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We adopt a resource-theoretic framework to classify different types of quantum network nonlocality in
terms of operational constraints placed on the network. One type of constraint limits the parties to perform
local Clifford gates on pure stabilizer states, and we show that quantum network nonlocality cannot emerge
in this setting. Yet, if the constraint is relaxed to allow for mixed stabilizer states, then network nonlocality
can indeed be obtained. We additionally show that bipartite entanglement is sufficient for generating all
forms of quantum network nonlocality when allowing for postselection, a property analogous to the
universality of bipartite entanglement for generating all forms of multipartite entangled states.
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The Gottesman-Knill theorem is a classic result that
enables a wide class of quantum algorithms to be efficiently
simulated [1–3]. It says that circuits constructed using
only gates belonging to the Clifford group can be efficiently
simulated on a classical computer using the stabilizer
formalism. It is interesting to investigate whether
Clifford quantum information processing has similar lim-
itations for other quantum information tasks and phenom-
ena, such as the emergence of quantum nonlocality. It has
already been shown [4–7] that such limitations do indeed
exist in specific scenarios, but the role of Clifford oper-
ations in the emergence of network nonlocality has
remained relatively unexplored.
The standard Bell nonlocality scenario consists of multi-

ple parties having access to some globally shared entangled
state, and they each select different measurements to perform
on their respective subsystems [8]. In the network setting, the
globally shared entanglement is replaced by independent
sources of entanglement that get distributed according to the
structure of the network [9–13]. Examples of nonlocality in
networks have recently been found that appear to be
fundamentally different than the nonlocality emerging in
traditional Bell scenarios [14–19], although how to best
articulate this difference is unclear.
To shed light on this question, we begin here by

sketching a “top-down” framework for the general study
of quantum nonlocality (or “nonclassicality”), inspired by
the philosophy of quantum resource theories [20,21]. In
this framework, different classes of nonlocality naturally
emerge on a quantum network after placing different
restrictions on the type of states that are “free” to distribute
across the network, as well as the type of local operations
that the parties are free to perform. This allows us to view
different notions of nonlocality proposed in the literature
under a common conceptual lens. As our main result,

we show later in this Letter that quantum nonlocality can
never be realized whenever the parties are restricted to
Clifford operations and the free states are stabilizer states.
An operational framework for network nonlocality.—

Consider an N-party quantum network whose structure is
defined by a hypergraph G ¼ ðV; EÞ with a disjoint hyper-
edge set E ⊂ 2V . Each vertex v ∈ V represents a quantum
system, and each hyperedge e ⊂ V represents an indepen-
dent quantum source that generates a joint state ρe for all jej
systems in e. The network structure also specifies which
quantum systems are received locally by each party. We let
Ai ⊂ E denote the collection of hyperedges connected to
party Ai (see Fig. 1). In any protocol for generating network
correlations, each party Ai applies a quantum channel Ei
jointly across all its received systems, thereby connecting
the previously disjoint hyperedges. The parties then mea-
sure their systems in the computational basis, and the
collective output is the N-tuple ða1;…; aNÞ of measured

FIG. 1. A 4-party quantum network partitioned into disjoint
hyperedges. Each node represents a different quantum system
and each hyperedge represents a quantum state shared among
the constituent nodes. Each party Ai has local control of certain
systems.
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values with probability distribution pða1;…; aNÞ. In sum-
mary, every network correlation we consider can be
generated using the following three-step procedure:
(i) For each hyperedge e ∈ E in the network, a multipartite
state ρe is distributed across the network; (ii) Each party Ai
performs a local processing channel Ei on the systems
under its control; (iii) Each party Ai measures its post-
processed system in the computational basis and outputs
the outcome ai.A distribution pða1;…; aNÞ built in this
way will be called a quantum network correlation.
Since this framework is designed to study quantum

