
One T Gate Makes Distribution Learning Hard

M. Hinsche ,1,* M. Ioannou,1,† A. Nietner ,1,‡ J. Haferkamp,1 Y. Quek ,1 D. Hangleiter ,2

J.-P. Seifert ,3 J. Eisert ,1,4,5 and R. Sweke1,§
1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

2Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland and NIST,
College Park, Maryland 20742, USA

3Department of Electrical Engineering and Computer Science, TU Berlin, 10587 Berlin, Germany
4Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany

5Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany

(Received 4 August 2022; revised 10 February 2023; accepted 5 May 2023; published 13 June 2023)

The task of learning a probability distribution from samples is ubiquitous across the natural sciences. The
output distributions of local quantum circuits are of central importance in both quantum advantage
proposals and a variety of quantum machine learning algorithms. In this work, we extensively characterize
the learnability of output distributions of local quantum circuits. Firstly, we contrast learnability with
simulatability by showing that Clifford circuit output distributions are efficiently learnable, while the
injection of a single T gate renders the density modeling task hard for any depth d ¼ nΩð1Þ. We further
show that the task of generative modeling universal quantum circuits at any depth d ¼ nΩð1Þ is hard for
any learning algorithm, classical or quantum, and that for statistical query algorithms, even depth
d ¼ ω½logðnÞ� Clifford circuits are hard to learn. Our results show that one cannot use the output
distributions of local quantum circuits to provide a separation between the power of quantum and classical
generative modeling algorithms, and therefore provide evidence against quantum advantages for practically
relevant probabilistic modeling tasks.
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Recent years have witnessed a massive increase in the
use of machine learning techniques, in both industry and
the physical sciences [1]. The subfield of probabilistic
modeling is of particular importance, and deep generative
models have been successfully applied to solve problems
and guide progress in areas as diverse as cosmological
structure formation [2], particle shower modeling [3],
astrophysical imaging [4], and protein structure prediction
[5]. In light of this diverse applicability, including a wide
variety of potential applications in the physical sciences,
much effort has been dedicated to the development
of state-of-the-art models and algorithms for probabilistic
modeling.
Simultaneously, the last years have witnessed significant

interest in the potential of exploiting quantum devices for
machine learning tasks [1,6]. Of particular interest are
hybrid quantum-classical schemes, in which parametrized
quantum circuits are used as a model class, whose
parameters are optimized via classical algorithms [7,8].
In the context of generative modeling, the output distribu-
tions of quantum circuits are a particularly natural model
class, referred to as quantum circuit Born machines
(QCBMs) [9–11]. In particular, it is known that this model
class is expressive enough to contain many probabilistic
graphical models [12,13], while not being classically
simulatable [14–16]. These facts, along with a growing

body of numerical experiments [17–20], suggest that
hybrid quantum-classical algorithms using QCBMs as a
model class may offer concrete advantages over state-of-
the-art classical generative modeling techniques. However,
to date, there are no rigorous results which support this
intuition. Given the wide variety of potential applications,
understanding concretely the potential of quantum prob-
abilistic modeling techniques is of broad interest.
In this work we provide strong evidence that QCBM

based algorithms will not outperform classical algorithms
for probabilistic modeling, and in the process provide a
variety of fundamental learning-theoretic insights into the
properties of local quantum circuits and the many-body
quantum systems they model. To do this, we study the
learnability of the output distributions of local quantum
circuits, within the formal framework of distribution
learning [21]. This is motivated by the following observa-
tion: If quantum devices offer an advantage for a broad
range of physically or practically relevant distribution
learning problems, then one would surely believe that they
offer advantages for problems which have been fine-tuned
in their favor. The task of learning the output distributions
of quantum circuits themselves is precisely such a fine-
tuned probabilistic modeling problem biased toward quan-
tum learning algorithms. In this work, by proving the
hardness of learning the output distributions of local
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quantum circuits for both quantum and classical algo-
rithms, we prove rigorously the lack of formal quantum
advantage in this setting, and therefore provide strong
evidence against the existence of a more generally appli-
cable quantum advantage in this important domain (see
Fig. 1 for on overview of our results).
Additionally, we note that local quantum circuits, as

