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2Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
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We investigate critical quantum metrology, that is, the estimation of parameters in many-body systems
close to a quantum critical point, through the lens of Bayesian inference theory. We first derive a no-go
result stating that any nonadaptive strategy will fail to exploit quantum critical enhancement (i.e., precision
beyond the shot-noise limit) for a sufficiently large number of particles N whenever our prior knowledge is
limited. We then consider different adaptive strategies that can overcome this no-go result and illustrate
their performance in the estimation of (i) a magnetic field using a probe of 1D spin Ising chain and (ii) the
coupling strength in a Bose-Hubbard square lattice. Our results show that adaptive strategies with real-time
feedback control can achieve sub-shot-noise scaling even with few measurements and substantial prior
uncertainty.
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Introduction.—Physical systems prepared close to a
phase transition are a powerful resource for metrology
and sensing applications, as they are extremely sensitive to
small variations of certain parameters. This long-standing
idea has been recently considered in the quantum regime by
exploiting quantum phase transitions in the ground state, or
dissipative steady states [1–3], of many-body [4–7] or
light-matter interacting systems [8–11]. In this case, quan-
tum fluctuations in the proximity of a quantum critical
point can be exploited for quantum-enhanced sensing
[12,13].
In a typical protocol in critical quantum metrology, the

parameter λ to be estimated (e.g., a magnetic field) is
encoded in the ground state ρðλÞ of a quantum probe. By
adiabatically driving the Hamiltonian of the probe close to
the critical point, the state ρðλÞ becomes highly sensitive to
small variations of λ. This leads to diverging susceptibilities
that can be exploited for highly precise parameter estima-
tion [14–16]. More precisely, given an N-body probe, the
precision Δλ of the estimation can decay faster than the
shot-noise limit 1=

ffiffiffiffi
N

p
[17,18] when the measurements are

performed close to a critical point.
While critical quantum metrology provides an exciting

avenue for quantum-enhanced measurements, it also faces
important challenges. A notable one is critical slowing
down [6], which can be mitigated by appropriate driving
schemes [10,19] or alternative approaches [19–22]. A
second challenge is that often (almost) perfect prior knowl-
edge of the parameter to be estimated λ is needed to exploit
the critically enhanced measurement sensitivity, since the
critical region Δc shrinks with the system size (see details
below) [23]. This may not be seen as a drawback in the
framework of local estimation, aiming at measuring the
smallest variations around a known parameter, but becomes

crucial in global sensing [24], i.e., in scenarios with limited
prior knowledge about λ.
Motivated by the potential use of critical quantum

systems in global sensing problems, we find the following
two results. First, we derive a no-go theorem stating that
nonadaptive schemes are always limited by a shot-noise
scaling even in the presence of a quantum phase transition.
This can be contrasted to a similar result for the task of
estimating temperature in interacting systems [25]; our
result is instead applicable to the estimation of any
parameter of a quantum ground state. Second, we charac-
terize adaptive schemes that can overcome this bound and
reach sub-shot-noise scaling, the level of violation depend-
ing directly on the universality class of the phase transition.
These schemes are illustrated for the estimation of (i) a
magnetic field using as a probe a 1D spin Ising chain and
(ii) the hopping term in a Bose-Hubbard square lattice. All
our results are obtained within a Bayesian approach [26].
Preliminaries.—We seek to estimate an unknown param-

eter λ ∈ ½λmin; λmax�, with a prior distribution p0ðλÞ. We
consider m consecutive measurements of the ground state
ρðλ; s⃗Þ of an N-body interacting system described by a
Hamiltonian Ĥðλ; s⃗Þ. Besides λ, Ĥðλ; s⃗Þ also depends on
externally controllable parameters s⃗, which can be modified
to enhance sensitivity during measurements. In our analy-
sis, the relevant resources are the number of particles N and
the total number of measurements implemented m.
The kth measurement on the system can be described by

a positive operator-valued measure, with elements ΠðkÞ
x ≥ 0

satisfying
R
dxΠðkÞ

x ¼ I, with I the identity operator. Let
x⃗k ¼ fx1;…; xkg denote the register of the outcomes
of the first k measurements and pðλjx⃗kÞ the posterior
distribution—for a lighter notation, we drop the dependence
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of the posterior on the setting s⃗k. The posterior distribution
is updated according to Bayes’ rule [27]:

pðλjx⃗kÞ ¼
pðxkjλ; s⃗kÞpðλjx⃗k−1Þ

pðxkjx⃗k−1; s⃗kÞ
ð1Þ

with k¼1;…;m. Here, pðλjx0Þ≡ p0ðλÞ, and pðxkjλ; s⃗kÞ ¼
Tr½ΠðkÞ

xk ρðλ; s⃗kÞ� is the probability that in the kth measure-
ment we observe the outcome xk when the control para-
meters are tuned to s⃗k. Note that in adaptive strategies the
control parameters generally depend on the observed out-
comes. Finally, pðxkjx⃗k−1; s⃗kÞ ¼

