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Optimizing the performance of thermal machines is an essential task of thermodynamics. We here
consider the optimization of information engines that convert information about the state of a system into
work. We concretely introduce a generalized finite-time Carnot cycle for a quantum information engine and
optimize its power output in the regime of low dissipation. We derive a general formula for its efficiency at
maximum power valid for arbitrary working media. We further investigate the optimal performance of a
qubit information engine subjected to weak energy measurements.
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Heat engines convert thermal energy into mechanical
work by running cyclicly between two heat baths at
different temperatures. They have been widely used to
generate motion, from ancient steam engines to modern
internal combustion motors [1]. Information engines, on
the other hand, extract energy from a single heat bath by
processing information, for instance, via cyclic measure-
ment and feedback operations [2–14]. They thus exploit
information gained about the state of a system to produce
useful work [15,16]. Such machines may be regarded as
interacting with one heat reservoir and one information
reservoir which only exchanges entropy, but no energy,
with the device [17–19]. Information engines are possible
owing to a fundamental connection between information
and thermodynamics, as exemplified by Maxwell’s cel-
ebrated demon [20–22]. Successful information-to-work
conversion has been reported in a growing number of
classical experiments [23–34].
At low enough temperatures, typical nonclassical effects,

such as coherent superposition of states and measurement
backaction that randomly perturbs the state of a system,
come into play [35]. They deeply affect the work extraction
mechanism and impact the performance of measurement
controlled quantum machines [36–44]. In this context,
quantum measurements, in either their strong (projective)
or weak (nonprojective) forms [35], may be considered
as an unconventional thermodynamic resource [36–44].
Experimental investigations of the thermodynamic proper-
ties of a quantum Maxwell’s demon, based on quantum
measurement and feedback control of a qubit system,
have recently been performed using nuclear magnetic
resonance [45] as well as superconducting [46–48] and
cavity quantum electrodynamical [49] setups.
Two central performance measures of heat engines are

efficiency, defined as the ratio of work output and heat
input, and power that characterizes the work-output rate [1].
The efficiency of any heat engine coupled to thermal

baths is bounded from above by the Carnot efficiency,
ηC ¼ 1 − Tc=Th, where Tc;h are the respective temper-
atures of the cold and hot heat reservoirs [1]. This value is
usually only reachable in the ideal reversible limit, which
corresponds to vanishing power. However, real thermal
machines operate in finite time with finite power, and far
from reversible conditions. Their efficiency is hence
reduced by irreversible losses [50,51]. Optimizing the
cyclic operation of heat engines is therefore crucial. A
practical figure of merit is the efficiency at maximum power
which has been extensively studied for classical [52–57]
and quantum [58–62] heat engines. A general example of
such an efficiency at maximum power is the Curzon-
Ahlborn formula, ηCA ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=Th

p
, which bears a

striking resemblance to the Carnot expression, except for
the square root [63]. The Curzon-Ahlborn efficiency
appears to be universal for finite-time Carnot machines
that operate under conditions of low, symmetric dissipation
[55]. While information engines also run in finite time and
with finite power, no generic expression for their efficiency
at maximum power is currently known, owing to the
difficulty to properly optimize them [11–13].
We here introduce a generalized Carnot cycle for a

quantum information engine by replacing the cold heat bath
of a finite-time quantum Carnot heat engine by an infor-
mation reservoir. This cycle is fully reversible in the
infinite-time limit. We optimize its power output and derive
a general formula for the efficiency at maximum power
for arbitrary working media within the framework of
nonequilibrium thermodynamics in the weak dissipation
regime. We obtain a Curzon-Ahlborn-like expression
where the optimal cold coupling time is replaced by a
new dissipation time that characterizes irreversible losses.
We further illustrate our findings with the example of a
qubit information engine, and obtain a microscopic expres-
sion of its efficiency at maximum power.
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Reversible information engine cycle.—The reversible
Carnot cycle describes the most efficient heat engine,
and is thus of fundamental importance. It consists of
two adiabatic and of two isothermal (expansion and
compression) branches [1]. Its realization requires two
heat baths: a hot bath from which heat is absorbed during
the hot isotherm, and a cold bath which takes on heat during
the cold isotherm. Finite-time quantum Carnot cycles have
been theoretically studied in Refs. [64–68]. The first
experimental implementation of a classical finite-time
Carnot engine has been presented in Ref. [69]. We here
construct a finite-time generalization of the Carnot cycle for
a quantum information engine by substituting the cold heat
bath (and the corresponding isotherm) by an information
bath that involves measurement and subsequent outcome-
dependent feedback (Fig. 1).
An important feature of this information cycle is that it is