considered in this Letter, are often considered as a model
for a wide variety of many-body quantum systems. In
particular, discretization of the time evolution under a local
Hamiltonian naturally leads precisely to a local quantum
circuit [22,23]. As such, the properties of such circuits are
currently of great interest across a broad range of subfields
of physics, ranging from condensed matter, across high
energy physics, all the way to the theory of black holes
[24–27]. In light of this, our results can be naturally viewed
as placing rigorous and fundamental limitations on the
possibility of efficiently learning certain properties of these
wide ranging physical systems.
Finally, we show that, within the context of distribution

learning, classical simulatability of a class of quantum
circuits does not imply efficient learnability. This is in
strong contrast to existing conjectures and known results in
other related settings [17,28–30]. To do this, we prove that
the output distributions of Clifford circuits are efficiently
learnable, while adding a single T gate to the circuit renders
the learning problem hard. As such, while the complexity
of the classical simulation scales with the number of T
gates, we find that the addition of a single T gate induces a

striking complexity transition in the corresponding distri-
bution learning problem.
Setting.—In this Letter, we are concerned with learning

distributions promised to be from a distribution class D. In
particular, we are interested in the properties of learning
algorithms that solve the following problem [31]:
Problem 1 (Distribution learning).—Given a distribu-

tion classD, samples from an unknown distribution P ∈ D,
and ε; δ ∈ ð0; 1Þ, output with probability at least 1 − δ, a
representation of a distribution Q satisfying TVðP;QÞ ≤ ε.
We will be concerned with two types of representations,

namely generators and evaluators: An evaluator for a
distribution Q is a computationally efficient algorithm
which, when given some x, outputs the probability QðxÞ,
and a generator for a distribution Q is a computationally
efficient algorithm for generating samples from Q.
We note that the problem of distribution learning with

respect to an evaluator is often referred to as density
modeling, while the problem of learning with respect to
a generator is often referred to as generative modeling.
Additionally, we stress that in the case of generative
modeling it is not sufficient for the learning algorithm to
store and later reproduce the samples it received during the
learning phase, or to output a larger but still bounded set of
samples [32]. Indeed, the learning algorithm is required to
output another algorithm—a generator—which can output
as many samples as desired, from a distribution which is
close in total variation distance to the unknown target
distribution.
We are concerned here exclusively with discrete distri-

butions over f0; 1gn, and denote the set of all such
distributions by Dn. Given some D ⊆ Dn, we say that an
algorithm is a computationally (sample) efficient algorithm
for learning D with respect to a particular representation
(either generators or evaluators) if it solves the above
problem for all P ∈ D, using O½polyðn; 1=ε; 1=δÞ� compu-
tational time (samples). If there exists a computationally
efficient learning algorithm for D with respect to a
particular representation, then we say that D is efficiently
learnable with respect to that representation. If there does
not exist a computationally efficient learning algorithm for
some class D with respect to a particular representation,
then we say that D is hard to learn with respect to that
representation.
In this work, we focus on the output distributions of

quantum circuits. More specifically, to any unitary U we
have the associated probability distribution PU, with
probabilities

PUðxÞ ≔ jhxjUj0⊗nij2: ð1Þ

We then consider sets of distributions obtained from all
unitaries generated by quantum circuits of a specific depth,
with gates from a specific gate set. Unless otherwise
specified, we consider one-dimensional circuits consisting

FIG. 1. Regimes of complexity of the task of generator- or
evaluator-learning the output distributions of local quantum
circuits on n qubits of depth d. In accord with the intuition that
deeper circuits generate more complex distributions, the com-
plexity depends on how d scales with n. We find that for any
depth, Clifford circuits are efficiently learnable from samples
(Theorem 1). By contrast, for d ¼ ωðlog nÞ, even Clifford circuit
output distributions are not efficiently learnable from statistical
queries (Theorem 4). Moreover, given sample access, the output
distributions of generic local quantum circuits are not efficiently
learnable at any depth d ¼ nΩð1Þ, up to standard cryptographic
assumptions (Corollary 1 and Theorem 3).
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only of nearest-neighbor gates, which for convenience we
refer to as local quantum circuits. We are particularly
interested in how the complexity of learning depends on
both the gate set, and the circuit depth. Our results
generalize and extend seminal work on learning the output
distributions of classical circuits [21]. We also stress that
we consider learning the classical distributions defined by
measurement in the computational basis—i.e., we do not
assume access to the output state and the ability to measure
in different bases.
Throughout the following sections, we only provide

