
Quantum Uncertainty Principles for Measurements with Interventions

Yunlong Xiao ,1,2,* Yuxiang Yang ,3,4,† Ximing Wang ,2 Qing Liu ,5,2 and Mile Gu 2,6,7,‡
1Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR),

1 Fusionopolis Way, No. 16-16 Connexis, Singapore 138632, Republic of Singapore
2Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore 637371, Singapore
3QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of Hong Kong,

Pokfulam Road, Hong Kong
4Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

5Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education), Fudan University,
Shanghai 200433, China

6Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
7MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore 117543, Singapore

(Received 2 March 2022; revised 11 January 2023; accepted 10 May 2023; published 12 June 2023)

Heisenberg’s uncertainty principle implies fundamental constraints on what properties of a quantum
system we can simultaneously learn. However, it typically assumes that we probe these properties via
measurements at a single point in time. In contrast, inferring causal dependencies in complex processes
often requires interactive experimentation—multiple rounds of interventions where we adaptively probe the
process with different inputs to observe how they affect outputs. Here, we demonstrate universal
uncertainty principles for general interactive measurements involving arbitrary rounds of interventions.
As a case study, we show that they imply an uncertainty trade-off between measurements compatible with
different causal dependencies.
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Introduction.—We learn about physical systems through
measurement, and the uncertainty principle fundamentally
limits what we can simultaneously learn [1]. Quantum
mechanics states the existence of incompatible measure-
ments (e.g., position and momentum of a free particle),
such that predicting both outcomes to absolute precision is
impossible [2–4]. Subsequent use of information theory
then led to various entropic uncertainty relations that
quantified uncertainty using entropic measures [5], culmi-
nating with universal uncertainty relations that provide
general constraints of the joint probabilities of incompatible
measurements [6–9].
Yet these relations pertain to only passive measurements,

where a system is left to evolve freely before observation
[see Fig. 1(a)]. In contrast, the most powerful means of
learning involve intervention. When toddlers learn of their
environment, they do not merely observe. Instead, they
actively intervene—performing various actions, observing
resulting reactions, and adapting future actions based on
observations. Such “interactive measurements” are essen-
tial to fully infer causation, so we may know if one event
caused another or if both emerged from some common
causes [10]. Indeed, interactive measurements permeate
diverse sciences, whether using reinforcement learning to
identify optimal strategic behavior or sending data packets
to probe the characteristics of a network [11–13]. Such
interactive measurement processes also describe many

quantum protocols, including quantum illumination,
quantum-enhanced agents, and non-Markovian open sys-
tems [14–17].
Could uncertainty principles also fundamentally con-

strain such interactive measurements [see Figs. 1(b)–1(d)]?
How would such principle interplay with interventions
aimed to discern causal structure? Here, we explore these
questions by deriving a universal uncertainty principle that
constrains the joint measurement probabilities of interactive
measurements. This principle then pinpoints when two
interactive measurements are noncompatible—and quanti-
fies the necessary trade-offs in the certainty of their
measurement outcomes. Our results make no assumptions
on the number of interventions or the causal structure of
processes we probe and encompass previous uncertainty
relations for states and channels as special cases [20–22].
We apply them to interactive measurements compatible
with direct cause vs common cause, showing that they
satisfy an uncertainty trade-off analogous to position and
momentum.
Framework.—The premise of an interactive measure-

ment consists of an agent that wishes to probe the dynamics
of some unknown quantum process Φ. Here Φ can be
modeled as an open quantum system, consisting of a
system accessible to the agent with H coupled with some
generally non-Markovian environment E [see blue shaded
region in Fig. 1(d)]. Initially, the H-E system is in some
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joint state ρ. At each time step k, the system and
environment jointly evolve under Ψk. Φ is then completely
defined by the set fΨkgak¼2 and the initial state ρ, where a
represents the number of time steps. In literature, Φ offers
the most general representations of non-Markovian quan-
tum stochastic processes [23] and is also closely related to
concepts of higher-order quantum maps, adaptive agents,
and causal networks [24–29].
Interactive measurements then represent the most general

means for an agent to determine properties of Φ [see black
shaded region in Fig. 1(d)]: the agent initializes some
internal memory register R; between time steps (i.e., before
Ψk with 2 ≤ k ≤ a), the agent performs an intervention—
some general quantum operation Λk that interacts the
memory R with the accessible system H; after a − 1 such
interventions, the agent finally makes a joint measurement
with respect to some positive operator valued measure
(POVM) M ≔ fMxg on the joint H-R system to obtain
some outcome x. Thus, each interactive measurement T is
completely defined by a set of interventions fΛkga−1k¼1 and
POVM M. Just as a conventional positive operator valued
measurement on a quantum state induces some probability

