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We propose relativistic tests of quantum gravity using the gravitational self-interaction of photons in a
cavity. We demonstrate that this interaction results in a number of quantum gravitational signatures in the
quantum state of the light that cannot be reproduced by any classical theory of gravity. We rigorously assess
these effects using quantum parameter estimation theory and discuss simple measurement schemes that
optimally extract their signatures. Crucially, the proposed tests are free of QED photon-photon scattering,
are sensitive to the spin of the mediating gravitons, and can probe the locality of the gravitational
interaction. These protocols provide a new avenue for studying the quantum nature of gravity in a
relativistic setting.
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Introduction.—The search for a theory of quantum
gravity is one of the most significant open problems in
contemporary physics. A key challenge in this pursuit is the
absence of experimental results probing quantum gravita-
tional effects. Remarkably, low-energy experiments may
soon be capable of testing the quantum nature of the
gravitational field [1–26]. In particular, proposals for
observing for quantum correlations between masses
induced by their gravitational interaction have seen signifi-
cant development in the past five years [5,8–15,17,24–29].
The majority of these schemes consider gravitationally
induced entanglement (GIE) as the key signature of a
quantized gravitational field, following proposals by Bose
et al. [2] andMarletto and Vedral [3]. More recent proposals
have studied further signatures of quantum gravity that may
be probed in ultracold atomic ensembles [14,15] and
optomechanical systems [22,23,30,31].
While the prospect of tabletop tests of quantum gravity is

extraordinary, there are significant challenges with realizing
these proposals experimentally. There are the well-known
technical challenges of creating and probing macroscopic
superpositions of mesoscopic masses (∼10−14 kg) in the
presence of environmental decoherence [13,28], as well as
the requirement that Casimir-Polder interactions between
the masses must be suppressed [13,27]. Still, these chal-
lenges may be overcome within the next decade [32]. There
are additional conceptual challenges concerning arguments
that experiments that rely on the Newtonian gravitational
interaction cannot truly attest to the quantum nature of
the gravitational field [18,33–37]. These objections to
GIE tests of quantum gravity have seen significant debate
[10,12,18,33–43]—motivating the need for tests of quantum
gravity beyond the Newtonian regime.
In this Letter, we propose a platform for fundamentally

relativistic tests of quantum gravity, using the gravitational

self-interaction of quantum light in a cavity. We demon-
strate that there are multiple quantum gravitational signa-
tures that can be extracted from the quantum state of the
light, that cannot be reproduced by any classical theory of
gravity. We provide a metrological analysis of the proposed
tests and discuss challenges with their experimental reali-
zation. The proposed protocols are sensitive to the spin of
the virtual gravitons that mediate the gravitational inter-
action between photons, are naturally free of QED photon-
photon scattering, and can probe retardation effects to test
the locality of the gravitational interaction. This Letter
therefore provides a new approach for probing the quantum
nature of the gravitational field including relativistic
aspects that cannot be probed in the Newtonian regime.
Self-interaction of light due to gravity.—A sufficiently

high-density electromagnetic (EM) field will experience a
self-interaction mediated by the gravitational field: the
energy density of light will curve spacetime, which in turn
will affect the path of the light. This effect is well studied
for freely propagating light, both classically [44–47] and
for photons [48–53]. In the case of quantum light, the
nature of this self-interaction will depend on whether or not
the gravitational field is also quantized—providing a
powerful avenue of probing the quantum nature of gravity
with massless photons.
This gravitational self-interaction of light is well

described within the framework of perturbative general
relativity (GR), in which the spacetime metric is written as
gμν ≈ ημν þ hμν for a background (Minkowski) metric ημν
and a perturbation hμν. In the Lorenz gauge, this leads to the
linearized Einstein field equations [54],

□h̄μν ¼ −
16πG
c4

Tμν
ð0Þ; ð1Þ
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where□ ¼ ∇2 − ∂
2
t =c2, h̄μν ¼ hμν − 1

