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Finding the transient and steady state properties of open quantum systems is a central problem in various
fields of quantum technologies. Here, we present a quantum-assisted algorithm to determine the steady
states of open system dynamics. By reformulating the problem of finding the fixed point of Lindblad
dynamics as a feasibility semidefinite program, we bypass several well-known issues with variational
quantum approaches to solving for steady states. We demonstrate that our hybrid approach allows us to
estimate the steady states of higher dimensional open quantum systems and discuss how our method can
find multiple steady states for systems with symmetries.
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Introduction.—Understanding open system evolution is
central to modern quantum technologies such as comput-
ing, thermodynamics [1–3], chemistry [4], and quantum
transport [5]. Since such evolution maps initial quantum
states to future states, both transient and steady state
properties are available in the structure of the evolution
operator. Sparing few analytically tractable systems,
generic open system evolution has to be solved numerically
to understand both transient and steady state dynamics of
the system. Such classical simulation techniques are limited
due to the exponential growth of Hilbert space. Some
specific sampling problems can be simulated classically
[6–9] and tensor networks can be deployed for scenarios
with limited entanglement growth [10–17]. For generic open
system evolution by contrast, such a classical simulation is
limited to few dozen qubits in the presence of symmetries.
Usually, such problems are either simplified by the presence
of strong local dissipators which reduce the amount of
entanglement generated or by low dimensionality of the
problem. Outside of these special cases, the issue of generic
open system evolution has remained unsolved.
The advent of small quantum computers heralds a new

variety of solutions to the problem of determining the
transient and steady state solutions to such open system
evolution. One strategy involves implementing open sys-
tem evolution on an intermediate scale quantum computer
and tomographically measuring the quantum state at

various times [18]. An equivalent method for completely
positive maps would be to quantum simulate and measure
the Choi matrix associated with the open system evolution
[19–21]. These tomographic methods require exponentially
large number of measurements and hence are practically
infeasible. Another group of closely related strategies
involves first implementing L, the Liouville superoperator
associated with the open system evolution, on a quantum
computer. After implementing L on a quantum computer,
the different strategies to find the nonequilibrium steady
states (NESSs) include methods like a combination of
Trotterization and imaginary time evolution using L [22],
quantum phase estimation on L [23], and variational
quantum algorithms (VQAs) to find the kernel of L†L
[24]. These different but related strategies have their own
individual drawbacks. Trotterization and phase estimation
approaches are known to be infeasible on our current
quantum devices with short coherence times, and the
variational optimization approaches suffer from the diffi-
culty of optimizing over a nonconvex space [25–27].
Lastly, all of these methods that rely on the superoperator
representation L of the open system evolution suffer from
the large dimensionality of the Liouville space.
In this Letter, we propose a hybrid algorithm for the

determination of NESSs. Through our approach, the
steady state problem can be recast as solving a feasibility
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semidefinite program (SDP) [28–30]. We show that such an
approach to find the NESS is viable on a near-term
intermediate scale quantum (NISQ) device. Our first
contribution is to restate the NESS problem as a feasibility
SDP, which is a SDP where the goal is to find a feasible
solution satisfying the positive semidefinite and linear
constraints [28–30]. Our second contribution is that we
do not use a variational quantum state or circuit as the
Ansatz [24,31–33]. By doing so, we bypass the problems
[34–37] associated with training variational quantum algo-
rithms with their nonconvex landscape, which is known to
be nondeterministic polynomial-time (NP) hard [25–27].
We show that our algorithm naturally enforces positivity
constraint of a physical density matrix and provides
methods to enforce additional constraints systematically
while retaining the advantages of quantum-assisted meth-
ods [35,37–40], like providing a method to systematically
gain a more expressible, problem-aware Ansatz.
Nonequilibrium steady states.—Open system dynamics

under Born, Markov and secular approximations are often
described by a time-local master equation given by
_ρ ¼ L½ρ�, where

L½ρ� ¼ −i½H; ρ� þ
X

n

γn

�
AnρA

†
n −

1

2
fA†

nAn; ρg
�
:

Such an evolution preserves conditions for valid density
matrices. The transient and steady states of this evolution are
characterized by the spectrum of the Liouville superoperator
[5], defined by the vectorizationBρC → C� ⊗ Bjρi. Steady
states are understood to satisfy L½ρ� ¼ 0 or equivalently
Ljρi ¼ 0, where L is the Liouville superoperator that arises
from the vectorization of L. Since these steady states do not
usually correspond to a thermal equilibrium, they are
referred to as nonequilibrium steady states. We refer to
the problem of obtaining the steady state(s) of a given
Liouville evolution as the NESS problem, which is solved
classically by matrix diagonalization. However, due to the
increase in dimensionality, diagonalization of the full
spectrum is usually unfeasible. Furthermore, the evolution
of n-dimensional density matrices in Liouville space are
represented by n2 × n2 matrices. This squared dimension-
ality implies that numerical techniques can find the entire
spectrum of only modest open quantum systems, usually
relying on Arnoldi-type methods [41–44], which become
quite cumbersome for many-body systems of moderate size.
Hence, there is interest in understanding if quantum

computers, with their inherent dimensionality advantages
in simulating quantum systems over classical computers,
can solve the NESS problem. For NISQ devices, it was
shown that the NESS problem can be mapped to a
variational problem in Liouville space [24]. The subsequent
variational problem is solved by using a parametrized
quantum state or quantum circuit as the Ansatz, and relies
on forms of VQA. This approach has two main concerns.

Firstly, it is unclear how to systematically enforce the
positivity constraint for the density matrix in this approach,
as the variational quantum state or quantum circuit, which
is a vector, must eventually correspond to a physical density
matrix using the vectorization described above. Secondly,
optimizing over the set of pure states tends to not be convex
and hence difficult, and indeed has been shown to be
NP-hard, reasons including the parameter landscape con-
taining exponentially many persistent local minima that are
far from the global minimum [25–27] (see Supplemental
Material [45]). Other VQA methods that do not explicitly
rely on this map to Liouville space [31] face similar
problems.
Quantum feasibility SDP approach.—We circumvent the

nonconvex optimization problem in the Liouville space by
optimizing over the convex set of density matrices. This
allows us to directly apply a feasibility SDP, one conse-
quence of which is that we can now systematically enforce
the positive semidefinite condition. A feasibility SDP
admits the following form: Find X;X ∈ Slþ such that
TrðCkXÞ ¼ vk, ∀ k ∈ 1; 2;…; c. Here, Slþ represents the
set of l × l symmetric positive semidefinite (PSD) matrices.
This is the problem of determining if it is possible to find a
matrix X subject to the PSD constraint and the other given
constraints. The matrices Ck belong to the set of symmetric
matrices Sl for k ∈ f1; 2;…; cg. The kth element of vector
v ∈ Rc is denoted by vk. SDPs can be formulated for
complex-valued matrices via a cone of Hermitian positive
semidefinite matrices, i.e., X ∈ Hlþ. Since SDPs for real-
valued matrices are a special case of SDPs for complex-
valued matrices, we will consider the latter case in this
Letter. Since _ρ ¼ L½ρ� is linear in ρ, the NESS problem is a
feasibility SDP.
We consider a state Ansatz of the form

ρ ¼
X

i;j

βijjχiihχjj: ð1Þ

Here, βij are matrix elements of a positive semidefinite
matrix β, whereas jχii states can be from any set of
quantum states. We see that β being positive semidefinite
is both a necessary and sufficient condition for ρ to be
positive semidefinite. The condition TrðρÞ ¼ 1 becomes
TrðβEÞ ¼ 1, where E is a matrix with matrix elements
Eij ¼ hχijχji.
With the chosen Ansatz, the NESS problem becomes

find β such that − iðDβE − EβDÞ

þ
X

n

γn

�
RnβR

†
n −

1

2
FnβE −

1

2
EβFn

�
¼ 0; ð2Þ

β ≽ 0; ð3Þ

TrðβEÞ ¼ 1; ð4Þ
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where γn are the strengths of the dissipators, D, R, F are
matrices defined as Dij ¼ hχijHjχji, ðRnÞij ¼ hχijAnjχji,
and ðFnÞij ¼ hχijA†