intuitive proof sketches and defer the reader to the
Supplemental Material [33] for detailed proofs.
Learning Clifford distributions.—We start by studying

the learnability of the output distributions of Clifford
circuits. This will elucidate the relation between classical
simulatability of quantum circuits and their learnability:
Famously, by virtue of the Gottesman-Knill theorem,
Clifford circuits can be efficiently classically simulated
[56,57]. Similarly, it has been found previously that the
algebraic structure of the Clifford group also facilitates
efficient learning of an unknown stabilizer state [58] or
Clifford circuit [29] from few copies of the unknown
quantum state. Furthermore, in Aaronson’s framework of
probably approximately correct (PAC)-learning of quantum
states [60], stabilizer states have been found to be effi-
ciently learnable [28,59]. In this setting, Ref. [30] finds a
sufficient condition under which the complexity of simu-
latability and learnability are aligned. Here, we ask whether
the alignment in the complexity of classical simulation and
learning holds also in the distribution learning setting.
Indeed, when studying Clifford circuits, we find that our
learning model is no exception.
Theorem 1.—The set DCl of Clifford circuit distribu-

tions, for any depth, is efficiently learnable with respect to
generators and evaluators.
Proof (sketch).—Clifford circuit output distributions are

uniform over affine subspaces of the finite n dimensional
vector space Fn

2 . Hence using Gaussian elimination on
OðnÞ samples recovers the correct affine subspace, and
from this the correct distribution representation, with
success rate 1 − exp½−ΩðnÞ�. ▪
Hardness of learning Cliffordþ T distributions.—Next,

we ask whether this alignment of complexity extends even
to slightly non-Clifford circuits. In particular, on the
simulation side, the run-time of the best-known classical
algorithms for simulating T-enriched Clifford circuits will
grow exponentially with the number of T gates [61,62]. On
the learning side, a first result for learning output states of
unknown Cliffordþ T circuits, from copies of the
unknown state, has been obtained in Ref. [29]. They also
find an exponential scaling in the number of T gates
provided all T gates are applied in a single layer.
Let us now return to the distribution learning setting. We

consider the class of output distributions arising from

T-enriched Clifford circuits. The following result relies
on the learning parities with noise (LPN) assumption. It
posits that there does not exist an efficient algorithm,
quantum or classical, for learning from classical samples
the class of Boolean parity functions under the uniform
distribution when subject to any constant-rate random
classification noise [63]. We note that this is a canonical
assumption for many cryptographic schemes [64,65].
Theorem 2.—Under the LPN assumption, the output

distributions of local Clifford circuits of depth d ¼ nΩð1Þ
enriched with a single T gate are not efficiently learnable
with respect to an evaluator.
Proof (Sketch).—Ref. [21] gives a class of distributions

such that LPN reduces to evaluator learning this class.
Specifically, for each parity function, there is a correspond-
ing distribution. Each such distribution can be realized as
the output distribution of the Clifford circuit enriched with
a single T gate (see, e.g., Fig. 2). We obtain the stated depth
dependence by recompiling the circuit into local gates and
using a rescaling argument to trade circuit depth for
learning complexity. ▪
The key insight underlying the proof of Theorem 2 is that

the LPN noise can be realized by a single T gate. Moreover,
it can be seen that, if one relaxes the nearest-neighbour
requirement on the Clifford gates, i.e., allowing instead for
arbitrary connectivity between qubits, then one obtains the
above hardness result in Theorem 2 already for depth
d ¼ Ωð1Þ. The sharp transition in complexity between
Theorem 1 and Theorem 2 stands in interesting contrast
to the smooth increase in the complexity of classically
simulating T-enriched Clifford circuits: In particular, while
T-enriched Clifford circuits can be simulated efficiently for
up to Oðlog nÞmany T gates [62], a single T gate is enough
to make distribution learning with an evaluator at least as
hard as LPN. We therefore see that single T-enriched
Clifford circuits provide a simple and striking example of a
quantum circuit class whose output distributions are hard to
learn, while being easy to classically simulate. We note that