thermodynamically reversible for infinitely long cycle
durations, like its thermal conterpart. In other words, each
branch, including measurement and feedback, does not
dissipate any irreversible entropy in that limit. We con-
cretely impose the following three conditions on the engine
cycle: (a) both measurement and feedback control are
reversible; (b) the cycle is independent of the measurement

outcome, meaning that measurement and feedback oper-
ation always lead to the same state, irrespective of the
measurement result; and (c) the state ρafter after measure-
ment and feedback is a thermal state at temperature Tafter
with the same Hamiltonian H as that of the state ρbefore
before the measurement.
We measure the state of the working medium

of the information engine with a generalized measurement
described by a set of positive operators fMig that satisfyP

i M
†
i Mi ¼ I. The state after a measurement is ρi ¼

MiρbeforeM
†
i =pi with probability pi ¼ Tr½MiρbeforeM

†
i �

[35]. We denote by Si ¼ −kTr½ρi ln ρi� the entropy
and by Ei ¼ Tr½ρiH� the energy of that state (k is the
Boltzmann constant). Such a generalized measurement
usually leads to a classical mixtures of states, implying
that entropy is irreversibly produced during the process,
SðρmeasÞ > SðρbeforeÞ, where ρmeas ¼

P
i piρi is the density

operator averaged over all the measurement outcomes,
unless ½Mi; ρbefore� ¼ 0 [38]. In order to make the
measurement thermodynamically reversible, SðρmeasÞ ¼
SðρbeforeÞ, we accordingly require that the operators Mi
commute with the state of the system before the measure-
ment, ½Mi; ρbefore� ¼ 0. Since the latter state is diagonal in
the energy basis after the adiabatic compression branch, the

(a)

(c)

(b)

FIG. 1. Generalized finite-time Carnot cycle for the quantum information engine. (a) Polarization-frequency diagram for an arbitrary
working medium with Hamiltonian Ht ¼ ωtP. The cycle consists of one isochore during which a reversible measurement-plus-
feedback protocol is implemented (1–2), one adiabatic expansion (2–3), one isothermal compression (3–2), and one adiabatic
compression (4–1). The work hWwmi produced by the working medium during one cycle is given by the enclosed area and the reversible
feedback work hWfbi is extracted during step (1–2). The total work done is equal to the sum hWi ¼ hWwmi þ hWfbi. (b) Entropy-
temperature diagram of the same cycle. It reduces to a Carnot cycle for vanishing feedback frequency, ωfb ¼ 0, (dashed lines).
(c) Explicit realization of the four steps of the cycle for a qubit information engine. The blue (red) dot represents the occupation
probability of the ground (excited) state of the two-level system. The two outcomes of the reversible generalized energy measurement
with Kraus operators (7) occur with respective probabilities ðp0; p1Þ.
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operators Mi describe a nonprojective measurement of the
energy of the working fluid. We next apply reversible
feedback control [5] to transform each state ρi into the
thermal state ρafter. To that end, depending on the meas-
urement outcome, we reversibly reorder the populations of
ρi so that they decrease monotonically with increasing
energy, while keeping the entropies Si constant. We further
shift the energy levels in order to obtain, after completion of
the feedback operation, the same Hamilton operator as that
of the initial state ρbefore. The explicit measurement-plus-
feedback protocol for the case of a two-level system is
detailed below.
The average entropy change provided by the measure-

ment is hΔSi ¼ P
i piSi − Sbefore ≤ 0, where Sbefore is the

entropy of state ρbefore before the measurement [35]. Noting
that after feedback control, ρi ¼ ρafter and, therefore, Si ¼
Safter for all measurement outcomes i, we simply have
hΔSi ¼ Safter − Sbefore ¼ ΔS. The average work extracted
by the reversibly operating feedback controller is addition-
ally hWfbi ¼