nAnjχji. This reduction of the NESS
problem to a feasibility SDP [29,68] defined over β is
motivated by the idea that a judicious choice of the states
jχii in some problem-aware manner could possibly allow
us to do an optimization over a smaller dimensional convex
landscape (compared to ρ). Furthermore, the positive
semidefiniteness condition of ρ can be enforced naturally.
We utilize CVX [69], which relies on a disciplined convex
programming algorithm [70,71].
We can also easily enforce additional linear constraints

of the form TrðβXÞ ¼ x, where X and x are arbitrary
matrices and values, respectively. This feature of our
scheme is absent in the existing algorithms for solving
NESSs on NISQ devices and is further discussed below.
The overlap values for the matrix elements of the E, D,

R, F matrices can be measured on a NISQ quantum
computer [72]. In general, how we choose the jχii states
to form our Ansatz will contribute strongly to how our
algorithm scales. For a general Hamiltonian, absent of
exploitable symmetries, the size of the optimal Ansatz will
grow exponentially with the size of the problem. (see
Supplemental Material [45]). Even in the worst case where
we require exponentially large numbers of jχii states in our
Ansatz, we do not map the problem to an equivalent one in
Liouville space and avoid the aforementioned squared
dimensionality that comes from doing optimization in
Liouville space. Hence in the worst case, our method is
at least quadratically better than analogous variational
algorithms.
Unless otherwise stated, we choose cumulative K

moment states (CSK states) [39] which provide us with
a systematic way to generate an increasingly expressible
problem-aware Ansatz. These states rely heavily on calcu-
lating expectation values of powers of the Hamiltonian
hψ jHkjψi which can be done efficiently [73,74]. They
alternatively can also be easily obtained by calculating the
expectation value of Pauli strings [38,39] (see Ref. [45] for
details). By using the CSK states as an Ansatz, the size of
the β matrix that will be calculated scales as δK , where δ is
the number of terms in the Hamiltonian, for small K. While
this is typically not scalable, we emphasize that our method
need not use CSK states as its Ansatz. Our main contri-
bution is in approaching the steady state problem in terms
of a SDP, and the choice of Ansatz in our Letter is
secondary. A more efficient method of generating an
Ansatz can be used, if we have greater knowledge of the
underlying symmetries of the system. Note that the SDP
itself could also be sped up with the help of a quantum
computer [75].
The algorithm can hence be summarized as (a) choose a

hybrid Ansatz for ρ using a set of chosen quantum states
fjχiig, (b) calculate the entries of the overlap matrices on
the quantum computer, (c) use the matrices in a SDP

optimization routine run on a classical computer to obtain
the approximate NESS.
Examples.—We demonstrate our algorithm with some

examples. Consider a 2-qubit transverse field Ising model
with the HamiltonianH2 ¼ ð1=2Þσ1Zσ2Z þ gσ1X þ gσ2X, toge-
ther with local dissipators A1 ¼ σ1Z, A2 ¼ ð1=2Þðσ1X − iσ1YÞ,
A3 ¼ σ2Z, and A4 ¼ ð1=2Þðσ2X − iσ2YÞ. For all instances
presented in Fig. 1, our hybrid algorithm outputs a density
matrix ρ that is unit trace, Hermitian, positive semidefinite,
and that fulfills the NESS condition _ρ ¼ 0. To study the
robustness of the algorithm for larger chains, in Fig. 2 we
show simulation results for the transverse field Ising model
up to 8 qubits. For the 5-qubit and 8-qubit systems presented
in Fig. 2, when increasing K, we choose from the CSK
Ansatz, a random subset of new states, as highlighted in the
SupplementalMaterial [45]. A comparisonwith the existing
NISQ approach in Ref. [24] for the 8-qubit case is also given
in the Supplemental Material [45].
We note that for the model chosen, as g increases, the