2
ημνhαα, and T

μν
ð0Þ is the

stress-energy tensor of the matter source (the subscript
indicates evaluation on the Minkowski background).
Here we consider the gravitational field sourced by

an EM field, for which the stress-energy tensor is
μ0T

μν
ð0Þ ¼FμλFν

λ−ημνFαβFαβ=4, where Fμν ¼ ∂
μAν − ∂

νAμ

is the EM field tensor in terms of the four-potential Aμ, and
we have employed Einstein summation. Equation (1) then
has the retarded Greens function solution:

hμνðr; tÞ ¼ 4G
c4

Z
dr0

Tμν
ð0Þ
�
r0; t − jr−r0j

c

�
jr − r0j : ð2Þ

Note that as the EM stress energy tensor Tμν
ð0Þ is traceless,

Eq. (2) implies hαα ¼ 0.
The gravitational interaction energy can be treated

within the linearized gravity framework starting from the
interaction Lagrangian density Lint ¼ hμνT

μν
ð0Þ=2 [55],

which corresponds to the interaction Hamiltonian density
(Appendix A):

HintðrÞ ¼
1

μ0
hμ0FμλFλ

0 −
1

2
hμνTð0Þ

μν : ð3Þ

The self-interaction Hamiltonian is then obtained by sub-
stitution of Eq. (2) into

R
d3rHintðrÞ, which is quartic in EM

fields, nonlocal, and contains non-negligible retardation
effects in general.
The quantization of the EM field gives a stress-energy

tensor that is operator valued, i.e., T̂μν, which directly implies
the quantization of the gravitational field via Eq. (1), i.e., ĥμν

[Fig. 1(a)]. The self-interaction term in the resulting
Hamiltonian will then be quartic in bosonic creation and
annihilation operators—e.g., Ĥint ¼

R
d3rHintðrÞ ∼ â†â†â â

for a single-mode field. In contrast, the self-interaction
Hamiltonian for any classical theory of gravity—
specifically, any theory for which hμν is not operator
valued—may only be quadratic in creation or annihilation
operators, at most. For example, in semiclassical gravity
where T̂μν → hT̂μνi inEq. (2),wewould have self-interaction
Hamiltonian terms such as ∼hâ†âiâ†â. Therefore, there will
be distinct signatures of the quantum self-interaction that
cannot be reproduced by any classical theory of gravity. We
will explore these signatures both qualitatively and quanti-
tatively in this Letter.
Crucially, the self-interaction is sensitive to the spin of

the quantized gravitational mediator, unlike Newtonian
interactions [41]. The self-interaction described by
Eq. (3) specifically requires a spin-2 graviton—mediators
with any other spin would correspond to a different
tensorial structure to the gravity-light coupling, and thus
give rise to a distinct interaction from Ĥint [41]. As the EM
field has a traceless stress-energy tensor (T ¼ Tμ

μ ¼ 0), this

rules out mediation by spin-0 gravitons that couple
solely to the trace T. This includes virtual spin-0 gravitons
that appear in the canonical quantization of perturbative
GR [56] and quantized scalar gravity theories, such as that
of Nordström [41,57] or Brans-Dicke theory [58–60]. We
note here the related proposals for realizing the quantum
analog of gravitational light bending [31] and the photonic
analog of the GIE tests [61], which can similarly discern
between mediators of different spin.
Evading QED photon-photon scattering.—At large EM

field densities, photons can also interact by exchange of
virtual electron-positron pairs as described by quantum
electrodynamics; for the optical frequencies we consider
here this is typically many orders of magnitude stronger
than the gravitational interaction [51]. To avoid this
problem, we exploit two key properties of the QED
photon-photon interaction: it vanishes for monochromatic
plane waves [62,63] and is a local interaction. In contrast,
the quantum gravitational self-interaction is nonlocal, and
thus permits nonzero interactions in geometries where there
is no QED self-interaction.
Here we consider a traveling-wave (ring) cavity of finesse

F in a rectangular geometry [Fig. 1(b)], such that there is a
gravitational self-interaction between spatially separated
parts of the cavity mode. Specifically, we consider the case
where the dominant interaction is between the counter-
propagating light in the long arms each of lengthL, separated
by a small distance w ≪ L—the quantum analog of
Ref. [64]. An appealing aspect of this system is that, by
choice of optical polarization, both static and nonstatic
gravitational perturbations can be studied. The latter case,
where retardation effects will be significant, can explicitly
test the locality of the interaction, a key aspect of quantum
gravity inaccessible to tests with nonrelativistic sources [65].
In this Letter wewill focus on the case of circularly polarized
light, for whichTμν is static; however, the qualitative features
of the interactionwill beunchanged forgeneral polarizations.