P
i piðEi − EafterÞ, since the individual entro-

pies Si remain constant during the feedback process.
Furthermore, since ½Mi; ρbefore� ¼ 0, and hence

P
i piEi ¼

Ebefore, we have hWfbi ¼ Ebefore − Eafter.
Let us now evaluate the work associated with the engine

cycle shown in Fig. 1. For that purpose, it is useful to
distinguish, on the one hand, the measurement and feed-
back part [steps (1–2) in Fig. 1], as discussed above, and,
on the other hand, the engine cycle seen from the standpoint
of the working medium [steps (1–4) in Fig. 1] [70]. During
adiabatic expansion and compression, the system is isolated
from the bath. In order to make these steps reversible and
avoid quantum friction [72–74], the Hamiltonian is chosen
to commute with itself at all times, ½Ht;Ht0 � ¼ 0, as in the
standard quantum Carnot cycle [64–68]. As a result,
nonadiabatic transitions do not occur for all driving times
while work is performed. For concreteness, and without
loss of generality, we consider a Hamilton operator of the
scaling form Ht ¼ ωtP, with time-dependent frequency
ωt [68]. From the point of view of the working medium, the
cycle then consists of four branches (Fig. 1): (1–2) one
isochore at constant frequency ωfb, (2–3) one adiabat with
frequency variation fromωfb toω3, (3–4) one isotherm with
frequency change from ω3 to ω4 at constant bath temper-
ature Th, and (4-1) one adiabat with frequency decrease
from ω4 to ωfb. The average produced work hWwmi is
simply given by the area enclosed by the cycle. According
to the first law applied to the working medium, we have
hWwmi ¼ hQhi þ hQci, where hQh;ci are the respective
heat contributions from the isotherm and the isochore. In
the long-time limit, the heat absorbed from the hot reservoir
may be written in leading order (low dissipation regime) as
Qh ¼ ThðΔS − Σ=τhÞ, where Σ is a coefficient that char-
acterizes the entropy production during time τh along the
isotherm [56]. Moreover, the heat exchanged by the
working medium during the cold isochore can be evaluated

by purely thermodynamic means (without involving the
measurement and feedback aspect) [58–60]. It is given
by hQci ¼ ωfbΔhPi ¼ Eafter − Ebefore.
The total work hWi done during the complete informa-

tion engine cycle is the sum of the work extracted by the
feedback controller, hWfbi, and the work produced by the
working medium, hWwmi. We hence obtain

hWi ¼ hWfbi þ hWwmi ¼ Th

�
ΔS −

Σ
τh

�
: ð1Þ

We note that hQci and hWfbi exactly cancel. In other words,
the information reservoir only exchanges entropy but no
energy with the system. We are now in the position to
investigate the phenomenological finite-time performance
of the generalized Carnot information engine.
Efficiency at maximum power.—The efficiency at which

information is converted into work in the cyclic quantum
information engine is defined as [37–44]

η ¼ hWi
ThΔS

¼ 1 −
Σ

ΔSτh
; ð2Þ

where we have used Eq. (1). Unit efficiency (ηmax ¼ 1) is
achieved for τh → ∞, when the cycle is reversible. In this
regime, information about the state of the system, gained
through the measurement, is fully converted into work by
the cyclic engine. For finite-time operation, the efficiency is
reduced (η < 1) owing to dissipative processes associated
with irreversible entropy production.
The power of the information engine further reads [1]