R
dλpðxkjλ; s⃗kÞpðλjx⃗k−1Þ

is the normalization factor.
After each measurement, one builds an estimator λ̃k that

assigns an estimate value to the unknown parameter
according to the observed data. To quantify the estimation
error, we use the standard expected mean square distance
(EMSD) as our figure of merit [28,29]—we expect that
our main conclusions hold for other reasonable choices of
the error function. After performing m measurements, it
reads

EMSD ≔
Z

dλp0ðλÞ
Z

dx⃗mpðx⃗mjλÞ½λ̃ðx⃗mÞ − λ�2: ð2Þ

The EMSD can be bounded via two complementary
approaches:

EMSD ≥
�
F0 þ

Z
dλp0ðλÞF ½pðx⃗mjλÞ�

�
−1
; ð3aÞ

EMSD ≥
Z

dλp0ðλÞF ½pðx⃗mjλÞ�−1 ðunb: est:Þ: ð3bÞ

The first bound (3a) follows from the Van Trees inequality
and is valid for any estimator [30,31]. On the other hand,
Eq. (3b) is a direct consequence of the Cramér-Rao bound
[32] and is, hence, valid only for unbiased estimators
λ̃ub for which

R
dx⃗mpðx⃗mjλÞλ̃ubðx⃗mÞ ¼ λ. Here, F0 ≔R

dλp0ðλÞ½∂λ logp0ðλÞ�2 is a functional of only the prior
information, while

F ½pðx⃗mjλÞ� ≔
Z

dx⃗mpðx⃗mjλÞ½∂λ logpðx⃗mjλÞ�2

¼
Xm
k¼1

Z
dx⃗k−1pðxk−1jλ; s⃗k−1ÞF ½pðxkjλ; s⃗kÞ�

ð4Þ

is the classical Fisher information of the trajectory char-
acterized by pðx⃗mjλÞ. From the quantum Cramér-Rao
bound, we know that

F ½pðxkjλ; s⃗Þ� ≤ FQðλ; s⃗Þ; ð5Þ

where FQðλ; s⃗Þ is the quantum Fisher information (QFI),
the maximum Fisher information over all possible mea-
surements [33–35].
The appearance of the QFI in the lower bounds of the

EMSD enables us to connect the Bayesian approach with
previous results in critical quantum metrology obtained
within a frequentist framework, where the divergence of
FQðλ; s⃗kÞ close to a phase transition is exploited [4–7]. In
particular, we are concerned with systems which exhibit a
second-order quantum phase transition [36]. This means
that, in the thermodynamic limit (N → ∞), the energy of
the ground state of Ĥðλ; s⃗Þ has a nonanalyticity point at
some value λcðs⃗Þ. Close to the critical point λcðs⃗Þ, the
behavior of the system is described by power laws with a
set of critical exponents which do not depend upon the
microscopic details of the Hamiltonian but only on its
universality class [37]. In particular, the correlation length ξ
of the system diverges as ξ ∼ ðλ − λcÞ−ν for some critical
exponent ν [38]. The theory of finite size scaling [39–41] is
based on the hypothesis that ξ is the most relevant length
scale in the proximity of the critical point λcðs⃗Þ. For a
system with spacial dimension d, which has a finite size
L ¼ N1=d, the critical region of the phase diagrams occurs
when ξ ≫ L. This implies that the system is critical when

jλ − λcj ≤ CN−1=dν ≕Δc ð6Þ
for some constant C which does not depend on N. Here, we
define Δc as the width of the critical region, which shrinks
as Δc ∝ N−1=dν.
Inside the critical region, the universal part of the QFI is

expected to behave as [6,42]