FIG. 2. Example of a circuit used in the proof of Theorem 2.
Without the red box, samples from this circuit are of the form
½x; fðxÞ� where x is uniformly random and f is the parity function
supported on bits 2,3,5. With the red box, the samples are of the
form ðx; yÞ where y ¼ fðxÞwith probability 1 − η and y ¼ ¬fðxÞ
with probability η.
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other such examples could be straightforwardly constructed
via classical-to-quantum circuit mappings from hard to
learn classes of classical circuits. Additionally, the class of
T-enriched local Clifford circuits is a subclass of the class
of all local quantum circuits. Hence, the conditional
hardness result of Theorem 2 also applies to this more
general class:
Corollary 1.—Under the LPN assumption, the output

distributions of local quantum circuits of depth d ¼ nΩð1Þ
are not efficiently learnable with respect to an evaluator.
Hardness of learning generators.—In the previous

section, we saw that Clifford distributions with a single
T gate are hard to learn with respect to an evaluator. This
leaves open the question of the complexity of learning the
output distributions of non-Clifford circuits with respect to
a generator. While theoretically interesting, this is also the
class of distributions for which one would most expect to
obtain a quantum advantage via quantum generative
models (QCBMs). As such, our hardness result also leads
to practical insights on the potential of QCBMs.
In Ref. [21], it has been shown that the output distri-

butions of polynomially sized classical circuits are not
efficiently classically learnable with respect to a generator.
In this section, we establish an analogous result for the
output distributions of quantum circuits by adapting the
proof strategy of Ref. [21]. Our result applies to both
quantum and classical learning algorithms. In particular, we
show that one can embed pseudorandom functions (PRFs)
into the output distributions of local quantum circuits. In
order to establish hardness for quantum learning algo-
rithms, we use “standard-secure” PRFs—i.e., PRFs secure
against quantum adversaries with classical membership
queries [66].
Theorem 3.—Assuming the existence of classical-secure

(standard-secure) pseudorandom functions, there is no
efficient classical (quantum) algorithm for learning the
output distributions of depth d ¼ nΩð1Þ local quantum
circuits, with gates from any universal gate set.
Proof (sketch).—Instantiating the proof of Theorem 17

in Ref. [21] with a standard-secure PRF yields the follow-
ing: the output distributions of polynomially sized classical
circuits are not efficiently generator learnable, even by
quantum learning algorithms. Polynomially sized classical
circuits can be realized by polynomially sized local
quantum circuits. Therefore, the output distributions of
polynomially sized local quantum circuits can also not be
learned efficiently with respect to a generator. This result
can be extended to any universal gate set by virtue of the
Solovay-Kitaev theorem. We obtain the stated depth
dependence by use of a rescaling argument trading com-
plexity for depth. ▪
Previous work has suggested, and provided numerical

evidence, that learning a generator for quantum circuit
output distributions is hard for classical learning algorithms
[17–20]. Theorem 3 provides a rigorous proof of this and,

interestingly, shows that these distributions are hard to learn
even using quantum algorithms—including QCBM based
learners. As such, one cannot hope to use the output
distributions of local quantum circuits to prove a probabi-
listic modeling separation between QCBM based algo-
rithms and classical algorithms.
We note that our proof technique shares similarities with

that of Ref. [67], where it was shown that learning Boolean
functions generated by constant depth classical circuits
from quantum examples is hard. However, function classes
which are hard to learn cannot be generically used to create
distribution classes which are hard to learn with respect to a
generator [68]. Thus, our results do not follow directly from
theirs.
Hardness of learning with statistical query algo-

rithms.—In this section we show that the hardness results
of the previous sections can be strengthened to hold for the
output distributions of superlogarithmic depth circuits (see
Fig. 1), if one considers a restricted—but practically highly
relevant—class of learning algorithms.
To understand this restriction, note that in Theorem 1 the

algorithm uses individual samples from the unknown target
distribution to exploit the algebraic structure of Clifford
output distributions. However, in the absence of a strong
promise on the structure of the target, it is a priori unclear
how a learning algorithm should utilize individual samples
from the target distribution. As such, most generic dis-
tribution learning algorithms—i.e., algorithms which are
not designed specifically for one particular distribution
class—work by using samples from the unknown distri-
bution to estimate statistical averages with respect to that
distribution, including many gradient-based algorithms
used in practice [10,17,69].
We formally study such learning algorithms by restrict-

