α vacua of de Sitter space [26–28].
Model.—We study the two-dimensional free symplectic

fermion defined by the action
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S ¼
Z

d2x∂μψ̄∂μψ ; ð1Þ

where ψ̄ðt; σÞ and ψðt; σÞ are anticommuting Grassmannian
scalar fields [12–16]. In the spatial coordinate σ ∈ S1, we
consider the antiboundary condition ψðt; σ þ lÞ ¼ −ψðt; σÞ
and ψ̄ðt; σ þ lÞ ¼ −ψ̄ðt; σÞ. The conjugate momenta
Π ¼ ðδ⃖L=δ⃖ _ψÞ ¼ _̄ψ and Π̄ ¼ ðδ⃗L=δ⃗ _̄ψÞ ¼ _ψ are obtained
by the right and left derivative of the Lagrangian with respect
to _ψ and _̄ψ , respectively, for consistency with the Hermitian
adjoint. This leads to the symplectic one-form π _ψ þ _̄ψ π̄ in
the Legendre transformation to the Hamiltonian, and the
canonical anticommutation relation reads

fψðσÞ;Πðσ0Þg¼ iδðσ−σ0Þ; fψ̄ðσÞ;Π̄ðσ0Þg¼−iδðσ−σ0Þ:
ð2Þ

Going over to Euclidean plane z ¼ e½2πðτ−iσÞ=l� with Wick
rotation τ ¼ it, we take the mode expansion of ψ and ψ̄ as

ψ ¼ iffiffiffiffiffiffi
4π

p
X
n>0

1

n
ðbnz−n − c−nzn þ b̄nz̄−n − c̄−nz̄nÞ;

ψ̄ ¼ iffiffiffiffiffiffi
4π

p
X
n>0

1

n
ð−b−nzn þ cnz−n − b̄−nz̄n þ c̄nz̄−nÞ; ð3Þ

where n runs over the positive half-integers due to the
antiperiodic boundary condition. From the canonical anti-
commutation relation [Eq. (2)], we can obtain the anticom-
mutation relation of the oscillators

fbn; bmg ¼ jnjδnþm;0; fb̄n; b̄mg ¼ jnjδnþm;0;

fcn; cmg ¼ −jnjδnþm;0; fc̄n; c̄mg ¼ −jnjδnþm;0; ð4Þ
where the negative and positive modes serve as the creation
and annihilation operators, respectively. For more details on
the quantization, refer to the Supplemental Material [29].
Note that the anticommutation relations of cn and c̄n have a
minus sign compared to those ofbn and b̄n. Thisminus sign in
the anticommutation relation seemingly results in negative
norm states. For example, using the anticommutation relation
the usual norm of the excited state c−nj0i can be shown to
have the sign opposite to that of the vacuum,

h0jcnc−nj0i ¼ −nh0j0i ðn > 0Þ: ð5Þ
Such nonunitarity from the negative norm state has been
observed in the higher derivative systems [30–36]. In such
higher derivative theories, by exchanging the role of the
creation and annihilation oscillators, one can retrieve the non-
negative norm at the cost of the energy spectrum unbounded
from below, which leads to Ostrogradsky instability [33,35].
However for the fermionic oscillators the negative norm
cannot be cured by exchanging the role of the creation and the
annihilation oscillators.

J norm and unitarity.—The problem of the negative
norm states can be resolved by introducing an operator J
that is the exponentiation of the fermion number operator
cn and c̄n [15,16]

J ≡ eπi
P

n
1
nðc−ncnþc̄−nc̄nÞ; ð6Þ

which is Hermitian and unitary, J † ¼ J and J 2 ¼ 1. The
operator J commutes with the oscillators bn and b̄n while it
anticommutes with the oscillators cn and cn,

J bnJ ¼ bn; J cnJ ¼ −cn: ð7Þ
As in supersymmetry, one can define the J norm by
inserting the operator J

h·iJ ≡ hJ ·i: ð8Þ
Then the J norm of the excited states has positive J norm

kc−nj0ikJ ¼ h0jcnJ c−nj0i ¼ nkj0ikJ ðn > 0Þ: ð9Þ
Since the Hermitian adjoint follows the inner product, one
has to define a new Hermitian adjoint †J that is consistent
with the new J norm,