FQðλcðs⃗Þ; s⃗Þ ≈ αcN2=dν; jλ − λcj ≤ Δc; ð7Þ
where αc is some constant that is independent of N. When
dν < 2, the universal term (7) becomes the leading term of
the QFI, and the system-specific corrections [43] become
subleading [44,45]. Outside the critical region, the super-
linear scaling of the QFI is lost and the universal con-
tribution to the QFI behaves as FQðλ; s⃗Þ ≈ Njλ − λcðs⃗Þjdν−2
[14]. More generally, we can bound the QFI by a linear
function of N:

FQðλcðs⃗Þ; s⃗Þ ≤ αncN; jλ − λcj ≥ Δc; ð8Þ

for some constant αnc independent of N.
Fundamental bounds in Bayesian critical quantum

metrology: Adaptive vs nonadaptive protocols.—Let us
now characterize the limitations arising due to the prior
uncertainty p0ðλÞ. First of all, we can find an upper bound
on EMSD, which is independent of p0ðλÞ. Using
maxλFQðλ; s⃗Þ ≈ αcN2=dν, by combining Eqs. (3a) and (5)
we obtain in the large N limit

EMSD≳ ½mαcN2=dν�−1: ð9Þ
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Saturating this lower bound requires feedback control.
Indeed, let us consider nonadaptive strategies in which
the control parameters s⃗k are fixed to some initial value s⃗0
and do not depend on the measurement outcomes. Focusing
on unbiased estimators and combining Eqs. (5) and (3b),
we obtain

EMSD ≥
nonadaptive

Z
dλp0ðλÞ½mFQðλ; s⃗0Þ�−1

¼
�Z

jλ−λcj>Δc

þ
Z
jλ−λcj≤Δc

�
dλ

p0ðλÞ
mFQðλ; s⃗0Þ

≥
Pnc
0

mαncN
þOðN−2=dνÞ ð10Þ

where in the second line above we separated the contri-
butions of critical and noncritical regions and in the last line
we used Eq. (8) and defined Pnc

0 ≔
R
jλ−λcj≥Δc

dλp0ðλÞ, the
prior probability of being outside the critical region. Except
the extreme case of perfect a priori knowledge [in which
p0ðλÞ is a delta distribution at the true value], we have
Pnc
0 > 0 for sufficiently large N because Δc ∝ N−1=dν.

Therefore, for any practical estimation process with finite
uncertainty on the estimated parameter, nonadaptive esti-
mation methods in critical metrology are eventually limited
by a shot-noise scaling. Recall that Eq. (10) has been
obtained under the assumption of an unbiased estimator,
which we expect in the asymptotic limit of a large amount
of measurements. In Supplemental Material [46] (with
Refs. [47–57]), we generalize this no-go result to arbitrary
estimators exploiting instead the bound (3a).
Adaptive strategies.—We now discuss two feedback-

based protocols that can overcome the no-go bound and
achieve superlinear precision: (I) a standard two-step
adaptive process [58,59] and (II) a real-time adaptive
control, where the control parameters s⃗ are continuously
updated.
Let us consider m total measurements. In the two-step

adaptive protocol (I), one first performs ϵm (with ϵ ≪ 1)
identical measurements for some configuration s⃗1 that can
be chosen according to p0ðλÞ. An estimate λ̃ is then
obtained. In a second step, one measures the remaining
ð1 − ϵÞm copies for a configuration satisfying λcðs⃗Þ ¼ λ̃;
that is, one prepares the system at criticality assuming that λ̃
is the true parameter. For this approach to work, we need
that after the first step the posterior distribution is fully
concentrated in the critical region. That is, δ < Δc, where
δ ∝ ðϵmNÞ−1=2 is the width of the posterior distribution,
which implies m ≫ Nð2=dνÞ−1. This can be demanding in
many-body systems, as dν < 2 for critically enhanced
metrology.
To exploit criticality in regimes where m < N, we

consider (II) real-time feedback control. In this case, at
each step k an estimate λ̃k is built, and the control

parameters are chosen according to λcðs⃗kÞ ¼ λ̃k. As we
now show, this strategy turns out to be crucial to exploit
critically enhanced sensing.
(i) Magnetometry in the one-dimensional transverse

Ising model.—With dν ¼ 1 and its QFI scaling as N2 at
criticality [16,42,60], this model has been widely used for
critical metrology with focus on the asymptotic limit where
the same measurement is repeated a large number of times
(via a frequentist approach) [5,7]. Here, instead, we consi-
der adaptive schemes given a small number of measure-
ments within a Bayesian approach.
The Hamiltonian reads (with periodic boundary

conditions)

