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We introduce a simple model of diffusive jump process where a fee is charged for each jump. The
nonlinear cost function is such that slow jumps incur a flat fee, while for fast jumps the cost is proportional
to the velocity of the jump. The model—inspired by the way taxi meters work—exhibits a very rich
behavior. The cost for trajectories of equal length and equal duration exhibits giant fluctuations at a critical
value of the scaled distance traveled. Furthermore, the full distribution of the cost until the target is reached
exhibits an interesting “freezing” transition in the large-deviation regime. All the analytical results are
corroborated by numerical simulations. Our results also apply to elastic systems near the depinning
transition, when driven by a random force.
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Introduction.—For more than a century, simple stochas-
tic processes like the random walk have been successfully
used to model a variety of phenomena across disciplines
[1–3]. For instance, the motion of bacteria in space [1,2]
and the evolution of the price of a stock in finance [3] can
be approximated as a sequence of jumps between states,
which take place according to some probabilistic rule.
In many different contexts, it is natural to associate a

(possibly nonlinear) cost—or a reward—to the “change of
state” of a stochastic process—often with unexpected or
paradoxical consequences. For instance, the energy con-
sumption of bacteria changes depending on the environ-
ment they move in [1]. Wireless devices absorb different
amounts of energy when they switch between activity states
(off, idle, transmit, or receive) [4,5]. In biochemical
reactions, it is often convenient to label secondary reaction
products as cost or reward of an underlying primary process
[6] for bookkeeping purposes. The bonus-malus vehicle
insurance premium changes depending on the number of
claims made in the previous year [7]. In software develop-
ment, the so-called “technical debt” is the cost of additional
rework caused by prioritizing an easy solution now instead
of a better design approach that would delay the release of
the product [8]. In a variety of situations where random
factors are present that affect the change of state of a
system, computing the total cost (or reward) of a trajectory
may prove very challenging.

In mathematics and engineering, stochastic processes
with associated costs have been investigated in the frame-
work of Markov reward models [9–11]. Recently, the joint
distribution of displacement and cost has also been inves-
tigated in Ref. [12] for random walks in a random
environment until a first-passage event. Moreover, optimal
control theory has been applied in Ref. [13] to minimize the
cost of random walks with resetting. However, the impact
of a nonlinear cost function on the cost fluctuations, both in
the typical and in the large deviation regime, remains
largely unexplored.
An everyday example where nonlinear costs lead to

unexpected consequences is that of taxi fares. Indeed, taxi
rides in a busy city typically consist of a mixture of fast
excursions and slow steps due, e.g., to congestion or traffic
lights. The fare charged to a passenger is automatically
computed by the taxi meter, which follows a fairly
universal and simple recipe [14]. Each city council deter-
mines a changeover speed ηc—based on a statistical
analysis of the typical local traffic conditions. If the taxi
moves faster than ηc, the meter ticks according to the space
covered, while if the taxi moves slower than ηc, the meter
ticks according to the time elapsed. This way, the driver
gets compensated even when the taxi barely moves due to
heavy traffic. For example, according to London’s Tariff I
rate [15] the meter should charge 20 pence for every
105.4 m covered, or 22.7 sec elapsed (whichever is reached
first). One of the surprising consequences of the nonlinear
nature of the taxi fare structure is the so-called taxi paradox
[14], whereby two taxis starting together from A and
arriving together at B may charge very different fares
depending on their individual patterns of slow versus fast
chunks in their trajectories.
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In this Letter, we study a simple but general model of
diffusion, inspired by the taxi paradox, where the nonlinear
nature of the costs associated to each jump gives rise to a rich
and nontrivial behavior. In particular, we will consider two
scenarios: fixing both the total distance X and the number n
of steps [ensemble (i)] or fixing the target location L but
allowing the number of steps to get there to fluctuate
[ensemble (ii)]. In ensemble (i), the cost has a finite and
nonmonotonic variance, which is maximal at some critical
value of the scaled distance X=n. In ensemble (ii), we show
that the cost variance displays a rich behavior when
changing the speed threshold ηc, including “giant” fluctua-
tions of the total cost. In this latter setting, the large
deviations of the hitting cost displays an unexpected
“freezing” transition in the low-cost regime. Our results
show that associating a nonlinear cost to the evolution of a
randomwalk leads to very rich and unexpected phenomena.
Model.—Consider a one-dimensional walker whose

position Xn at discrete time n evolves according to

Xn ¼ Xn−1 þ ηn ð1Þ

starting from the origin X0 ¼ 0, with ηn drawn independ-
ently from a probability density function pðηÞ with positive
support. To each jump, we associate a costCn that increases
according to the law

Cn ¼ Cn−1 þ hðηnÞ; ð2Þ

where hðηÞ is a function of η. The final position reached
after n steps is X ¼ P

n
k¼1 ηk, and the total cost due is

C ¼ P
n
k¼1 hðηkÞ. For a typical realization of the process,

see Fig. 1. Clearly, X and C are correlated random
variables, whose joint statistics is of interest here.
We further assume that the jumps are positive and

exponentially distributed with mean value μ, i.e., that
pðηÞ ¼ expð−η=μÞ=μ. For simplicity, we set μ ¼ 1.

