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We investigate the dynamics of mobile inclusions embedded in 2D active nematics. The interplay
between the inclusion shape, boundary-induced nematic order, and autonomous flows powers the inclusion
motion. Disks and achiral gears exhibit unbiased rotational motion, but with distinct dynamics. In
comparison, chiral gear-shaped inclusions exhibit long-term rectified rotation, which is correlated with
dynamics and polarization of nearby þ1=2 topological defects. The chirality of defect polarities and the
active nematic texture around the inclusion correlate with the inclusion’s instantaneous rotation rate.
Inclusions provide a promising tool for probing the rheological properties of active nematics and extracting
ordered motion from their inherently chaotic motion.
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Active matter is composed of energy-consuming con-
stituents whose interactions generate large-scale dynamical
patterns [1]. A particular realization of these materials are
active nematic liquid crystals, which are composed of
motile anisotropic particles with head-tail symmetry.
Active nematics exhibit autonomous chaotic flows which
are driven by internally generated active stresses that are
proportional to the local particle alignment [2–10]. Their
dynamics are closely associated with the creation and
annihilation of topological defects, which acquire motility
from the active stresses [11–19]. Transforming the inher-
ently chaotic dynamics of active nematics into predeter-
mined spatiotemporal patterns that can perform useful
functions remains a challenge. One method of controlling
active fluids is through boundaries and geometrical con-
finement. For example, static boundaries can stabilize
isolated vortices and arrays of vortices of active fluids
[20,21]. Furthermore, rigid boundaries can also generate
unidirectional coherent flows on macroscopic scales and
control the periodic nucleation and motion of topological
defects in active nematics [22–27]. In a complementary
direction, active fluids can interact with rigid but motile
boundaries that are advected by autonomous flows. A
foundational example is the rectified rotation of a chiral
gear-shaped particle powered by motile bacteria [28,29].
The individual bacteria interacted with the boundaries,
generating asymmetric forces that powered persistent rota-
tional motion. In comparison, little is known about how
rigid movable boundaries interact with nematically-ordered
active fluids. Numerical work explored the dynamics of
Janus colloids and arrays of disks free to rotate but not
translate in active nematics [30,31]. Experiments showed
that externally rotated disks above the active nematic layer

can control topological defect dynamics [32]. However, the
full range of interaction mechanisms between active nem-
atics and rigid inclusions with translational and rotational
degrees of freedom remains unexplored.
To address this knowledge gap, we studied the dynamics

of movable inclusions embedded in a 2D microtubule-
based active nematic. We observed complex interplay and
feedback between the motion of the inclusion and the
nematic texture of the enveloping liquid crystal. The
inclusion boundaries control the formation and spatiotem-
poral patterning of topological defects. In turn, the defects
and associated nematic texture exerted stress on the
inclusion, producing persistent rotations. When combined
with work that explored how active fluids couple to liquid
interfaces and membranes [33–38], our experiments dem-
onstrate the need to develop a unified theoretical frame-
work for quantitative understanding of interactions between
active fluids and movable, deformable, and reconfigurable
boundaries.
We developed a method to robustly embed a single

particle into a 2D active nematic and observe its dynamics
over the sample lifetime [Fig. 1(a)]. We first created an oil-
water interface inside an open tube with 3.3 mm diameter.
The dense oil and lighter aqueous layers were ∼0.4 and
∼1.5 mm high, respectively. We fabricated rigid, quasi-2D
particles from SU8 photoresist with size of a few 100 μm
[39]. The open tube setup allowed us to deposit a single
particle in each sample [Fig. 1(b)], eliminating unwanted
particle-particle interactions. We then assembled a micro-
tubule (MT)-kinesin active nematic around the particle
adsorbed at the oil-water interface (see Supplemental
Material for further details [40]). The MTs were excluded
from the inclusion and aligned parallel to the boundaries.
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MT bundles sometimes crept under the inclusion, leading
to only partial embedding in the nematic layer. To control
for embedding quality, we only studied well-embedded
inclusions (Supplemental Material Fig. S1 [40]). The
imaging setup captured the entire interface, allowing us
to track the inclusion as well as the active nematic texture
over the sample lifetime.
We first studied the translational motion of disk-shaped