O†J ≡ JO†J : ð10Þ
For the new J -Hermitian adjoint †J we find it convenient
to introduce a double-bracket notation. Namely, while a ket
state with the double bracket is the same as the usual ket
state, a bra state with a double bracket is defined via
J -Hermitian adjoint

jΦ⟫≡Φj0i⇒†J ⟪Φj≡ h0jΦ†J : ð11Þ
The inner product of double-bracket states is identical to
the J -inner product

⟪ΦjOjΨ⟫ ¼ hΦjOjΨiJ : ð12Þ
Hence double-bracket states also have the non-
negative norm. Although the Hamiltonian of the symplectic
fermion is Hermitian with the ordinary Hermitian adjoint,
the Hermiticity of the Hamiltonian with J -Hermitian adjoint
is not straightforward in general, where more details can be
found in the Supplemental Material [29]. And those double-
bracket bra and ket states correspond to the biorthogonal
basis for the non-J -Hermitian Hamiltonian [37,38].
Connection to path integral.—We have introduced the

J -inner product to resolve the negative norm state problem.
This might seem ad hoc to recover non-negative norm by
modifying the theory. However, it turns out [36] that the path
integral formalism of the symplectic fermion is consistent
with the operator formalism with the J norm rather than the
ordinary norm.
To understand the correspondence between the

path integral and operator formalisms for the symplectic
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fermion, we define Fock states jfν; μg⟫≡ ð1=N fν;μgÞQ
n>0 b

νn
−nc

μn
−nb

ν̄n
−nc̄

μ̄n
−nj0i where n is a positive half-integer

and νn; μn; ν̄n; μ̄n ∈ f0; 1g. We normalize the state jfν; μg⟫
in the double-bracket notation by choosing suitable normali-
zation constant N fν;μg. Note that ⟪fν; μgj is different from
hfν; μgj in general. Hence the identity operator can be
expressed as

I ¼
X
fν;μg

jfν; μg⟫⟪fν; μgj ¼
X
fν;μg

jfν; μgihfν; μgjJ : ð13Þ

In terms of ordinary bra and ket states, the operator J is
inserted in the completeness relation, which makes this
expression play the role of the identity operator. We also
define the coherent state

jη; ζ⟫≡Y
n>0

e−
1
nðηnb−nþζnc−nÞj0i; ð14Þ

where η and ζ are complex numbers. Here, we omit the
antiholomorphic part for simplicity, but one has to take it into
account to connect to the path integral. Similarly one can
define ⟪η̄; ζ̄j by using J -Hermitian adjoint. In terms of the
coherent state, the identity operator can be expressed as

I¼
Z Y

n>0

e−
1
nðη̄−nηnþζ̄−nζnÞdηndη̄−ndζndζ̄−njη;ζ⟫⟪η;ζj

¼
Z Y

n>0

e−
1
nðη̄−nηnþζ̄−nζnÞdηndη̄−ndζndζ̄−njη;ζihη;ζjJ : ð15Þ

In the coherent state representation of the identity operator,
the operatorJ is also inserted when we express it in terms of
the ordinary coherent state.
To make contact with the path integral, one can insert the

completeness relation [Eq. (15)] into transition amplitude
⟪η̄f; ζ̄fjηi; ζi⟫ at each discretized time. The rest procedure
is identical to the standard derivation of path integral except
for the double-bracket notation, or equivalently we insert
the operator J in the transition amplitude. For example, at
finite temperature, one can have

Trðe−βHÞ ¼ trðJ e−βHÞ ¼
Z

Dψ̄Dψe−SE½ψ ;ψ̄ �; ð16Þ

where the trace Tr runs over the double-bracket states while
the trace tr runs over the states with single brackets. Here,
SE½ψ ; ψ̄ � denotes the Euclidean action for the symplectic
fermion [Eq. (1)]. Note that the trace Tr corresponds to that
of the biorthogonal basis. More detailed derivation can be
found in the Supplemental Material [29]. One may express
the identity operator [Eq. (15)] in terms of the ordinary
coherent states jη; ζi and hη; ζj without the J operator.
However in this representation the measure becomes
e−ð1=nÞðη̄−nηn−ζ̄−nζnÞ. The asymmetry between η and ζ in the
measure makes it difficult to repeat the standard derivation.