nonlocality, one may want to generalize the setup and grant
each party Ai an input variable xi that controls the local
processing performed. In this case, the generated correlation
would be a conditional distribution pða1;…; aN jx1;…; xNÞ,
which is typically the object of consideration in the study
of Bell nonlocality. However, in the network scenario, the
distinction between correlations with inputs versus correla-
tions without inputs is superficial. This is due to the work of
Fritz [22], who showed how every correlation generated on
some network with inputs can be equivalently generated on
an enlarged network without inputs; essentially the local
input variable xi of party Ai becomes an independent
variable shared between Ai and some new party on the
enlarged network. Therefore, without loss of generality,
we restrict to correlations with no inputs.
With this model in place, we can now identify different

classes of quantum correlations by imposing different
constraints on the distributed states ρe and the types of
local maps Ei. We begin with the set of local correlations
defined with respect to a given network G ¼ ðV; EÞ. A
network local correlation is any distribution that can be
generated using a shared classical variable λe for each
hyperedge e. If pðλeÞ denotes the probability distribution
over variable λe, then every local correlation has the form

pða1;…; aNÞ ¼
X

λ⃗

pðλ⃗Þ
YN

i¼1

pðaij ∪e∈Ai
λeÞ; ð1Þ

where the sum is over each sequence λ⃗ ¼ ðλeÞe of the jEj
independent random variables, pðλ⃗Þ ¼ Q

e∈E pðλeÞ, and
pðaij ∪e∈Ai

λeÞ is a local classical channel of party Ai. If a
quantum network correlation does not have this form, then
it is called quantum network nonlocal. We claim that the set
of local correlations is precisely those that can be generated
via steps (i)–(iii) above under the constraint that each Ei
satisfies the condition

Δ∘Ei ¼ Δ∘Ei∘Δ; ð2Þ

where Δð·Þ ¼ P
x jxihxjð·Þjxihxj is the completely dephas-

ing map in the computational basis. This condition has
previously been called resource nonactivating [23],
but in this work we will say that any completely positive

trace-preserving (CPTP) map satisfying Eq. (2) is classi-
cally simulatable. Indeed, any correlation pða1;…; aNÞ
generated using classically simultable maps Ei can be
simulated on the same network G using purely classical
resources. Since the parties measure their qubits in the
computational basis after applying⊗i Ei in step (ii), Eq. (2)
says that the parties could equivalently also dephase the
shared state⊗e ρe prior to step (ii), thereby converting each
ρe into a classically correlated state ρ̂e ¼

P
x pðxÞjxihxj,

where jxi ¼ jx1i � � � jxjeji. Conversely, any network corre-
lation pða1;…; aNÞ generated using classical shared
randomness can also be produced using classically
correlated states and CPTP maps of the form Eið·Þ ¼P

ai jaiihaijTr½Πaið·Þ�, where

Πai ¼
X

e∈Ai

X

λe

pðaij ∪ λeÞ ⊗
e∈Ai

jλeihλej:

Another type of constraint limits each Ei to be a local
quantum wiring map for party Ai [24–26], which can be
understood as a local operations and classical communi-
cation (LOCC) transformation performed on the separated
systems that Ai receives from different sources. Under this
constraint, Ai is prohibited from performing entangling
measurements across the different states it receives, such as
in entanglement swapping. Nevertheless, these operations
are still strong enough to generate nonlocal correlations
when seeded with at least one entangled state ρe on the
network. All “standard” Bell tests—such as the celebrated
violations of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [27–29]—can be implemented under the restric-
tion of local quantum wiring maps. In contrast, network
correlations not producible by local quantum wiring
maps can be defined as possessing genuine network non-
locality [24], much in the same way that quantum states not
producible by LOCC are defined as possessing entangle-
ment [30]. This definition is motivated by the fact that to
produce genuine quantum network nonlocality, the parties
must be able to truly leverage the network structure and
stitch together the different quantum sources through
nonclassical local interactions.
To provide a complete account of the different notions of