P ¼ hWi
τh þ τfb

¼
ThðΔS − Σ

τh
Þ

τh þ τfb
; ð3Þ

where τfb denotes the time of the measurement and feed-
back protocol. The time spent along the two adiabats can be
set to zero since they are reversible irrespective of their
duration [58,59]. By contrast, the feedback time τfb is
determined by the measurement-feedback process and we
take it to be fixed [75]. Setting the derivative of the power P
with respect to τh to zero, we find the optimal coupling time
to the hot heat reservoir

τ�h ¼
Σ
ΔS

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΔS

Σ
τfb

r �
: ð4Þ

The corresponding efficiency at maximum power η� of the
quantum information engine then follows as

η� ¼ 1 −
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τfb=τ

⊛
h

q ¼ 1 −
τ⊛h
τ�h

; ð5Þ

where we have used Eq. (4) and introduced the typical
dissipation time τ⊛h ¼ Σ=ΔS associated with irreversible
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losses along the hot isotherm: τ⊛h is small (large) when the
entropy production is small (large). Expression (5) is
reminiscent of the Curzon-Ahlborn formula [63],
which can be written in terms of the optimal cold and
hot coupling times, τ�c and τ�h, as ηCA ¼ 1 − τ�c=τ�h [58]. The
optimal time of the cold isotherm τ�c is here simply replaced
by the new dissipation time τ⊛h . We moreover observe from
Eq. (5) that in general ηmax=2 < η� < ηmax ¼ 1, the lower
(upper) bound being reached when the feedback time is
much smaller (larger) than the dissipation time τfb ≪
τ⊛h (τfb ≫ τ⊛h ).
With the help of the above expressions, the maximum

power P� may furthermore be written as

P� ¼ η�ThΔS
τ�h þ τfb

; ð6Þ

with the optimal produced work hWi� ¼ η�ThΔS. These
results generically hold for any working medium.
Qubit information engine.—We proceed by illustrating

our findings with the case of a spin-1=2 information engine
with Hamilton operator Ht ¼ ωtσz=2 ¼ ωtP, where σz is
the usual Pauli operator and P ¼ σz=2 is the polarization.
The knowledge of the precise quantum dynamics of this
system allows for the microscopic evaluation of the
efficiency at maximum power of the information engine.
We begin by specifying the measurement-feedback

protocol of the generalized finite-time Carnot cycle
(Fig. 1). In order to satisfy the conditions (a)–(c) stated
above (measurement and feedback should be reversible, all
measurement results should be mapped onto the thermal
state ρafter with the same Hamilton operator as ρbefore), we
construct a generalized quantum measurement such that the
first measurement outcome (i ¼ 0) is ρafter (that is, ρ0 ¼
ρafter with energy E0 ¼ Eafter) and the second measurement
outcome (i ¼ 1) is equal to its spin-flipped counterpart
(that is, ρ1 ¼ σxρafterσx with energy E1 ¼ −Eafter). The
corresponding measurement operators are explicitly given
by (Supplemental Material [71])

M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eðβbþβaÞωfb

1 − e2βaωfb

s
j1ih1j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ðβbþβaÞωfb

1 − e−2βaωfb

s
j0ih0j;

M1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eðβb−βaÞωfb

1 − e−2βaωfb

s
j1ih1j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ðβb−βaÞωfb

1 − e2βaωfb

s
j0ih0j;

ð7Þ

where βb ¼ βbefore and βa ¼ βafter are the respective inverse
temperatures of the states ρbefore and ρafter. The kets j0i and
j1i denote the (ground and excited) energy eigenstates of
the qubit. The Kraus operators (7) describe a nonprojective
energy measurement of the spin-1=2 (it becomes weak in
the high-temperature limit).