+
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FIG. 1. (a) Superpositions of different photon numbers result in
superpositions of spacetime geometries if gravity is quantum,
resulting in quantum gravitational signatures in the state of the
light. (b) Cavity geometry considered, where the dominant
gravitational interaction is between the two long arms, L ≫ w.
(c),(d) Near-optimal measurement schemes for observing signa-
tures of quantum gravity in (c) the interference between a pair of
cavities or (d) non-Gaussianity in the phase quadratures of
photons exiting a single cavity. ÛQG represents the system in (b).
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Quantum gravitational Kerr effect.—First, let us con-
sider the single-mode self-interaction of a cavity field of
frequency ω0 described by creation (annihilation) operators
â (â†). We will consider the multimode case where vacuum
modes are included, shortly. Assuming the two long arms
of the cavity are well separated such that diffraction effects
can be neglected (w ≫ λ), the leading contribution to the
self-interaction Hamiltonian in the limit L ≫ w is given by
(Appendix B)

ĤQG ¼ −
16G
L

�
ℏω0

c2

�
2

log

�
L
w

�
â†â†â â : ð4Þ

Applying this interaction Hamiltonian for the cavity inter-
rogation time τ ≈ 2FL=c (assuming L ≫ w) generates the
unitary ÛQG ¼ expðiχQâ†â†â âÞ, where

χQ ≈
32GFℏω2

0

c5
log

�
L
w

�
: ð5Þ

Equation (4) can be understood as a gravitational Kerr
effect where the graviton vacuum plays the role of the
underlying nonlinear medium. Interactions of the form
Eq. (4) will produce entanglement between photons, which
means that observing signatures of the quantum gravitation
self-interaction will also be indirect witnesses of GIE
between photons.
In contrast, consider a general classical theory of gravity

for which hμν is not operator valued, which will result in a
self-interaction term of quadratic order. In a rotating-wave
approximation (RWA) [66], the classical gravitational
Hamiltonian must then take the form ĤC

int ¼ ℏλCâ†â for
some coefficient λC, giving the unitary ÛC ¼ exp ðiχCâ†âÞ,
where χC ¼ λCτ. Note that λC itself may depend on
expectations of the quantum field as in semiclassical
gravity, and may even include contributions from non-
gravitational effects that do not result in interactions
between photons. Nevertheless, any such Hamiltonian
cannot reproduce features of the quantum gravitational
Kerr effect.
Fundamental detectability.—Here we consider the fun-

damental limit to which the quantum gravitational self-
interaction can be distinguished from the self-interaction
described by any classical theory of gravity. More pre-
cisely, we ask the question, how well can χQ be distin-
guished from zero, given a completely unknown value of
χC? We can reformulate this as a multiparameter estimation
problem by treating χC as a nuisance parameter, following
the approach of Ref. [14]. Specifically, the smallest
possible nonzero value of χQ that may be inferred from
a set of M measurements each with interrogation time τ is
given by the quantum Cramér-Rao bound (QCRB) [67]:

χQ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fi;j�−1Q;Q=M

q
; ð6Þ

where Fi;j ¼ 4τ2CovðĜi; ĜjÞ is the quantum Fisher infor-
mation matrix (QFIM) with respect to the classical and
quantum generators ĜC ¼ â†â and ĜQ ¼ â†â†â â, respec-
tively. The covariance is computed with respect to the state
jΨi ¼ ÛQGÛCjψi for some initial state jψi. Note that the
existence of an inverse QFIM is not guaranteed—a non-
invertible QFIM would correspond to the effect of the
quantum gravitational interaction being fundamentally
indistinguishable from a classical gravitational interaction.
The choice of initial state jψi is therefore crucial to the

detectability of quantum gravity given ignorance of χC; the
wrong choice of state may result in zero sensitivity to χQ
regardless of the number of measurements. In this analysis
we restrict ourselves to quantum states that may be
prepared with established experimental techniques. In
particular, we find that for a squeezed-vacuum state, the
signatures of quantum and classical gravity theories are
highly distinguishable, resulting in Heisenberg scaling of
the sensitivity [68]:

χQ ≥ ½96MNðN þ 1Þ�−1; ð7Þ

where N ≡ hâ†âi is the average number of photons in the
cavity. In comparison, a significant amount of information
is lost for coherent state or a squeezed coherent state, with
the sensitivity scaling as N−3=2 in the absence of the
nuisance parameter, and as N−1 in its presence.
This result allows us to make strong statements about the

fundamental detectability of χQ, given no information
about the classical theories of gravity from which this
signal is distinguished. Specifically, we can use Eq. (7) to
bound the experimental requirements to infer a nonzero
value of χQ. For example, we may rewrite Eq. (5) in terms
of the circulating power in the cavity Pcirc ≈ Nℏω0c=ð2LÞ
and the number of experiments M ≈ T=τ that may be
conducted within a total time T. For N ≫ 1, we find that
the circulating power required to satisfy Eq. (7) is approx-
imately

Pcirc ≳ c3

16

�
cℏ2

12G2FL3T logðL=wÞ2
�

1=4

: ð8Þ

This expression shows weak dependence on the inter-
rogation period Pcirc ∼ T−1=4, and is most strongly depen-
dent on the cavity length L. As an example, consider
experimental parameters similar to those expected of
the next-generation gravitational-wave detector Cosmic
Explorer [69]: a L ¼ 10-km-long cavity of finesse
F ¼ 450 with a 2 μm wavelength laser and long arm
separation w ¼ 10 cm. The minimum required circulating
power for this system to infer the quantum signature of
gravity over a year-long interrogation period is roughly
125 MW—much larger than the Oð1Þ MW circulating
powers expected of Cosmic Explorer. With a moderate
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increase to the finesse (F ¼ 103), the required circulating
power could in principle be achievedwith a pump laser power
of roughly 100 kW. Interestingly, this level of laser power is
significantly lower than quoted requirements for directly
measuring the gravitational field of the light [70], or gen-
erating observable light-matter entanglement [31]. The weak
logarithmic dependence of the interaction on the separationw
means the beamwidth σ can bemade large enough to prevent
damage to the mirror surfaces while satisfying σ ≪ w; e.g., a
beam width of 2 cm corresponds to an intensity of roughly
25 MW=cm2 for the above laser power, which is well
within the thermal tolerance of modern low-loss cavity
mirrors [71]. While 100 kW continuous lasers are currently
available [72,73], the requirement of a squeezed-vacuum
state at this power is beyond current experiments—we will
see later the need for highly squeezed states may be avoided
by considering multimode signatures of the gravitational
interaction.
Possible measurement schemes.—The question remains

to design a measurement scheme that optimally extracts the
signature of quantum gravity in the proposed cavity system,
i.e., a measurement scheme for which the ideal precision is
given by the right-hand side of Eq. (7). Optimal measure-
ment schemes are not always guaranteed to exist, and are
often not experimentally feasible. We instead identify two,
experimentally realizable, nearly optimal schemes—their
precision is not exactly Eq. (7), but scales the same with N
(Heisenberg scaling).
In Fig. 1(c) we present a simple scheme based on a

Mach-Zehnder (MZ) interferometer that provides an opti-
mal measurement for an initial two-mode squeezed vac-
uum state (TMSV) [68]. In this scheme, the initial TMSV
is beam split to create a pair of squeezed-vacuum states,
each of which is fed into a high-finesse cavity. The
gravitational self-interaction of the light leads to a relative
phase between the two modes, which is then read out by
interfering the light exiting the cavity and reading out the
number difference between the two modes. The distin-
guishability of the signature of quantum gravity from
classical gravity in this scheme can be simply understood
by considering the evolution of the state in the number
basis. For the initial TMSV state jψi ¼ P

N cN jN;Ni,
where cN ¼ ½−eiϕ tanhðrÞ�N= coshðrÞ, the measurement
scheme can be described by the unitary operator ÛMZ ¼
ÛBSðπ=2ÞÛQGÛBSðπ=2Þ, where ÛBSðπ=2Þ is a 50-50 beam
splitter and ÛQG ¼ expfiχQ½ðâ†Þ2â2 þ ðb̂†Þ2b̂2�g is the
quantum gravitational self-interaction for the two cavity
modes represented by â and b̂. To first order in χQ ≪ 1,
ÛMZ couples each jN;Ni in the initial TMSV to
jN − 2; N þ 2i and jN þ 2; N − 2i. Higher-order terms
in this expansion will result in coupling to states
jN − 2n;N þ 2ni for integer n, though these will be
negligible due to the exceptionally small value of χQ.
Number measurements on each mode will then collapse