ing their access to the target distribution to approxi-
mate statistical averages. More specifically, we assume
that the algorithm has access to a statistical query oracle,
which when queried with some efficiently computable
function ϕ∶f0; 1gn → ½−1; 1� returns some v such that
jEx∼P½ϕðxÞ� − vj ≤ τ [70]. To relate back to sample hard-
ness we consider at most inverse polynomial accuracy
τ ¼ Ω½1=polyðnÞ� [71].
Theorem 4.—There is no query efficient algorithm for

learning from inverse polynomially accurate statistical
queries DCl at depth ω½logðnÞ� and DG at depth
ω½logkðnÞ�where k is a constant depending on the universal
gate set G (which can be as small as 2), with respect to
either generators or evaluators.
Proof (sketch).—As shown in Refs. [73,74], learning

parities in the statistical query model is hard. From this, one
can prove that the output distributions of parity functions
on uniformly random inputs are also hard to learn from
statistical queries. We have already shown in the proof of
Theorem 2 that the output distributions of parity functions
can be realized by linear depth Clifford circuits. Combining
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these two facts yields the hardness result for linear depth
Clifford circuits. We then obtain the first claim by applying
a rescaling argument which trades circuit depth for com-
plexity. We obtain the second claim by using robustness
properties of the statistical query oracle, coupled with the
Solovay-Kitaev theorem to approximate Clifford circuits. ▪
A first immediate consequence of the above result is that

one cannot hope to use the output distributions of super-
logarithmic depth local circuits to prove a practical sepa-
ration between the power of classical learning algorithms
and QCBMs, provided one uses previously proposed
QCBM based learning algorithms based on statistical
queries [10,17]. Again, as the output distributions of local
quantum circuits were the most promising candidate for
such a separation, this result provides evidence against such
a separation in more practically relevant settings.
Additionally, Theorem 3 leaves open the possibility that
there exists some efficient learning algorithm for circuits
with depth less than nΩð1Þ. However, as hardness in the
statistical query model is often taken as evidence for
hardness in the sample model [70], the above result
suggests that Theorem 3 could potentially be strengthened
to hold for the output distributions of superlogarithmic
depth circuits. At least, any efficient learning algorithm for
such circuits must utilize individual samples in a non-
trivial way.
Conclusions.—In this Letter, we have provided an

extensive characterization of the complexity of learning
the output distributions of local quantum circuits. As such
circuits provide a model for a wide variety of many-body
quantum systems, these results are of fundamental interest
in their own right. However, this characterization also
contributes to our understanding of the relationship
between the learnability and simulatability of local quan-
tum circuit output distributions.
Moreover, our results have multiple implications for the

emerging field of quantum machine learning. Much
research in this vein aims to identify problems which
provably separate the power of quantum and classical
learning algorithms [75]. Previously, leveraging crypto-
graphic assumptions, highly fine-tuned learning problems
were constructed for which fault-tolerant quantum com-
puters can obtain an exponential advantage [76–78]. The
output distributions of quantum circuits were a primary
candidate for establishing a separation for a natural learning
problem. However, our work establishes that this is not
possible in a strict sense, and therefore implies the need to
identify new strategies for proving practically relevant
quantum advantages in machine learning. In particular,
our work complements existing results [79,80] that place
limitations on the applicability of near-term hybrid quan-
tum-classical learning algorithms, including QCBMs.
There remain many exciting questions. Firstly, are our

worst-case bounds tight? In particular, can one exhibit
efficient learning algorithms for the circuit depths not

covered by our hardness results? Secondly, can one
characterize the sample complexity of the learning tasks
we have considered? Thirdly, in order to gain insight into
the performance of heuristic learning algorithms, it is
important to understand the average-case complexity of
learning the output distributions of local quantum circuits.
Additionally, it is interesting to study the learnability of
other physically motivated distributions, such as those
arising from free-fermionic evolutions [81,82]. Finally,
to fully characterize the relationship between simulatability
and learnability, it is of interest to understand whether
hardness of simulation implies hardness of learning. In
particular, are there circuit distributions which are hard to
classically simulate, while being efficiently learnable?
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