We have seen that the J norm follows from the path
integral of the symplectic fermion. Therefore, the Fock
states have a positive norm and positive energy, which
implies the unitarity, at least, of the free theory.
Negative central charge and positive norm.—Let us now

discuss the Virasoro symmetry of the symplectic fermion.
Using the anticommutation relations [Eq. (4)] of the
oscillators, the two-point function of the primary operator
∂ψ̄ and ∂ψ of conformal dimension 1 in the double-bracket
notation is evaluated to yield

⟪∂ψ̄ðzÞ∂ψðwÞ⟫ ¼ 1
8π

ffiffiffiw
z

p þ ffiffiffi
z
w

p
ðz − wÞ2 : ð17Þ

Note that the correlation function with respect to the
vacuum state with double bracket is identical to that of
single bracket because the vacuum state j0i is invariant
under the action of J , i.e., J j0i ¼ j0i.
Using the two-point function [Eq. (17)], the operator

product expansion of the energy-momentum tensor TðzÞ ¼
−4π∶∂ψ̄∂ψ is

TðzÞTðwÞ ∼ ð−1Þ
ðz − wÞ4 þ

2TðwÞ
ðz − wÞ2 þ

∂TðwÞ
ðz − wÞ : ð18Þ

Then we can read off the central charge c ¼ −2 of the
symplectic fermion. Note that the J norm is not essential in
obtaining the central charge because the two-point function
[Eq. (17)] is blind to the J operator insertion.
Now we consider the Virasoro generator. The nonzero

mode reads

Ln ¼
1

2

X
m>0

ðbn−m þ cn−mÞðbm − cmÞ

þ 1

2

X
m>n

ðbn−m − cn−mÞðbm þ cmÞ ðn ≠ 0Þ: ð19Þ

While the usual Hermitian adjoint of Ln is L−n (i.e.,
L†
n ¼ L−n), the J -Hermitian adjoint of Ln is different from

L−n. On the other hand, the zero mode L0 is J -Hermitian

L0 ¼
X
m>0

ðb−mbm − c−mcmÞ −
1

8
; ð20Þ

where the vacuum energy density is chosen from the point-
splitting regularization of the one-point function of the
energy-momentum tensor ⟪TðzÞ⟫ ¼ −ð1=8z2Þ. Using the
anticommutation relations [Eq. (4)] one can explicitly
double-check the central charge c ¼ −2 from the
Virasoro algebra

½Ln; Lm� ¼ ðn −mÞLnþm þ c
12

nðn2 − 1Þδnþm;0: ð21Þ

This result seemingly contradicts the well-known proposi-
tion that CFT2 with negative central charge has negative
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norm states because the symplectic fermion does not
have any negative norm state in spite of the negative central
charge. We find that the standard proof for the proposition
has a “loophole” for the case of the symplectic fermion.
The standard proof considers the norm of the state

L−njhi (n > 0) where jhi is a primary state with conformal
dimension h. Using the Virasoro algebra [Eq. (21)] one can
show that the norm of the state L−njhi has opposite sign to
that of jhi for sufficiently large n. However for the
symplectic fermion one has to use J -Hermitian adjoint
as well as J norm, or equivalently, double-bracket states.
Therefore the correct norm of the state L−njhi is

⟪L−nhjL−nh⟫¼⟪hjL†J
−nL−njh⟫¼⟪hjJLnJL−njh⟫: ð22Þ

Since L†J
n ≠ L−n for n ≠ 0 as we observed above, one

cannot use the Virasoro algebra to get the proposition.
Therefore we conclude that the symplectic fermion is a
“counterexample” for the nonunitarity of CFT2 with
negative central charge.
The unitarity of the symplectic fermion implies that

physical quantities will be well-defined. For example, the
entanglement entropy should be positive in unitary theory.
For the case of negative central charge the entanglement
entropy of a subsystem of length a is not proportional to the
central charge; but it is given by [39–41]

SEEðaÞ ¼
ceff
3

log

�
a
ϵ

�
; ð23Þ

where ϵ is the ultraviolet cutoff. The effective central charge
denoted by ceff is defined by ceff ¼ c − 24Δmin where Δmin
is the lowest holomorphic conformal dimension. For the
case of the symplectic fermion the vacuum energy density
in Eq. (20) implies that the identity operator has the lowest
conformal dimension Δmin ¼ −1=8, and we have ceff ¼ 1.
Thus the entanglement entropy is positive as expected for a
unitary theory. However the positive effective central
charge does not always imply the unitarity. For instance,
the Lee-Yang model with c ¼ −22=5 has positive effective
ceff ¼ 2=5 in spite of the nonunitary.
α vacua.—The J Hermiticity of L0 and the unitarity is

nontrivial in the alternative mode expansion [Eq. (3)] of the
ψ and ψ̄ . To see this issue, we define Bogoliubov generator
Gα by