distribution over measurement outcomes, so does an inter-
active measurement on a quantum process. Analogous to
eigenstates, we say Φ is an “eigencircuit” of T if Φ always
yields a definite outcome when measured by T .
We make two remarks. (1) The interactive measure-

ments encompass everything an agent can possibly do
causally. Notably, R can also store classical information;
for example, making a projective measurement and
conditioning future action on the system based on the
result of these measurements. (2) Both Φ and T have
succinct representations using Choi-Jamiołkowski oper-
ators, often referred to as quantum combs [25,26] or
process tensors [17]. We provide a rigorous mathematical
treatment in the Supplemental Material ([30] Secs. I B
and I C).
Uncertainty principles.—In conventional quantum

theory, certain observables are mutually incompatible.
Given an observable O whose outcome ok occurs with
probability pk, we can quantify the uncertainty by the
Shannon entropy HðOÞ ≔ −

P
k pk logpk. The entropic

uncertainty principle then states that there exists mutually
noncompatible observables O1 and O2, such that the joint
uncertainty HðO1Þ þHðO2Þ is always lower bounded by
some state-independent constant C > 0 [50–52].
Can we identify similar uncertainty relations for general

interactive measurements? We answer this question by
employing majorization [53]. Consider two probability
vectors x and y, whose elements xk and yk are arranged
in nonincreasing order. We say x is majorized by y, written
as x ≺ y, if

P
i
k¼1 xk ≤

P
i
k¼1 yk holds for all index i. The

rationale is that majorization maintains significant con-
nections with entropy since x ≺ y implies that
HðxÞ ≥ HðyÞ. In fact, x ≺ y implies fðxÞ ≥ fðyÞ for a
large class of functions known as “Schur-concave func-
tions.” Such functions align with those that remain non-
decreasing under random relabeling of measurement
outcomes and have been proposed as the most general
class of uncertainty quantifiers [6]. Thus, majorization
constraints on outcome probabilities for conventional
quantum measurements are referred to as universal uncer-
tainty relations [6–9]. Here, we establish such a universal
uncertainty relation for general interactive measurements
(see Supplemental Material [30] Sec. II D for the proof).
Lemma 1.—Consider two distinct interactive measure-

ments T 1 and T 2 on some dynamical process Φ, with
outcomes described by probability distributions p and q.
There then exists a probability vector vðT 1; T 2Þ such that

1

2
p ⊕

1

2
q ≺ vðT 1; T 2Þ: ð1Þ

Here the vector-type bound vðT 1;T 2Þ is independent of Φ
and hence captures the essential incompatibility between
T 1 and T 2. Meanwhile, ⊕ represents the concatenation of
vectors. For example, ð1;0Þ⊕ ð1=2;1=2Þ¼ ð1;0;1=2;1=2Þ.

FIG. 1. Interactive measurements. Our uncertainty relations
apply to all interactive measurements, including (a) passive
measurements (framed by standard uncertainty relations) and
(b) two-time measurements, where a quantum system first passes
a quantum instrument that incorporates both a measurement
outcome and the output state and later gets measured, as described
by the framework of a pseudo-density matrix [18,19]. Our results
also pertain to (c) non-Markovian interactive measurements that
involve coherently interacting the system with a quantum register
R and doing some joint measurement at a subsequent time step
and, most generally, (d) any interactive measurement T x with
interventions at a − 1 different time steps.
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Our result for interactive measurement is also
universal in this sense. In particular, they imply an infinite
family of uncertainty relations, namely, fðp=2 ⊕ q=2Þ ≥
fðvðT 1; T 2ÞÞ for any Schur-concave function f (including
Rényi entropies). Choosing f as the Shannon entropy,
Lemma 1 then results in entropic bounds for general
interactivemeasurements (see Ref. [30] Sec. II D for details).
Theorem 1.—Given two interactive measurements T 1

and T 2 acting on some dynamical process Φ, the entropies
of their measurement outcomes [54] satisfy