inclusions of radius r ¼ 187.5 μm [Fig. 1(b)]. For times up
to ∼45 s, corresponding to displacements of ∼280 μm, the
motion was along straight lines and the measured mean-
squared displacement (MSD) was ballistic [Fig. 1(c)]. At
longer times, the motion transitioned into a diffusivelike
regime, which was quickly followed by a plateau of ∼1 mm
induced by the finite system confinement (3.3mmdiameter).
Observation of a truly diffusive regime is complicated by
the confinement effects. The correlation length of the active

nematic velocity field was ∼240 μm, close to the cutoff for
ballistic displacements (see Supplemental Material [40] for
details on the velocity field measurement).
Next, we quantified the rotational dynamics of achiral

disks, six-teeth achiral and chiral gears and two-teeth chiral
gears [Fig. 1(d)]. All gearlike inclusions had an inner radius
ri ¼ 150 μm and outer radius ro ¼ 225 μm (corresponding
to the base and tip of the teeth, respectively). Thus, their
mean radius matched the disks. The MSDs of these shapes
were similar to those of the disk [Fig. S3]. However, their
rotational dynamics were distinct. Disk and achiral gears
switched repeatedly between rotations with opposite direc-
tions. In contrast, both the chiral two- and six-teeth gears
rotated persistently in one direction. Intriguingly, the chiral
two- and six-teeth gears rotated at essentially the same rate.
The rotation direction was set by the handedness of the
inclusion chirality [Fig. 1(e), Supplemental Material Videos
1–4 [40] ].
The active nematic system had significant sample-to-

sample variability in the mean speed [Fig. S4(a) [40] ]. To
compare data across different samples, we rescaled the
inclusion’s mean rotation rate hωi by hjvji=r, where hjvji is
the mean speed of the background nematic averaged over
space and time, and r is the inclusion radius (or an average
of outer and inner radii, in the case of gears) [Fig. 1(f)]. The
rescaled rotation rate was ∼0 for disks and achiral gears and
∼0.5 for both the chiral two- and six-teeth gears. Thus, on
average, the tangential velocity of the inclusion boundary
was about half the speed of the nematic for both chiral two-
and six-teeth gears. For all inclusions, the instantaneous
rotation rate was correlated with the instantaneous mean
speed of the active nematic [Fig. S4(b) [40] ].
Both disks and achiral gears failed to show persistent

rotation over long timescales. Nevertheless, they exhibited
distinct rotational dynamics. In contrast to gears, disks
rotated longer in one direction before switching. This
distinction is captured by the temporal autocorrelation of
the mean-subtracted angular velocity [Fig. 2(a)]. For each
shape, we defined an average fluctuation timescale as the
lag time at which the autocorrelation dropped to 0.5. The
fluctuation timescale for the disks was about 3 times longer
than the gears, which all had timescales close to those of the
background active nematic [Fig. 2(b)]. Thus, disks stabi-
lized long-lived vortical flows.
To gain insight into the mechanism driving these rota-

tional dynamics, we studied the organization of the active
nematic around the inclusions [Supplemental Material
Videos 5–8 [40] ]. In bulk 2D extensile active nematics,
pairs of oppositely charged defects are constantly created
and annihilated [4,12,13] (see Supplemental Material [40]
for details about quantifying the nematic field and locating
defects, which contains Refs. [46–49]). Because of their
asymmetry, the þ1=2 defects move in the direction of their
polarity. Boundaries influence defect dynamics. In the
vicinity of a chiral tooth, þ1=2 defects exhibited cyclic
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FIG. 1. Inclusions in 2D active nematics. (a) An SU-8 inclusion
is placed on an oil-water interface, and a MT-kinesin active
nematic is formed around it. (b) An isolated inclusion embedded
in the active nematic. The colored line indicates the inclusion
trajectory over 17 min (blue, t ¼ 0 min; red, t ¼ 17 min).
(c) MSDs of five trajectories of disk-shaped inclusions, each
from an independent sample. (d) The four inclusion shapes used
in this study. (e) Angular trajectories of different inclusion
shapes. Each line corresponds to a single inclusion. For asym-
metric gears, θðtÞ trajectories were multiplied by −1 for gears
with the opposite chirality than the legend cartoon. (f) Mean
rescaled rotation rates of the four shapes. The average rotation
rate hωi ðrad=sÞ is rescaled by hjvji=r ð1=sÞ where nematic mean
speed is hjvji and inclusion radius is r. Error bars indicate
standard deviation over five independent samples.
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dynamics [Fig. 3(a)]. At the beginning of each cycle, a
þ1=2 defect aligned with the long edge of a tooth while
pointing against the short edge of the adjacent tooth.
Subsequently, as the motile defect approached the corner,
it turned away from the inclusion moving along the shorter
edge. This motion generated a bend deformation, which
nucleated a new defect pair. The þ1=2 defect from the
newly nucleated pair aligned with the long edge of the
tooth, initiating the next cycle.
To elucidate the relationship between defect organization