network nonlocality proposed in the literature, we consider
one final type of correlation. For a fixed subgraph of a
given network, one could require that at least one of the
constituent parties performs a classically simulatable oper-
ation Ei. Nonlocal correlations that cannot be generated
under this restriction are said to possess full network
nonlocality with respect to the particular subgraph [18].
We now enjoin the main result of this Letter to the

picture. Let pða1;…; anÞ be any quantum network corre-
lation built under the constraint that all ρe are pure stabilizer
states and the Ei are Clifford gates. Then pða1;…; anÞ is a
network local distribution. The rest of this Letter will be
devoted to explaining this result and its proof in more
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detail; technical steps are postponed to the Supplemental
Material [31]. Table I summarizes the different types of
network correlations in the context of the operational
framework outlined above.
k-network nonlocality.—Before specializing to Clifford

networks, let us first sharpen the notion of local correlations
to reflect even better the structure of the network. Let us say
that a k network is any hypergraph with disjoint edge set in
which every quantum source is connected to no more than k
parties; i.e. jfije ∩ Ai ≠ =0gj ≤ k for all e ∈ E. An N-party
distribution pða1;…; aNÞ that can be built using classically
simulatable operations on some k-network will be called
k-network local; otherwise it will be called quantum
k-network nonlocal.
It turns out that every instance of quantum k-network

nonlocality can be obtained from a quantum 2-network
nonlocal correlation through postselection.
Proposition 1.—Suppose that pða1;…; aNÞ is a quantum

k-network nonlocal correlation for N parties. Then there
exists an (Nþr)-party correlation p̂ða1;…;aN;c1;…;crÞ
that is quantum 2-network nonlocal and satisfies

pða1;…; aNÞ ¼ p̂ða1;…; aN jc1 ¼ 0;…; cr ¼ 0Þ: ð3Þ

In other words, conditioned on the new parties C1;…;Cr
having the all-zero output, the other N parties reproduce the
original distribution p.
To prove this proposition one replaces every k-element

hyperedge e with k bipartite edges and then uses bipartite
entanglement distributed on these edges to teleport the
original state ρe. We remark that our reduction to
k-network nonlocality from 2-network nonlocality via
postselection is specific to quantum networks, as it relies
on quantum teleportation. It is an interesting question
whether such a reduction can be found for general
nonsignaling network correlations [32,33] or whether
this is a uniquely quantum feature.
Clifford networks.—Let us now turn to the notion of

Clifford quantum networks, which can be understood as
distributed Clifford circuits [1]. We begin by recalling the

definitions of stabilizers and stabilizer operations [1,34,35].
Let Pn denote the n-qubit Pauli group of operators, Pn ¼
f�1;�ig × fI; X; Y; Zg⊗n. Expressions like X2 express
Pauli-X applied to qubit 2 and the identity applied to all
other qubits. The n-qubit Clifford group consists of all
unitaries that, up to an overall phase, leave Pn invariant
under conjugation,

Cn ¼ fUjUgU† ∈ Pn ∀ g ∈ Png=Uð1Þ: ð4Þ

The set of n-qubit stabilizer states is defined as

Sn ¼ fUj0ijU ∈ Cng: ð5Þ

Every stabilizer pure state jφi ∈ Sn can be uniquely
identified as theþ1 eigenstate of n independent commuting
elements from Pn. These operators generate a group, called
a stabilizer group, that we denote by stabðjφiÞ.
Consider now a k network G ¼ ðV; EÞ in which

each vertex v ∈ V represents a qubit system. The hyper-
edges E again form a disjoint partitioning of the vertex set
and each e ∈ E represents a multiqubit state. Suppose that
party Ai receives a total of ni qubits from the various
sources. Using the three-step framework introduced above,
we consider correlations formed under the following
restrictions: (ic) For each hyperedge e ∈ E, a pure stabilizer
state jφei is distributed; (iic) Each party Ai introduces mi
ancilla qubits, each initialized in state j0i, and performs a
Clifford unitary gate Vi on all the ni þmi qubits held
locally. Like before, step (iii) involves a measurement of
each qubit in the computational basis. This generates a
classical output for each party that is a sequence of bits
bi ¼ ðb1; b2;…; bniþmi