the quantum state onto a manifold of well-defined N, with
a small probability ∼χ2Q of measuring a nonzero number
difference between the modes.
In contrast, consider the same scheme for a classical

theory of gravity. First we assume the two cavities
experience precisely the same self-interaction—i.e., HC

int ¼
ℏλCðâ†âþ b̂†b̂Þ—the number distribution of each mode
measured at the detector is unchanged from the number
distribution of the original TMSV state. More generally, we
allow for the case of a classical theory of gravity that
additionally has a term of the form HC

int ∼ â†â − b̂†b̂. Such
a term could also be contributed by nongravitational effects
that result in an asymmetry between the two cavities. In this
case, each jN;Ni in the initial TMSV will be coupled to
states jN − n;N þ ni for integer n by the measurement
scheme, with dominant coupling for n ¼ �1. This is
clearly distinguishable from the signature of quantum
gravity, in which the dominant coupling is for n ¼ �2.
The main limitation with this approach is the requirement
of ultrahigh efficiency detectors operating at the single-
photon level, which for the high power required is beyond
reason for modern detection technology.
An appealing alternativemeasurement scheme uses homo-

dyne detection to observe signatures of quantum gravity in
high-order cumulants of the phase quadratures [15], which
can be implemented straightforwardly with a single cavity
and homodyne detection [Fig. 1(c)]. This approach relies on
the fact that the quartic self-interaction term described by a
quantum theory of gravity will generate non-Gaussianity of
the optical field, that cannot be reproduced by any classical
theory of gravity [15]. As a result, a nonzero value of the
fourth-order cumulant in a phase quadrature of the light is a
clear signature of the quantum nature of gravity. This scheme
was initially proposed in the context of massive ultracold
atomic systems [15], in which observing this signature is
considerably more challenging due to the inability to directly
measure the phase quadratures of massive particles. For this
scheme itwill again be optimal to use a high-power squeezed-
vacuum state of light, to maximize the sensitivity of the state
to the gravitational self-interaction [15].
While our proposed tests are free of QED photon-photon

interactions, radiation pressure on the cavity mirrors can
also result in a quantum interaction between photons.
Fortunately, radiation pressure can be reduced by rigidly
coupling the mirrors to Earth—seismic noise generates
only a classical phase shift and does not mimic signatures
of photon-photon interactions. However, there may be
other challenges associated with microscopic material
surface effects at high laser intensities that are poorly
understood and merit further investigation in the context of
the proposed tests.
Third harmonic generation.—In addition to the gravi-

tational Kerr nonlinearity, there are additional signatures of
quantum gravity that arise when we include multiple
modes of the quantized optical field in our calculation.
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Specifically, we may have a four-wave mixing process
between photons in the pump mode (ω0) that can populate
higher frequency resonances nω0, where n ∈ ½2; 3;…�. For
our system, where only a single frequency is initially
populated, the dominant four-wave mixing process is third-
harmonic generation, i.e.,Hint∼ âω0

âω0
âω0

â†3ω0
. In contrast,

any classical gravitational theories can only have non-
energy-conserving terms arising such as Hint ∼ âω0

â†3ω0
,

which in the interaction picture will oscillate with fre-
quency 2ω0, and can thus be discarded in a RWA.
Therefore, the detection of photons of frequency 3ω0

exiting the cavity would be a clear signature of quantum
gravity. This could in principle be achieved with modern
photodetectors that operate at the single-photon level, by
discarding the pump mode using a wavelength selective
beam splitter. The key benefit of this experiment is that it
can be implemented with coherent light—with the QCRB
for the sensitivity scaling as N−3=2 for both coherent and
squeezed-vacuum states of the pump mode.
Conclusions.—Near-future experiments seeking to

observe GIE between masses may soon provide the first
evidence to support the quantum nature of gravity. However,
such nonrelativistic experiments can only probe the quanti-
zation of the Newtonian interaction and cannot attest to other
aspects of quantum gravity using quantum light, such as the
locality of the gravitational interaction or the spin of the
graviton. This Letter may provide a new pathway for probing
relativistic aspects of quantum gravity; together with near-
termGIEexperiments, the proposed testsmayprovide amore
detailed insight to the true nature of the gravitational field.
While the proposed tests provide a powerful avenue to