Ĥðh; sÞ ¼ J
XN
i¼1

σ̂xi σ̂
x
iþ1 þ ðhþ sÞ

XN
i¼1

σ̂zi ; ð11Þ

which can be diagonalized using the Jordan-Wigner
and the Fourier transformation. At the ground state
ρðh; sÞ, the system undergoes a quantum phase transition
when s ¼ scðhÞ ¼ J=2 − h.
We consider the estimation of the fixed magnetic

field h and assume that we can apply an additional
controllable magnetic field s parallel to h. We infer h
through projective measurements of the transverse mag-
netization M̂z ¼ 1

2

P
N
i¼1 σ̂

z
i . This is not the optimal meas-

urement: While the QFI scales as N2, the Fisher
information for the Mz measurement grows at a more
modest ∼N1.5 (see Supplemental Material [46]). An out-
come xk is observed with probability

pðxkjh;skÞ¼Tr½ρðh;skÞΠxk �; xk∈f0;�1=2;…;�N=2g;
ð12Þ

where Πxk is the projector over the eigenspace of M̂z with
eigenvalue xk.
Although our results are not limited by the choice of the

prior, we initially set it to

p0ðhÞ ¼
exp ½αsin2ðπ h−hmin

hmax−hmin
Þ� − 1

ðhmax − hminÞ½eα=2I0ðα=2Þ − 1� ; ð13Þ

where I0 is the order-zero modified Bessel function of the
first kind. In our simulations we take α ¼ −100 which
looks like a flat distribution, but smoothly vanishes at the
borders p0ðhmin=hmaxÞ ¼ 0 [61].
In Fig. 1, we depict how the posterior evolves for a

particular measurement trajectory of the adaptive and
nonadaptive schemes. It illustrates how the adaptive pro-
tocol converges to the true value much faster than the
nonadaptive one. To quantify this difference, we plot the
EMSD in Fig. 2. We observe that adaptive strategies can
outperform arbitrary nonadaptive protocols (including
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optimal measurements maximizing the QFI), which are
limited by a shot-noise scaling. In particular, with adap-
tivity we reach EMSD ∝ N1.5 even for a small number of
measurementsm ¼ 24. WhenN is instead fixed, noticeable
advantages are also observed as a function of m.
(ii) The two-dimensional bosonic Hubbard model.—As a

second example, we consider the system of repulsing
bosonic particles hopping through a lattice [62], which
undergoes a transition from the superfluid phase to the Mott
insulator phase. The simplest model that captures this
system is the Bose-Hubbard Hamiltonian

Ĥðt;UÞ ¼ −t
X
hi;ji

â†i âj þ
U
2
n̂iðn̂i − 1Þ − μ

X
i

n̂i; ð14Þ

where â†i and âi are bosonic creation and annihilation
operators, respectively, on the ith site, n̂i ¼ â†i âi, and the
first sum runs over the neighboring sites.
We aim at estimating the hopping coupling t and take the

on-site repulsion coupling U as our control parameter. For
instance, in an implementation of the model in Josephson
junctions [63–70], controlling U is possible by tuning the
capacitance of the junctions. We fix the chemical potential
to μ ¼ 1=2. In a square 2D grid with closed boundary
conditions, the system undergoes a second-order phase
transition when t ¼ tC ≃ 0.06U [71]. The critical exponent
is ν ≃ 0.67 [72,73], which by using Eq. (7) gives
FQðt; UÞ ∝ N1.34 at the critical region.
To estimate t, we measure the superfluid density of the

lattice ρs. This is a practical measurement; e.g., in granular
superconductors [74], it can be experimentally measured
through the magnetic penetration depth of the lattice [75].
A standard finite size scaling argument predicts that near
the critical region

ρs ¼ N−1=2g½ðt − tCÞNν�; ð15Þ
where g is a universal function; i.e., its output is indepen-
dent of N. This behavior is fairly preserved at temperatures
lower than T ¼ 0.05U (see Fig. S4 in Supplemental
Material [46]).
In what follows, we assume that the superfluid density

can be measured with shot-noise error in both critical and
noncritical regions. More specifically, the outcomes of
measuring ρs follow a normal distribution

pðxjt; UÞ ¼
ffiffiffiffiffiffiffiffiffiffi
N

2πσ20

s
exp

�
−N

½x − ρsðt;UÞ�2
2σ20

�
; ð16Þ

for some constant σ0. This leads to a linear QFI with respect
to the stiffness parameter, i.e., F ðρs; UÞ ∝ N. Using the
parameter conversion relation [76], one finds the QFI of the
hopping parameter at the critical region:

F ðt; UÞ ¼ ð∂tρsÞ2F ðρs; UÞ ∝ N1þ2α; ð17Þ

FIG. 1. Simulation of a single trajectory in estimation of the
magnetic field in the Ising model. The parameter is fixed to h0
throughout, while our belief on its value is given by the prior pðhÞ
which we update to the posterior pðhjx⃗kÞ (contour plot) according
to the data collected by measuring the magnetization, i.e., x⃗k for
both nonadaptive (left) and adaptive (right) scenarios. The
vertical line shows the true parameter value, while the fluctuating
line is the estimated parameter. Here, we set N ¼ 40, h0 ¼ 1.3,
while hmin ¼ 0.6, hmax ¼ 1.4, α ¼ −100, and J ¼ 1.

FIG. 2. Log-log plot of EMSD in estimation of h in the Ising
model. This is obtained by a Monte Carlo simulation of the
measurement procedure for many different values of h sampled
from the prior distribution. Again, we are measuring the trans-
verse magnetization. Only the green region is potentially acces-
sible by nonadaptive strategies which is computed via the lower
bound Eq. (3a) with the optimal measurement Eq. (5). In the
nonadaptive protocol, the magnetization is measured by fixing
the field to the one that minimizes the EMSD for an immediate
measurement that follows. In the two-step protocol, the field is
adjusted exactly once, when the width of the posterior becomes
smaller than Δc ¼ 3=Ndν. In the fully adaptive protocol, the
applied field can be adjusted after every measurement. The curves
are calculated by averaging over 10 000 trajectories like the one
shown in Fig. 1. In (a), we set m ¼ 24, and h0 is randomly
sampled according to Eq. (13) with α ¼ −100, hmin ¼ 0.6, and
hmax ¼ 1.4. The same parameters are used for (b), where we vary
the number of measurements while setting N ¼ 40.
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with α ¼ ν − 1=2 ≃ 0.17, hence enabling sensing beyond
shot noise.
In Fig. 3, we compare the EMSD for optimized adaptive

(with real-time feedback control) and nonadaptive proto-
cols. While, in the latter case, the error decreases as ∼N−1,
the former decreases faster with ∼N−1.34 as described
by Eq. (17).
Conclusions.—In this work, we characterized the rel-

evance of feedback control in critical quantum metrology.
Our no-go result shows that nonadaptive protocols are shot-
noise limited and highlights the crucial role of feedback
control and adaptivity [77–85] in critical quantum metrol-
ogy. We also investigated two adaptive schemes capable of
overcoming this no-go result: a two-step adaptive protocol
[58,59] and a fully adaptive protocol where the control
parameters are updated after each measurement. The latter
was shown to be highly preferable for the examples
considered, being capable of reaching sub-shot-noise scal-
ing even given a few measurements and limited prior
knowledge.
While we have focused on many-body systems, future

work includes investigating similar feedback-based proto-
cols in the context of finite-component quantum phase
transitions [10,11,19,86–88]. The performance of more
sophisticated feedback protocols [81,89–92] is also worth
investigating in the future.

We acknowledge the Swiss National Science Foundation
for financial support through the Ambizione Grant
No. PZ00P2-186067 and the NCCR SwissMAP.

*raffaele.salvia@sns.it
†marti.perarnaullobet@unige.ch

[1] L. Banchi, P. Giorda, and P. Zanardi, Phys. Rev. E 89,
022102 (2014).

[2] K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Garrahan,
Phys. Rev. A 93, 022103 (2016).

[3] U. Marzolino and T. Prosen, Phys. Rev. B 96, 104402
(2017).

[4] P. Zanardi, M. G. A. Paris, and L. C. Venuti, Phys. Rev. A
78, 042105 (2008).

[5] C. Invernizzi, M. Korbman, L. C. Venuti, and M. G. A.
Paris, Phys. Rev. A 78, 042106 (2008).

[6] M.M. Rams, P. Sierant, O. Dutta, P. Horodecki, and J.
Zakrzewski, Phys. Rev. X 8, 021022 (2018).
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