Þ ∈ Zniþmi
2 , one for each qubit used

by party Ai in the protocol. Letting n ¼ P
N
i¼1 ni and

m ¼ P
N
i¼1 mi, the joint probability distribution for all

measurements is then given by

pðb1;…;bNÞ ¼ pðb1; b2;…; bnþmÞ

¼ 1

2nþm hωj ⊗
nþm

i¼1
ðI þ ð−1ÞbiZiÞjωi: ð6Þ

Every distribution pðb1;…;bNÞ having this form will be
called a Clifford k-network correlation. As an example, a
triangle Clifford network is depicted in Fig. 2. Its equiv-
alent representation as a distributed quantum circuit is
also shown.
Observe that the Clifford constraint and the classical

simulatable constraint are inequivalent; i.e., there are
Clifford gates U (such as Hadamard) whose corresponding
CPTP map Uð·Þ ¼ Uð·ÞU† fails to satisfy Eq. (2) and vice
versa. Yet, on the level of network nonlocality, our result
shows that Clifford operations fail to offer any nonclassical
advantage.
Theorem 1.—Every Clifford k-network correlation is

k-network local.

TABLE I. Different classes of classical correlations emerging
on a quantum network based on the operational constraints.

Operational constraint
Inaccessible type of
network correlation

Ei are classically simultable Network nonlocality

Ei are local quantum
wiring maps

Genuine network
nonlocality [24]

Ei are classically simultable
for at least one party in a
given subgraph

Full network nonlocality
for the given
subgraph [18]

Ei are Clifford gates and ρe are
pure stabilizer states

Network nonlocality
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The proof of this theorem begins by performing three
simplifications. First, in Proposition 1 we established that
every quantum k-network nonlocal distribution can be
obtained from a quantum 2-network nonlocal distribution
via postselection. Moreover, since teleportation is carried
out using Pauli gates, the proof of Proposition 1 can be
specialized to Clifford networks: if a quantum k-network
nonlocal distribution is generated on a Clifford k network,
then there exists a quantum 2-network nonlocal distribution
generated on a Clifford 2-network. Hence, to prove
Theorem 1, it suffices to show that measuring Clifford
2-network states always leads to 2-network local distribu-
tions. In other words, we can restrict G to just being a graph
so that each jφei is a bipartite stabilizer state. Second, recall
the fact that every bipartite stabilizer state can be trans-
formed into copies of jΦþi ¼ ð1= ffiffiffi

2
p Þðj00i þ j11iÞ and

computational basis states j0i using local Cliffords [36].
Third, as proved in the Supplemental Material [31], the use
of local ancilla provides no advantage for the purpose
of generating 2-network nonlocality. Then it suffices to
consider graphs G in which each node is connected to
exactly one other node, the two nodes are held by different
parties, and their connecting edge represents a maximally
entangled state jΦþi shared between them.
The next part of the proof involves constructing a local

model for any graph having this structure and any choice of
local stabilizer measurement. Our local model involves
replacing each edge e on the graph with a random variable

λe ¼ ðX̄e; Ȳe; Z̄eÞ, which is a trio of uniform independent
random bits. Based on the local measurement Ai wants to
perform and the values fλege∈Ai