and inclusion shape, we measured the average polarization
of þ1=2 defects within a 150 μm wide (twice the tooth
height) annular region around the inclusion [Fig. 3(b)]. We
computed the tangential component of the polarity of each
þ1=2 defect detected in this region, pt ≡ ðr × pÞ · ẑ=r,
with r as the displacement from the inclusion center and p
as the defect polarity (unitary length) [Fig. 3(c)]. The
polarization distributions were strongly skewed toward
pt ¼ 1 for the chiral gears, but were symmetric for the
achiral gears and disks [Fig. 3(d)]. Sinceþ1=2 defects self-
propel in the direction of their polarization, these distri-
butions suggest that defects with pt > 0 (pt < 0) impart
positive (negative) torque to the inclusion, rotating it
counterclockwise (clockwise).
In addition to angular polarization, the inclusions also

controlled the radial density distribution of topological
defects [Fig. 3(e)]. The −1=2 defects accumulated at the
boundary of disks, with a corresponding buildup of þ1=2
defects away from the boundary. In contrast, the chiral six-
teeth gears induced a strong buildup of þ1=2 defects, but
not −1=2 defects, in the region between the teeth. This is
consistent with the previously discussed boundary-induced
alignment and nucleation of þ1=2 defects. The defect
density profile of chiral two-teeth gears shared characteristics

with both the disk and chiral six-teeth gears. The chiral two-
teeth gears featured both a buildup of −1=2 defects near the
boundary away from the teeth and a buildup ofþ1=2 defects
near the teeth. Unlike the chiral six-teeth gear, the achiral
six-teeth gear induced a buildup of both þ1=2 and −1=2
defects just beyond the tips of the teeth. Thus, simply
changing the aspect ratio and chirality of the six teeth
significantly alters the defect density profile.
Next, we aimed to correlate inclusion-induced defect

structure to inclusion rotational dynamics. In each frame,
we compared the net tangential polarization of all þ1=2
defects within the annulus pt;netðtÞ to the instantaneous
inclusion’s rotation rate ωðtÞ [Fig. 4(b)]. For all shapes,
ωðtÞ was weakly correlated with pt;netðtÞ, with a Pearson
cross-correlation of ρω;p ∼ 0.2 − 0.6 [Fig. 4(c)]. Defect
polarizations alone may not capture the full coupling of
the nematic texture to the inclusion rotation rate, as the
deformations of the defect-free regions of the nematic field
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FIG. 2. Inclusion shape controls the fluctuations in angular
velocity. (a) Autocorrelation of the mean-subtracted angular
velocity. Shaded regions indicate the standard deviation from
different trajectories (n ¼ 5). (b) Average fluctuation timescales
τshape for the different inclusion shapes and characteristic time-
scales of bulk active nematic. τshape is the lag time at which the
autocorrelation reaches 0.5. Similarly, τv, τω, and τQ are the lag
times at which the velocity, vorticity, and Q-tensor autocorrela-
tion of the background nematic field, respectively, reach 0.5.
Error bars indicate standard deviation (n ¼ 5).
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FIG. 3. Behavior of topological defects near inclusions.
(a) Active nematic defects cycle observed near a corner of the
chiral six-teeth inclusion. The first þ1=2 defect is shown in red,
the second in cyan. The dashed magenta line indicates a bend
deformation causing the nucleation of the second þ1=2 defect.
(b) Defects detected in the inclusion vicinity. The annular width
of the region is twice the width of the inclusion teeth. þ1=2
defects are red, −1=2 defect are blue. (c) Polarity of a þ1=2
defect. (d) Distribution of defect polarities near inclusions for the
four different shapes. Each histogram corresponds to defects
detected during the first 33 min of a single sample. (e) Radial
distribution of defect densities as a function of distance from the
inclusion center. For the disk, the dashed line indicates the disk
radius. For the toothed shapes, the first and second dashed lines
indicate the inner and outer radii, respectively. The curve thick-
ness indicates the standard error (n ¼ 5).
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may impart significant stress to the inclusion. To overcome
this issue, we also calculated gradients of the nematic order
parameter Q,