Gα ≡ i
X
n>0

αn
n
ðb−nc−n þ bncnÞ; ð24Þ

where αn ∈ R (n ¼ 1=2; 3=2;…). Note that Gα is
Hermitian but not J -Hermitian. The adjoint action of J
on Gα flips the sign of all αs, i.e., JGαJ ¼ G−α. Similarly
we can define Ḡα for the antiholomorphic oscillators, but
we omit the antiholomorphic contributions for simplicity,
which is parallel to the holomorphic calculation. Since Gα

generates the canonical (Bogoliubov) transformation, one
may take the mode expansion of ψ and ψ̄ in terms of b̃n ≡
e−iGαbneiGα and c̃n ≡ e−iGαcneiGα instead of bn and cn. In
this new mode expansion, L0 is expressed as

L0 ¼
X
n>0

½cosh 2αnðb̃−nb̃n − c̃−nc̃nÞ

þ sinh 2αnðb̃−nc̃−n þ c̃nb̃nÞ�; ð25Þ

up to vacuum energy density constant. The oscillators b̃n
and c̃n also depend on αs, and the adjoint action of J on b̃n
and c̃n flips the sign of αns, i.e., J b̃ðαÞn J ¼ b̃ð−αÞn and

J c̃ðαÞn J ¼ −c̃ð−αÞn . Hence it is more convenient to define a

new operator J̃ ¼ exp½πiPnð1=nÞc̃ðαÞ−n c̃
ðαÞ
n � instead of the

original J operator.
Repeating the same procedure with J̃ -inner product and

J̃ -Hermitian adjoint, we note that L0 is not J̃ -Hermitian
anymore though L0 is still Hermitian. Therefore the eigen-
value of L0 is not necessarily real. The non-J̃ -Hermiticity
of L0 can arise because the Bogoliubov transformation
generated by Gα is not J -unitary transformation but a
similarity transformation.
Using the bra and ket states with double brackets, the

matrix elements of L0 can be evaluated, and its eigenvalues
are identical to the original real eigenvalues from the bn and
cn oscillators, where more details can be found in the
Supplemental Material [29]. A similar phenomenon has
been observed in [36] with a quantum mechanical model
where a non-J -Hermitian Hamiltonian can have real
eigenvalues when there exists a Bogoliubov transformation
that makes the Hamiltonian J -Hermitian. And if such a
Bogoliubov transformation does not exist, the Hamiltonian
develops complex energy spectrum. Since the Eq. (25)
expression is obtained by the Bogoliubov transformation of
the J -Hermitian operator, it is not surprising to have real
eigenvalues that are identical to the original ones.
Going back to the original J operator and the corre-

sponding J norm, we consider the α vacuum jα⟫, which is
annihilated by b̃n and c̃n for n > 0. The α vacuum is related
to the vacuum j0i by the Bogoliubov transformation

jα⟫¼e−iGαffiffiffiffiffi
N

p j0i¼
Y
n>0

�
coshαnþsinhαn

1
nb−nc−nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2αn
p

�
j0i; ð26Þ

where N ¼ Q
n>0 cosh 2αn is the normalization constant.

Under the assumption that the vacuum j0i is invariant under
the under the action of J , the α vacuum is not,
i.e., J jα⟫ ¼ j − α⟫.
The operators J0 ¼ P

n>0ð1=2nÞðb−nbn þ c−ncnÞ and
J� ¼ �P

n>0ð1=nÞb∓nc�n form slð2;RÞ algebra, and the
vacuum j0i is slð2;RÞ invariant ground state. Since Gα

commutes with the slð2;RÞ generators, the α vacuum is
also the slð2;RÞ invariant ground state.
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Note that theαvacuum is themaximally entangled state of
the Fock spacesHb andHc created by the oscillatorsb and c,
respectively. The usual maximally entangled states obtained
by Bogoliubov transformations do not need the nontrivial
normalization constant N , i.e., N ¼ 1. However, the non-
trivial normalization constant is necessary for the symplectic
fermion because the Bogoliubov transformation in our case
is not a unitary but similarity one. By tracing out theHc, the
reduced density matrix ρb of the pure state jα⟫ reads