, outputs bi can be generated
that jointly have the correct distribution pðb1;…;bNÞ.
Details of the model and a proof of its correctness are
presented in the Supplemental Material [31].
Discussion.—In this Letter, we have presented a unifying

framework for the general study of quantum network
nonlocality. We believe this framework can help clarify
what types of quantum resources are needed to generate
different forms of nonlocality. It also helps draw a trifold
connection between nonlocality, quantum resource theo-
ries, and quantum computation, as shown in Fig. 2. When
any protocol is fully decomposed as a distributed quantum
circuit, we found that some non-Clifford operation is
needed to generate nonlocal correlations.
The importance of non-Clifford operations is further

corroborated by the purported examples of genuine network
nonlocality or full network nonlocality found in the literature
[14–19]. In each of these examples some non-Clifford
operation is needed to realize the nonlocality. Even more
conspicuously, in the triangle network considered by Renou
et al. in Ref. [14], nonlocality fails to emerge exactly when
the parameters of their model coincided with a Clifford
network. Our work formalizes the reason why this happens,
and can thus be interpreted as a guide for what kind of
resources are needed to generate network nonlocality.
One may feel that Theorem 1 is not that surprising given

the Gottesman-Knill theorem for simulating Clifford cir-
cuits. However, let us highlight two reasons why the former
stands independently of the latter, despite them sharing
a kindred spirit. First, the Gottesman-Knill theorem pro-
vides a classical algorithm to correctly reproduce the
outcome statistics when locally measuring a stabilizer state.
However, in this algorithm, one must update the generators
of the stabilizer after simulating the measurement of each
qubit. This requires the communication of global informa-
tion, which is forbidden in the network nonlocality model.
Therefore, a completely new classical model is needed for a
distributed simulation, which is what Theorem 1 provides.
Second, Theorem 1 breaks down when relaxing certain

operational restrictions whereas the Gottesman-Knill theo-
rem does not. Specifically, suppose we relax condition (ic)
by allowing for mixed stabilizer states; i.e., convex combi-
nations of stabilizer states whose purification is no longer
a stabilizer state. Remarkably, now it becomes possible
to violate Theorem using so-called “disguised” Bell
nonlocality [13]. The construction is presented in the
Supplemental Material [31] and involves extending
Mermin’s magic square game [38] to the network setting
using a slight modification of Fritz’s construction. This
result highlights the strong nonconvexity that emerges in
network nonlocality: local models can be constructed for all
pure stabilizer states, but this fails to be possible when
taking their mixture. It is tempting to think that the classical

FIG. 2. The triangle network represented in the standard circuit
model, with no ancilla qubits. The distribution over ða1; a2; b1;
b2; c1; c2Þ is a Clifford 2-network distribution if each of the Ue
and Vi are Clifford gates.
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randomness in the mixed state ρe could just be absorbed
into the classical randomness distributed on edge e.
However, this does not always work since the local
classical strategy for some party Ai in simulating a
Clifford network distribution might depend on which state
jφei is seeded on edge e, even if Ai is not connected on e.
Similarly, one could consider relaxing condition (iic) by

allowing for convex combinations of Clifford gates; i.e.,
E ¼ P

k pkUkð·ÞU†
k with eachUk being a Clifford. Then by

a similar construction to the one used for mixed stabilizer
states, it is possible to generate nonlocality on the network.
The problem is that not every Clifford channel like E admits
a unitary diltation that itself is Clifford, and thus Theorem 1
does not apply. In contrast, the Gottesman-Knill theorem
still provides an efficient classical simulation algorithm for
quantum circuits using mixed stabilizer states and random
Clifford channels [39]. Ultimately, we hope that these
findings and the framework described here help pinpoint
the precise conditions necessary for generating nonlocal
correlations on a quantum network.

We thank Marc-Olivier Renou for discussing with us the
subtleties of disguised network nonlocality. We are also
grateful to Mark Howard, Jonathan Barrett, Nicolas
Brunner, and Matthew Pusey for bringing several precursor
works to our attention and discussing other connections
between Clifford circuits and local classical models.
This material is based upon work supported by the U.S.
Department of Energy Office of Science National Quantum
Information Science Research Centers.

Note added.—Recently, we became aware of a similar
model independently derived by Pusey in Ref. [4], although
it does not directly account for network constraints and the
emergence of network nonlocality [37].
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