exact NESS solution has larger rank and is less sparse. We
find that for such situations, a larger Ansatz size is needed
to obtain an approximate NESS with similar fidelity. We
also note that theCSK Ansatz performs efficiently when the
steady states are low rank. When this is not the case, it is
expected that any NISQ algorithm based on such Ansätze
will underperform. Likewise, we note that another choice
that significantly influences the Ansatz is the choice of
initial states, where recent results on solving the ground
state problem can aid in providing useful initial states [76].
Strong symmetries.—One additional complication with

the NESS problem is that systems with symmetries can
exhibit multiple NESSs [5]. Our algorithm can also be
extended to certain cases where multiple NESSs are
expected. If there is a strong symmetry in the system, then
the Hilbert space can be decomposed into the symmetry
subspaces, namely,

H¼ ⨁
nU

α¼1

Hα; Hα ¼ Spanfjψ ðkÞ
α ig; k∈ ½1;dα�: ð5Þ

FIG. 1. Expectation values for 2-qubit transverse field Ising
model. γ’s set at 1. Fidelity is equal to 1 for all values of g. Our
method gives strong agreement with the theoretical results.

PHYSICAL REVIEW LETTERS 130, 240601 (2023)

240601-3



Here jψ ðkÞ
α i are the eigenvectors of the unitary U which

characterize the system’s strong symmetry. The correspond-
ing eigenvalues areuα,α ∈ ½1; nU�, where 1 ≤ nU ≤ D is the
number of distinct eigenvalues of U, and k ∈ ½1; dα�, where
dα is the dimension of the subspace corresponding to the
eigenvalue uα. This decomposition can be extended to the
operator space BðHÞ, through

BðHÞ ¼ ⨁
nU

α¼1

⨁
nU

β¼1

Bαβ; ð6Þ

where Bαβ ¼ Spanfjψ ðnÞ
α ihψ ðmÞ

β jg, n ∈ ½1; dα�, m ∈ ½1; dβ�.
Each orthogonal subspace can contribute to the NESS
solution, since each subspace Bαβ can have a solution ραβ
such that L½ραβ� ¼ 0. Hence, our algorithm finds a solution
which is a linear combination of the solutions from all the
Bαβ subspaces. We note that physical density matrices (with
unit trace) can only exist in the diagonal sub spaces Bαα due
to the orthogonality between the eigenvectors from different
Hα. However, precisely because the unphysical density

matrices fromBαβ,α ≠ β, have trace 0, they can contribute to
physical solutions found by forming linear combinations
with a physical density matrix, which changes physical
properties of the solution. There are at least nU physical,
distinct NESSs, which we label as ρ�α, where ρ�α ∈ Bαα. If
another strong symmetry is present, thesenU different ρ�α can
be further decomposed into NESSs from the new symmetry
sectors.
Generalization of our method for multiple NESSs.—We

can systematically obtain all the physical steady states that
exist in all the symmetry subspaces for quantum systems
with multiple steady states, if we have knowledge of the full
Lindbladian. The simplest way would be to directly
construct an Ansatz that lies in the desired symmetry
subspace. If we have the capacity on the quantum computer
to generate such states, which has been demonstrated for
Dicke states [77] and states that conserve total magneti-
zation in the XXZ Heisenberg chain [78], we can simply
generate such a set of states and use that to construct our
hybrid Ansatz for our algorithm. This method has the added
advantage of reducing the size of the Ansatz, due to the
reduction of the possible solution space. For example, we
used the quantum circuit proposed in Ref. [78] for the
8-qubit XXZ Heisenberg chain with dephasing noise and
obtained a fidelity of nearly 1 to the theoretical NESS in the
m ¼ 4 symmetry subspace with only 28 states in our
Ansatz. Here,m is the eigenvalue of the total magnetization
operator M. However, this method is limited due to
difficulty in devising circuits that conserve a general
symmetry. Thus, we also propose two general methods
to find multiple NESSs.
The first method utilizes the SDP structure of the