probing quantum gravity, they will certainly require
improvements to current experimental capabilities. In par-
ticular, reading out signatures of quantum gravity from
photon statistics will require photon detection efficiencies
well beyond current experimental capabilities—though there
are clear routes to reducing these requirements by using
interaction-based readouts [74,75], for example. Reducing
technological requirements should be the focus of future
investigations that may, for example, consider alternate
measurement schemes or more complicated geometries.
Regardless, we expect the experimental requirements will
become increasingly realistic in the future, given the out-
standing rate at which photonic quantum technologies are
advancing. In the near term, the experiments proposed here
can also be adapted to be precision tests of QED, by using a
standing wave of light rather than a traveling wave, such that
the QED photon-photon interaction is nonvanishing.
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Appendix A: Derivation of the gravitational inter-
action Hamiltonian.—Here we provide a detailed deri-
vation of the self-interaction Hamiltonian Ĥint given in
the main text. We start with the complete action descri-
bing the coupled light-gravity system:

S ¼ SEM þ Sgrav: ðA1Þ

Here SEM is the Maxwell action,

SEM ¼ −
1

4μ0

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν; ðA2Þ

where Fμν ¼ ∂μAν − ∂νAμ is the EM field tensor, and
g≡detðgμνÞ. The Einstein-Hilbert action Sgrav is given by

Sgrav ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ðA3Þ

where R≡ gμνRμν is the Ricci scalar. We proceed by
expanding the gravitational metric around a Minkowski
background gμν ¼ ημν þ hμν, in the ½−;þ;þ;þ� conven-
tion. Next, we expand the Lagrangian density of the
Maxwell action to linear order in the gravitational
perturbation hμν:

LEM ¼ −
1

4μ0
FμνgαμgβνFαβ þOðh2Þ ðA4Þ

¼ Lð0Þ þ Lð1Þ þOðh2Þ; ðA5Þ

where we have decomposed the Lagrangian density into
a free (flat-spacetime) component Lð0Þ ¼ −FμνFμν=ð4μ0Þ,
and the first-order correction,

Lð1Þ ¼ −
h
8μ0

FμνFμν −
1

2μ0
hμβηνλFλβFμν; ðA6Þ

¼ 1

2
hμνTð0Þ

μν ; ðA7Þ

where h≡ ημνhμν, T
ð0Þ
μν is the stress-energy tensor of the

free EM field on a Minkowski background:

Tð0Þ
μν ¼ 1

μ0

�
FμλFλ

ν −
1

4
ημνFαβFαβ

�
; ðA8Þ

noting the symmetry properties hαβ¼hβα and Fμν¼−Fνμ.
This interaction can alternatively be derived by a
variational argument, and is the standard linear coupling
term between matter and the linearized gravitational
field [55,76].
We then obtain the corresponding interaction

Hamiltonian via a Legendre transform of the linearized
Lagrangian. As the interaction depends on derivatives of
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the EM field via Tμν, the resulting interaction term is not
simply −Lð1Þ and contains additional terms due to correc-
tions to the conjugate momenta of the EM field:

Πα ≡ ∂L
∂ð∂0AαÞ

¼ Πα
ð0Þ þ Πα

ð1Þ; ðA9Þ

where Πα
ð0Þ is the free field result, and

Πα
ð1Þ ¼

1

2
hμν

∂Tð0Þ
μν

∂ð∂0AαÞ

¼ 1

μ0

�
h
2
Fα0 þ hμ0ηαλFμλ − hμαη0λFμλ

�
ðA10Þ

is the first-order correction due to the interaction with the
gravitational field. Then, working in the interaction picture,
the interaction Hamiltonian density is given by

Hð1ÞðrÞ ¼ Πα
ð1Þ∂0Aα − Lð1Þ: ðA11Þ

For the system under consideration, we have h ¼ 0 by
virtue of the vanishing trace of the EM stress-energy tensor.
Furthermore, for the gravitational field generated by a
traveling wave, we have

hμαFμ0 ¼ hiαEi ¼ 0; ðA12Þ

as a consequence of the explicit form of the gravitational
field solution—hiα only has nonzero components longi-
tudinal to the direction of propagation [see Eq. (B2)], to
which the electric field Ei is transverse. Therefore, for our
system the interaction Hamiltonian density can be simpli-
fied to (noting ∂0Aα ¼ F0α)