h½∇ ·Q�tiA ≡ −
Z Z

A

ðr × ∇ ·QÞ · ẑ
r

; ð1Þ

where A denotes an annular region around the inclusion.
This quantity is motivated by continuum theories of active
nematic hydrodynamics, where active stress is σa ¼ αQ.
For extensile MT-kinesin active nematics, α < 0. The
active force field imparted to the fluid is then
fa ∝ −∇ ·Q. Thus, h½∇ ·Q�tiA is the average tangential
component of the active forces in a region around the
inclusion. The nematic order parameter Q ¼ sðnn − 1

2
1Þ

and its divergence are computed from the fluorescence
images [Fig. 4(a)] (see Supplemental Material [40] for
details). We found that the h½∇ ·QðtÞ�tiA was a more
accurate predictor of the rotation rate ωðtÞ than pt;netðtÞ,
with a cross-correlation of ρω;Q ∼ 0.4–0.8 for all shapes
[Fig. 4(c)]. Active forces ∝ −∇ ·Q generated away from
the inclusion can only influence inclusion motion through
the mediating solvent. A complete modeling scheme would
require measuring or numerically solving for the fluid flow
at the inclusion boundary and then estimating the active,
viscous, and passive elastic stresses. Intriguingly, a quantity
involving only the nematic Q tensor captures the main
features of the inclusion’s rotational dynamics.
Our experiments demonstrated the rich behavior of

inclusions embedded in 2D active nematics. Chiral gear-
shaped inclusions rotated persistently in one direction,
while achiral disks and gears did not. Intriguingly, the
chiral two- and six-teeth gears rotated at the same average
rate, with a tangential velocity about half the speed of the
bulk active nematic. This contrasts with a study where the
circulation speed of a 3D isotropic active fluid confined to
an annulus decreased with the number of notches on the
boundary [22]. Another study observed the persistent
unidirectional circulation of an active nematic confined
inside a 200 μm well with a single chiral notch on the
boundary [23]. In that case, the notch also served as a site
for defect nucleation, although the notch shape and
nucleation process were different. For smooth circular
confinement without a notch, the same study found that
the active nematic organized into a vortical flow, with the
sign of vorticity sometimes reversing. This may be related
to the behavior of the disk-shaped inclusion in our experi-
ments, whose angular velocity fluctuations were correlated
over longer timescales than those of any of the gears. Taken
together, these results suggest that smooth boundaries can
induce spontaneous and persistent vorticity in active
nematics, but this has yet to be systematically explored.
Our system has both similarities and differences with

studies of gears powered by motile bacteria [28,29]. In both
cases, chiral gears rotated unidirectionally, while achiral
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FIG. 4. Correlating defect structure to inclusion motion.
(a) Computation of −∇ ·Q from a fluorescence image of
MTs. From the image (left), the nematic order parameter Q ¼
sðnn − 1