optimization. For each operator Nk that corresponds to
the kth strong symmetry in our system, a NESS is found that
is in the symmetry subspace corresponding to a particular
eigenvalue nk of Nk, by including the linear constraint
TrðβÑkÞ ¼ nk in the SDP, where ðÑkÞij ¼ hχijNkjχji.
These additional linear constraints are additional, efficiently
implementable, hyperplanes in the parameter space that the
optimizer needs to fulfill.
As an example, we consider a XXZ Heisenberg chain on

a system with n qubits, HXXZ ¼ P
n−1
j¼1 σ

j
Xσ

jþ1
X þ σjYσ

jþ1
Y þ

ΔσjZσ
jþ1
Z , and dephasing noise, defined by the n jump

operators Li ¼ σiZ. The total magnetization M ¼ P
n
i¼1 σ

i
Z

commutes with the Hamiltonian and all jump operators Li,
generating a strong symmetry given by Sz ¼ eiϕM. This
gives rise to nþ 1 magnetization blocks, each associated
with an eigenvalue of M and has its own unique NESS.
Considering the additional constraint TrðβM̃Þ ¼ m,

where M̃ij ¼ hχijMjχji, our first method is able to obtain
a solution which is in themmagnetization symmetry sector
of M that agrees with the exact results. We emphasize that
the usage of the quantum computer scales linearly with the
number of constraints, as we do not need to measure the D,
E, F, R matrices several times.

(a)

(b)

FIG. 2. Results for the transverse field Ising model with local
dissipators described in the main text. The corresponding fidelity
value between the state obtained and the theoretical state, for
CSK Ansatz of different Ansatz sizesK, are compared. (a) Results
for 5 qubits. (b) Results for 8 qubits. For larger g, we note that the
exact NESS becomes much less sparse. To continue to obtain
good fidelities in this regime, we require larger number of states
in our Ansatz.
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The second method does not require us to add additional
constraints into the SDP, which allows our classical
postprocessing to be more numerically stable. It utilizes
the structure of a Vandermonde matrix to systematically
remove the contributions from unwanted subspaces by
applying the symmetry operator to the state and is dis-
cussed in detail in the Supplemental Material [45].
Conclusion.—We present a new algorithm for finding

NESS solutions of open systems. Our approach restates the
NESS problem as a feasibility SDP, which is a well-known
and well-characterized optimization problem. We believe
that this is the first work to apply this approach to solving
master equations. As a consequence of our approach, we
are able to utilize NISQ devices to aid a classical computer
in its calculation, by offloading the difficult task of
calculating expectation values of arbitrary Pauli strings
to the quantum computer. Utilizing this quantum-assisted
approach to NISQ devices, our algorithm retains all of the
advantages that such algorithms have over competitors that
rely on variationally optimizing a quantum circuit.
Our algorithm provides three main advantages over its

NISQ competitors. Firstly, since it frames the NESS
problem as a feasibility SDP, it allows us to bypass many
of the problems associated with traditional variational
quantum algorithms on NISQ devices, such as the barren
plateau problem and training over the nonconvex landscape
in the state space. Secondly, it provides a natural way to
enforce the positivity constraint of density matrices during
the optimization, along with any other constraints we
would want to implement. One example where being able
to enforce other constraints is useful is when multiple
steady states exist. Lastly, our method also gives us a
systematic way to increase the expressibility of our Ansatz
without sacrificing trainability.
Our work opens up many avenues for research. NISQ

devices are already utilized to study the ground states of
chemical substances [79]. Most believe that studying open
system many-body Hamiltonians, like the fermionic
Hubbard model in the presence of generic dissipations,
is classically intractable [80]. It is hoped NISQ devices and
NISQ algorithms can make the simulation of such prob-
lems possible [81]. Our method extends these studies to
open quantum systems and widens the range of applica-
tions. Furthermore, we believe our method can be used as a
tool to assist environmental engineering [82] of open
quantum systems. Studying how noise and Ansatz choice
affects quantum-assisted methods such as ours are interest-
ing problems to consider in the future. We believe it is
possible to extend our algorithm to allow constraints over
continuous variables, which changes the optimization
program into a semi-infinite feasibility problem [83]. We
expect all of these to have a substantial impact on the NESS
problem in the near and far term.
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