Hð1ÞðrÞ ¼
1

μ0
hμ0ηαλFμλF0α −

1

2
hμνTð0Þ

μν : ðA13Þ

Appendix B: Self-interaction Hamiltonian for
rectangular ring-cavity.—For the rectangular ring-cavity
setup described in the main text, the dominant
contribution to the gravitational self-interaction energy
will be the interaction between the two long arms,
provided the longer arms of the cavity are significantly
longer than their separation L ≫ w (where w is the
length of the shorter arms). Labeling the two long arms
as L and R, we can then approximately decompose the
stress-energy tensor as Tμν ≈ Tμν

L þ Tμν
R , ignoring the

contributions from the short arms. The nonzero elements
of these tensors are T00

L ¼ T33
L ¼ T03

L ¼ T30
L ¼ Hð0Þ and

T00
R ¼ T33

R ¼ −T03
R ¼ −T30

R ¼ Hð0Þ, taking the light along
the left arm to be traveling in the positive z direction. By
linearity of Eq. (1), its solution can then be written as

hμν ¼ hμνL þ hμνR ; ðB1Þ

where

hμνL;R ¼ hpðrÞ

0
BBBBB@

1 0 0 �1

0 0 0 0

0 0 0 0

�1 0 0 1

1
CCCCCA
; ðB2Þ

hpðrÞ ¼
4G
c4

Z
L;R

d3r0
Hð0Þðr0Þ
jr − r0j : ðB3Þ

Here the notation
R
L;R denotes integrating over the left or

right arm of the cavity, respectively. Note we have
considered here a time-independent Hamiltonian density
corresponding to a circular polarization of light for
simplicity, though this can be simply extended to the
time-dependent case (linear or elliptical polarizations).
Then, noting each arm does not self-interact, Tμν

i hiμν ¼ 0
for i ¼ L, R [68], we have

−
1

2

Z
d3rhμνðrÞTð0Þ

μν ðrÞ

≈ −
1

2

Z
d3r½hμνL ðrÞTR

μνðrÞ þ hμνR ðrÞTL
μνðrÞ� ðB4Þ

¼ −2
X
i¼L;R

Z
i
d3rhiðrÞHð0ÞðrÞ: ðB5Þ

A similar calculation follows for the other term in the
interaction Hamiltonian density, hμ0FμλFλ

0, where we have
to explicitly consider the form of the electric and magnetic
fields:

E≈EL½ez�þER½−ez�; B≈BL½ez�þBR½−ez�;

where the argument ½n� indicates direction of propagation
in terms of a normalized vector n, with ei being the unit
vectors for i ¼ x, y, z. For circularly polarized light, the EM
fields are of the form:

EL ¼fEx
L;E

y
L;0g; BL ¼f−Ey

L=c;E
x
L=c;0g; ðB6Þ

ER ¼fEx
R;E

y
R;0g; BR¼fEy

R=c;−Ex
R=c;0g; ðB7Þ

which, using Hð0Þ ¼ ðjEj2 þ jBj2Þ=2, gives
Z

d3rhμ0FμλFλ
0 ≈ −2

X
i¼L;R

Z
i
d3rhiðrÞHð0ÞðrÞ: ðB8Þ

This is precisely the same expression as Eq. (B5),
though in general (e.g., for other polarizations) the two
may differ.

PHYSICAL REVIEW LETTERS 130, 240203 (2023)

240203-6



Combining Eqs. (B5), (B8), and (B3) we find the self-
interaction energy to be given by the Hamiltonian:

Hint ≈ −16G
�Z

L
d3r

Z
R
d3r0

Hð0ÞðrÞHð0Þðr0Þ
jr − r0j

þ
Z
R
d3r

Z
L
d3r0

Hð0ÞðrÞHð0Þðr0Þ
jr − r0j

�
: ðB9Þ

Equation (4) can then be derived by expanding the energy
density as Hð0ÞðrÞ ¼ ðℏω0=c2ÞjfðrÞj2â†â and computing
the spatial integrals in the limit λ ≪ w ≪ L. Details of this
calculation are provided in the Supplemental Material [68],
with the final result:

Ĥint ≈ −16G
�
ℏω0

c2

�
2
�
1

L

�
log

�
L
w

�
â†â†â â : ðB10Þ
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