2
1Þ is computed. The fields s and n are displayed

(center), as well as −∇ ·Q (right). (b) Time series of the
normalized angular rotation rate, net þ1=2 defect polarization,
and the average tangential component of −∇ ·Q inside an
annulus around each of the four shapes. Each time series is
smoothed with moving mean window of width 10 s. (c) Pearson
correlation coefficients between the normalized rotation rate and
normalized net polarization or Q-tensor tangential gradient, after
these time series are smoothed as above. The crossed points
indicate the former ðρω;pÞ, while the solid points indicate the
latter ðρω;QÞ. Error bars represent standard error of the mean over
five independent experiments for each shape.
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gears did not. In our study, the chiral gears at the oil-water
interface of an active nematic always rotated toward the
slanted edges of the teeth, just as chiral gears at the
air-water interface of a bacterial suspension. As polar
swimmers, individual bacteria were more likely to get
trapped along the long edge while pointing toward the short
edge. The bacteria exerted force by direct contact on the
short edges, leading to a net torque. While built from
apolar constituents, active nematics exhibit þ1=2 topo-
logical defects,which are polar quasiparticles.Moreover, the
dynamics of þ1=2 defects near the chiral teeth [Fig. 3(a)]
suggest that they play an analogous role to the swimming
bacteria, pushing more against the short edge than the long
edge and therefore transferring net torque to the gear. A key
difference, however, is that defects are continuously created
and annihilated within an active nematic, and this regener-
ation is boundary controlled. The presence of the chiral
teeth induces the local cyclic nucleation of þ1=2 defects
[Fig. 3(a)], rather than capturing defects from the bulk.
Unlike bacteria, forces exerted by the defects on the inclusion
cannot come from direct contact. The active, elastic, and
viscous stresses felt at the inclusion boundary are caused by
the hydrodynamic flows and associated nematic texture. Our
experiments demonstrate a need to understand the effective
interaction between defects and inclusion boundaries in
active nematics.
The possibility of using inclusions to extract work from

chaotic active nematics is intriguing. Approximating the
chiral gears as disks, the power dissipated by their rotation
may be estimated as Prot ∼ 32=3r3ν0Ω2 ∼ 3 × 10−17 W,
with ν0 ∼ 10−3 Pa s as the viscosity of water, r ∼ 200 μm
as the disk radius, andΩ ∼ 0.02 rad=s as the average rotation
rate [28,29]. Following estimates of the power of 3D active
fluids [50], the power dissipated by the flows of a 2D active
nematic patch with the same area as the inclusion may be
estimated asPflow ∼ νnðv2=L2ÞA0 ∼ 5 × 10−17 W,with νn ∼
1 Pa s μm as the 2D viscosity of the nematic layer [32,51],
v ∼ 5 μm=s as the typical speed of the active flows, L ∼
250 μm as the length scale over which flows are correlated,
and A0 ∼ 400 μm2 as the inclusion area. Thus, the power
harnessed as gear rotation is comparable to the viscous
dissipation of the active nematic. However, the chemical
power dissipated as heat by adenosine triphosphate hydroly-
sis orders of magnitude higher than the flow power for
MT-kinesin active fluids,whichmeans that the total efficiency
of the rotating gear is extremely low [50]. Perhaps a more
useful quantification of efficiency is the rescaled rotation rate
rhωi=hjvji, which was ∼0.5 for both the chiral two- and
six-teeth gears. This means that the boundary of the gears
move, on average, abouthalf as fast as thebulk active nematic.
From an entirely different perspective, these experiments

extend previous work on mixtures of equilibrium liquid
crystals and conventional colloids, which demonstrated
control of the spatial structure and the topology of defects
[52–56], as well as defect-assisted motion of externally

driven colloids [57]. Creating active liquid crystal–colloid
composites offers a tantalizing possibility of using inclu-
sions in active nematics to control both the spatial and
temporal dynamics of motile topological defects which, in
turn, affect the colloidal motion [58].
In conclusion, we studied the dynamics of inclusions

embedded in 2D active nematics with parallel anchoring.
Chiral gear-shaped inclusions rotated persistently in one
direction, while disks and achiral gears had unbiased
rotation. Inclusion shape influenced the polarization and
distribution of nearby topological defects. These results
show that inclusion motion in active nematics arises from a
delicate interplay between the inclusion shape, organization
of the surrounding nematic, and the boundary-induced self-
organized active stresses.

All data reported in the main text as well as code for
reproducing the analysis will be made available at [59].
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