HðT 1ÞΦ þHðT 2ÞΦ ≥ CðT 1; T 2Þ; ð2Þ

where CðT 1; T 2Þ—measuring incompatibility between T 1

and T 2—is non-negative and independent ofΦ. CðT 1; T 2Þ
can be explicitly computed. It is strictly nonzero whenever
T 1 and T 2 have no common eigencircuit.
In the Supplemental Material ([30] Sec. II D), we illus-

trate a choice of CðT 1; T 2Þ that reduces to logð1=cÞ when
T 1 and T 2 are standard quantum measurements. Here c
stands for the maximal overlap between measurements [5].
Meanwhile, just as there exist many alternative bounds
beyond logð1=cÞ [55–66], there are many other valid bounds
for HðT 1ÞΦ þHðT 2ÞΦ (see Ref. [30] Sec. II D). Here, we
focus on a choice of CðT 1; T 2Þ that can give tighter bounds
in causal inference settings. More results are presented in the
Supplemental Material ([30] Sec. II C).
Our formulations of vðT 1; T 2Þ and CðT 1; T 2Þ carry

direct operational meaning in a guessing game, which we
refer to as “quantum roulette.” The two-party game consists

of (1) Alice, an agent that probes any supplied dynamical
process using one of two possible interactive measure-
ments, T 1 and T 2, and (2) Bob, who can engineer various
dynamical processes for Alice to probe (see Fig. 2). In each
round, Alice and Bob begin with a roulette table, whose
layout consists of all tuples ðb; xÞ, where b ∈ f1; 2g and x
are all possible measurement outcomes of T 1 and T 2. Bob
begins with k chips, which he can use to place bets on k of
the possible tuples and supplies Alice with any Φ of his
choosing. Alice will then select some b ∈ f1; 2g at random
and probeΦwith T b. She finally announces both b and the
resulting measurement outcome x. Bob wins if one of his
chips is on ðb; xÞ.
Let pk denote Bob’s maximum winning probability.

Naturally p0 ¼ 0 and pk increases monotonically with k,
tending to 1. We define a probability vector w with
elements wk ¼ pk − pk−1, k ¼ 1; 2;…, representing the
increase in Bob’s probability of winning with k rather than
k − 1 chips. In the Supplemental Material ([30] Sec. II D),
we show that vðT 1;T 2Þ≔w and CðT 1;T 2Þ≔ 2HðwÞ− 2
are bounds for p=2 ⊕ q=2 and HðT 1ÞΦ þHðT 2ÞΦ,
respectively.
This game gives an operational criterion of noncompat-

ibility for interactive measurements. When two observables
are compatible, HðwÞ ¼ 1. This aligns with the scenario
that w ¼ ð0.5; 0.5; 0;…; 0Þ, which occurs when Bob’s
success rate is limited only by his uncertainty of which
measurement Alice makes. That is, placing one counter
ensures Bob can correctly predict the outcome of T 1 and
two counters gives him perfect prediction regardless of b.
We see this is only possible if T 1 and T 2 share at least one

FIG. 2. Quantum roulette is a game that aids in interpreting lower bounds for the combined uncertainty of two general interactive
measurements fT bgb¼1;2. T 1 and T 2 are shown in (b). Now introduce a quantum “roulette table” with 2 ×m grid of cells (c), labeled
ðb; xÞ with x ¼ 1;…; m. In the kth-order game, Bob begins with k chips, of which he can allocate to k of these cells. Bob then supplies
Alice with a dynamical processΦ (a). Alice selects a b at random and measuresΦwith T b to obtain outcome x. Bob wins if he has a chip
on the cell ðb; xÞ. Lemma 1 and Theorem 1 then relate Bob’s winning probabilities with the incompatibility between T 1 and T 2.
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common eigencircuit. Thus, HðT 1ÞΦ þHðT 2ÞΦ is strictly
greater than 0 whenever T 1 and T 2 share no common
eigencircuit.
Causal uncertainty relations.—The central relevance of

interventions in causal inference makes it an appropriate
illustrative example [67]. Consider the case where Φ
represents a d-level system (the accessible qudit) that
evolves while in possible contact with other systems
(e.g., a non-Markovian environment E). Now suppose an
agent, Alice, can access this qudit at two different points in
time, say tX and tY . In general, the quantum process Φ can
fall under three scenarios [68]: (i) The system at tX is a
“direct cause” of the system at tY : the qudit at tY is the
output of some quantum map acting on the qubit at tX
[Fig. 3(b-i)]. (ii) The system at tX and tY share a “common
cause”: the qudit at tX is correlated with an environmental
qudit E. E is measured at time tY [Fig. 3(b-ii)]. (iii) A
mixture of both, corresponding to a general non-Markovian
quantum process [Fig. 3(b-iii)].
We now introduce two families of interactive measure-

ments: MCC and MDC, as depicted in Fig. 4. Each T 1 ∈
MCC is a maximal common-cause indicator, such that its
eigencircuits imply that X and Y are actually two arms of

some maximally entangled state [Fig. 3(b-ii)]. Meanwhile,
each T 2 ∈ MDC is a maximal direct-cause indicator,
whose eigencircuit involves a lossless channel from X to
Y [i.e., Fig. 3(b-i), whereΨ is unitary]. In the Supplemental
Material ([30] Sec. III A), we establish the following
“causal uncertainty relation”:

HðT 1Þ þHðT 2Þ ≥ 2 log d; ð3Þ

for any T 1 ∈ MCC and T 2 ∈ MCC. HereHðT iÞ (i ¼ 1, 2)
is the Shannon entropy of the probability distribution
associated with outcomes when T i is measured.
Furthermore, this bound can be saturated.
Consider the application of this uncertainty to a specific

parametrized quantum circuit Φα;β [Fig. 5(a)] describing
a single qubit undergoing non-Markovian evolution.
Figure 5(b) then demonstrates the combined uncertainty
HðT 1Þ þHðT 2Þ for various values of α and β, including
cases where they saturate the lower bound of 2. We
also note that, unlike classical processes—which must
be either purely common cause, purely direct cause, or a
probabilistic mixture of both—quantum processes can
feature richer causal dependencies [69]. Figure 5(c)
depicts this for the cross section of α ¼ π=4. Such
circuits include the coherent superposition of direct and
common cause as a special case. Our causal uncertainty
relation also applies to these uniquely quantum causal
structures.

FIG. 3. Quantum description of causal structures. There are
three possible causal structures for two events X and Y (a), all of
which can be expressed by a quantum dynamic process ΦB→AC
(b). (i) Direct cause, ΦB→AC involves preparing a state A to be
observed at X, whose output is sent directly to Y via quantum
channel from B to C. (ii) Common cause, correlations between X
and Y can be attributed to measurements on some preprepared
correlated state ρAC (event Z). Most generally (iii), ΦB→AC

consists of a state-preparation process ΨPre
C→AE and a postprocess-

ing quantum channel ΨPost
BE→C [(b-iii); E is an ancillary system].

This then corresponds to a (possibly coherent) mixture of direct
and common cause.

FIG. 4. Maximal common cause (CC) and direct cause (DC)
indicators. We introduce (a) MCC ¼ fT CCðU1; U2Þg and
(b) MDC ¼ fT DCðU3; U4Þg as two respective families of inter-
active measurements with a single intervention. Here, systems
A, B, and C are d-level quantum systems (qudits), and each
Uk, k ¼ 1, 2, 3, 4 is some single-qudit unitary, and
jΦ1i ≔

P
d−1
k¼0 jkki=

ffiffiffi
d

p
. Measurements are done with respect

to a maximally entangling basis fΦigi with d2 possible outcomes.
The two measurement families are incompatible and satisfy the
causal uncertainty relation in Eq. (3).
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Discussion.—The most powerful means of learning
involves interactive measurement—a procedure in which
we can intervene by injecting (possible entangled) quantum
states into the process over multiple time steps before
observing the final output. Here, we derive entropic
uncertainty relations that govern all interactive measure-
ments, bounding their joint uncertainty whenever such
measurement outcomes are noncompatible. In the context
of causal inference, they predict a uniquely quantum
entropic trade-off between measurements that probe for
direct and common cause. More generally, our relations
encompass all possible means for an agent to interact and
learn about a target quantum system and thus include
previously studied uncertainty relations on states and
channels as special cases.
One potential application of such relations is the metrol-

ogy of unknown quantum processes with memory [70–72].
In practice, full tomography of a general quantum process
can be extremely costly. Even a single non-Markovian qubit
measured at two different times requires 54 different
interactive measurements [73]. Our result may help us
ascertain specific properties of a process while avoiding
this costly procedure. In the Supplemental Material ([30]
Sec. IV B), we illustrate how our causal uncertainty rela-
tions imply that a single interactive measurement can rule
out specific causal structures. Indeed, quantum illumination

and adaptive sensing can both cast as measuring desired
properties of a candidate quantum process and thus could
benefit from such an approach.
Interactive measurements through repeated interventions

also emerge in other settings [74–76]. In quantum open
systems, sequential intervention provides a crucial toolkit for
characterizing non-Markovian noise [77–80].Meanwhile, in
reinforcement learning, quantum agents that continuously
probe an environment show enhancements in enacting or
learning complex adaptive behavior [12,81,82]. Investig-
ating uncertainty relations specific to such contexts has
exciting potential, perhaps revealing new means of probing
non-Markoviandynamics or fundamental constraints onhow
well an agent can simultaneously optimize two different
rewards.
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