We next apply outcome-dependent feedback control to
transform all the measurement results (i ¼ 0, 1) into the
same state ρafter. For outcome 0, we apply the identity I,
since ρ0 ¼ ρafter by construction; we hence trivially
have H0 ¼ H. For outcome 1, we unitarily rearrange the
states with the transformation H1 ¼ −H þ ðE1 − EafterÞI,
which leaves the energy of the state unchanged,
Tr½ρ1H1� ¼ Tr½ρ1H�. We finally shift the energy level to
obtain the Hamiltonian of the state ρbefore. In doing so, we
extract the feedback work hWfbi ¼ Ebefore − Eafter.
The interaction of the two-level system with the hot heat

bath may be microscopically described with the help of a
usual quantum master equation of the form [58,59]

_Pt ¼ γþðσ−½Pt; σþ� þ ½σ−;Pt�σþÞ

þ γ−ðσþ½Pt; σ−� þ ½σþ;Pt�σ−Þ þ
∂Pt

∂t
; ð8Þ

for the polarization Pt in the Heisenberg picture
and the operators σ� ¼ σx � iσy. Assuming that the
damping coefficients satisfy the detailed-balance condition
γ−=γþ ¼ expðβhωtÞ, by choosing, for instance, the
concrete parametrization γþ ¼ a expðqβhωtÞ and γ− ¼
a exp½ð1þ qÞβhωt� (with a > 0 and 0 > q > −1 constant
parameters), Eq. (8) can be rewritten as [58,59]

_hPti ¼ −aeqβhωt ½2ð1þ eβhωtÞhPti þ ðeβhωt − 1Þ�: ð9Þ

The parameter a characterizes the magnitude of the damp-
ing coefficients and, thus, the rate of change of the average
polarization. Solving the above equation for time [58,59],
the duration of the isotherm in the high-temperature limit
(βhω3;4 ≪ 1) is found to read [71]

τh ¼
ln ðω3=ω4Þ

4að1 − βh=β0Þ
; ð10Þ

where the effective inverse temperature β0 of the qubit is
determined via hPti ¼ − tanhðβ0ωt=2Þ=2 [58,59]. Because
of the finite-time relaxation of the system, the temperature
T 0 is not necessarily equal to the bath temperature Th, when
thermalization is not complete; we have τh → ∞ when
T 0 → Th (or a → 0). Noting further that the work hWi ¼
ThðΔS − Σ=τhÞ produced by the irreversible engine cycle
with bath temperature Th is equal to the work T 0ΔS
produced by a reversible cycle with effective bath temper-
ature T 0 [58], we find the dissipation time,

τ⊛h ¼ Σ
ΔS

¼ lnðω3=ω4Þ
4a

: ð11Þ

Equation (11) is solely determined by the beginning and
end frequencies ω3;4 of the isotherm and the bath coupling
parameter a. We therefore obtain the microscopic expres-
sion for the efficiency at maximum power (5):
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η� ¼ 1 −
τ⊛h
τ�h

¼ 1 −
1

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aτfb= lnðω3=ω4Þ

p : ð12Þ

Figure 2(a) displays the reduced power P=P� of the qubit
information engine as a function of the duration of the hot
isotherm τh for different values of the feedback time τfb
(both in units of τ⊛h ). We identify a clear maximum at the
optimal time τ�h given by Eq. (4). Figure 2(b) moreover
shows the corresponding power versus efficiency curves
that are typical for an endoreversible engine [52]. Such
machines are internally reversible and irreversible losses
only occur via thermal contact with the external bath. They
hence outperform fully irreversible engines and have
played for this reason a central role in finite-time thermo-
dynamics [50,51]. We note that the general inequality
ηmax=2 < η� < ηmax ¼ 1 is satisfied.
Conclusions.—We have proposed a generalized finite-

time Carnot cycle for a quantum information engine. Like
the standard Carnot cycle for heat engines, it is thermo-
dynamically reversible for large cycle durations. This cycle
thus describes the most efficient quantum information
engine with unit information efficiency. We have optimized
its power output in the regime of low dissipation and
derived a Curzon-Ahlborn-like formula for its efficiency at
maximum power. This generic expression only depends on
the optimal time of the hot isotherm and a new dissipation
time associated with irreversible entropy production. The
efficiency at maximum power was further shown to obey
the general inequality 1=2 < η� < 1, independent of the
microscopic details of the engine. Our results provide a
theoretical basis for the optimization of information
engines. We hence expect them to be important for the
study of optimal quantum machines in finite-time infor-
mation thermodynamics.
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