ρb ¼ ⊗
n>0

�
cosh2αn
cosh 2αn

j0ih0j þ sinh2αn
cosh 2αn

b−nj0ih0jbn
�
: ð27Þ

If we choose a specific value of αn ¼ e−ðβjnj=2Þ, the reduced
density matrix is identical to the thermal density matrix of
the fermi oscillator b with temperature β−1, and the α
vacuum corresponds to the thermofield dynamics state [42].
We now evaluate the two-point function of the primary

operator with respect to the α vacuum. We find that

⟪∂ψ̄ðzÞ∂ψðwÞ⟫α

¼ 1

4πzw

X
n>0

n

��
w
z

�
n cosh2αn
cosh 2αn

−
�
z
w

�
n sinh2αn
cosh 2αn

�
: ð28Þ

If all αn are set to the same value α, the two-point function is
independent of α and it reproduces the two-point function
[Eq. (17)] with respect to the vacuum state. On the
other hand, one can also evaluate the two-point function
with the naive norm without J insertion, which is not
consistent with the path integral formulation and leads to
negative norm states. With the naive norm, we have the
ordinary Hermitian adjoint, and the ket state of α vacuum
does not need the nontrivial normalization constant N as
usual. Using the α vacuum [Eq. (26)] withN ¼ 1, we obtain

h∂ψ̄ðzÞ∂ψðwÞiα
¼ 1

4πzw

X
n>0

n

��
w
z

�
n
cosh2αn þ

�
z
w

�
n
sinh2αn

þ ½ðzwÞn þ ðzwÞ−n� sinh αn coshαn
�
: ð29Þ

This result with naive norm contains the power series in zw
in addition to that in z=w. This implies that the correlation
function could diverge at z ¼ 1=w as well as z ¼ w. To see
this divergence explicitly, we set all αn parameters to be the
same value α, and we obtain

h∂ψ̄ðzÞ∂ψðwÞiαn¼α ¼
1

8π

ffiffiffi
z
w

p þ ffiffiffiw
z

p
ðz − wÞ2 coshð2αÞ

þ 1

8π

1

w2

ffiffiffiffiffiffi
zw

p þ
ffiffiffiffi
1
zw

q
ðz − 1

wÞ2
sinhð2αÞ: ð30Þ

The divergence of the naive two-point function at zw ¼ 1
has been observed in the two-point function of the free scalar

field in the α vacua of de Sitter space [26–28], which is
demonstrated in Fig. 1. The two-point function with respect
to the α vacuum of the de Sitter space diverges when one
point is identical or antipodal to the other in the de
Sitter space, where more detailed comparison can be found
in the Supplemental Material [29]. The Bunch-Davies
vacuum [43] is free of the divergence of the antipodal
points, which is analogous to the vacuum jα ¼ 0i ¼ j0i in
the symplectic fermion with naive norm.
Discussion.—In this Letter, we have explained that the

symplectic fermion is a unitary CFT2 in spite of the
negative central charge c ¼ −2. The J norm following
from the path integral formulation makes the theory unitary,
and the corresponding J -Hermitian adjoint plays a key role
in avoiding the well-known proposition on the existence of
negative norm states in the CFT2 with negative central
charge. We have also analyzed the slð2;RÞ invariant α
vacua in which non-J -Hermitian Hamiltonian can retrieve
the real energy spectrum. We have compared the two-point
function with the naive norm to that of de Sitter space.
The absence of the interaction played an important role in

explicit demonstration of the unitary time evolution in the free
symplecticmodel.However, formoregeneral theories such as
the Yang-Lee edge singularity [44–48] and the parity-time-
symmetric Su-Schrieffer-Heegermodel [49], and in particular
interacting ones, the non-negative norm itself would not be
sufficient to deduce the unitary time evolution. Nevertheless,
our work suggests a possibility of a new class of CFT2 with
negative central charge that could be salvaged from the
illusionary nonunitarity by clarification of the inner product.
Itmight be possible to explore a latticemodel or an interacting
continuum CFT2 that is unitary but has negative central
charge. The divergence of two-point function at the antipodal
points in theαvacua of deSitter space is still an open problem.
In the symplectic fermion, the analogous problem is cured by
the J -inner product. Thus it is highly interesting to find an
alternative inner product in the de Sitter space that might shed
light on revisiting the α vacua issue in the de Sitter space.

FIG. 1. Two-point function in the α vacuum of symplectic
fermion and scalar field in the αvacuumof de Sitter space. (a)With
the naive inner product, the two-point function h∂ψ̄ðzÞ∂ψðwÞiαn¼α

with respect to α vacuum diverges as z approaches to 1=w.
(b) Two-point function of scalar field in the α vacuum of de Sitter
space also diverges when X is close to the antipodal point YA of Y.
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