Inspired by the taxi paradox described above, we consider
the nonlinear cost function hðηÞ ¼ 1þ bðη − ηcÞθðη − ηcÞ,
with b > 0 a positive constant, and θðxÞ the Heaviside step
function. This function hðηÞ is such that jumps shorter than
the critical size ηc in one unit of time (slower jumps) incur a
unit fee, whereas longer (faster) jumps are more costly,
with the fee being proportional to the length (velocity) of
the jump. Thus, in our model there are two parameters,
b and ηc.
Main results [ensemble (i)].—Because of the nonlinear

nature of the cost function, even after fixing the total
distance X and the number of steps n, the total cost C
remains random, as expressed by the taxi paradox. For
large n, the average cost grows with the total distance X as

hCiX;n ≈ nþ bηcnH

�
X
nηc

�
; ð3Þ

where HðyÞ ¼ ye−1=y. To quantify the cost fluctuations
around the average, we first compute the cost variance
VarðCjX; nÞ conditioned on the value of X after exactly n
steps. In particular, in the late-time limit n → ∞, X → ∞
with y ¼ X=ðnηcÞ fixed, we find that the variance takes the
scaling form,

VarðCjX; nÞ ≈ b2η2cnF

�
X
nηc

�
; ð4Þ

where

FðyÞ ¼ e−2=yð2e1=yy2 − 2y2 − 2y − 1Þ ð5Þ

is a positive, nonmonotonic scaling function. This scaling
function is shown in Fig. 2 and it is in perfect agreement

FIG. 1. Typical realization of a random walk Xk with cost
function hðηÞ ¼ 1þ 2ðη − 1Þθðη − 1Þ. The cost Ck up to step k is
a nonlinear function of the random jumps.

FIG. 2. Scaled cost variance VarðCjX; nÞ=ðb2η2cnÞ conditioned
on the final position X as a function of X=ðnηcÞ. The
continuous blue line corresponds to the analytical scaling
function in Eq. (5) (valid for n → ∞). The symbols display
the results of numerical simulations with 105 samples and
different values of n. The vertical dashed line highlights the
maximum at X=ðnηcÞ ≈ 1.727 24….
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with numerical simulations. Note that the variance has a
single maximum at the point y⋆ ≈ 1.727 24…. This scaling
function has asymptotic behaviors FðyÞ ≈ 2y2e−1=y for
small y and FðyÞ ≈ ð1=3yÞ for large y.
To understand the nonmonotonic behavior of the vari-

ance, consider two opposite limits: X ≫ nηc (that is y
large) and X ≪ nηc (y small). In the former case, when X is
fixed to be large, in a typical trajectory, most of the jumps
are big; i.e., the configuration is dominated by “spacelike”
runs only (i.e., ηi > ηc) and hence the cost can be written as
C ¼ P

i½1þ bðηi − ηcÞ� ≈ nþ bðX − nηcÞ. Consequently,
since both n and X are fixed, the fluctuations of C are
severely constrained for large X. This decrease in the cost
fluctuations is hence a consequence of the linearity of hðηÞ
for large η (see Supplemental Material [16] for a discussion
on the nonlinear case). In the latter case X ≪ nηc, a typical
trajectory is dominated by only “timelike” runs and once
again the cost fluctuations from one trajectory to another
are expected to be small, as the precise length of each jump
will not significantly alter the fee charged per jump. Thus
these two “phases” are like “pure” phases. As one increases
the control parameter X=ðnηcÞ, one first crosses over from a
timelike pure phase to a “mixed” phase, characterized by a
larger entropy (i.e., a larger number of possible arrange-
ments of individual jumps eventually landing to the same
final spot X after n jumps). Upon further increasing
X=ðnηcÞ, the conditional variance undergoes a second
crossover from the mixed phase to a spacelike pure phase.
At the special value X=ðnηcÞ ≈ 1.727 24…, the cost fluc-
tuations are maximal (the most unfair scenario for taxi
passengers).
Physical applications.—Nonlinear functions similar to

hðηÞ, composed of a constant and a linear part, naturally
emerge in disparate areas of physics. An elementary
example is that of static friction: in order to move a block
in contact with a substrate one has to overcome a threshold
force ηc due to static adhesion. Then, applying a force η for
a fixed time intervalΔt, the velocity of the block is given by
hðηÞ ¼ bðη − ηcÞθðη − ηcÞ, where b now depends on the
block mass and Δt [17]. The function hðηÞ is the velocity-
force characteristic describing the response of the system to
an applied force and, up to a global shift by 1, is identical to
the cost function per unit time in our taxi model. A natural
question is, what is the average response when the block is
subject to a random applied force η drawn from, say,
pðηÞ ¼ e−η? To measure this average (over random force)
response, one needs to repeat the experiment n times, by
applying a random force ηi drawn independently for
each sample i from pðηÞ. Then Xn=n ¼ ð1=nÞPn

i¼1 ηi is
precisely the mean force per sample, and Cn=n ¼
ð1=nÞPn

i¼1 hðηiÞ is the mean velocity of the block per
sample. Thus, the number of steps n in the taxi problem
plays the role of the number of samples here. Consequently,
for large n, the scaling function HðyÞ ¼ ye−1=y in Eq. (3)
describes precisely the average response characteristic,

while FðyÞ in Eqs. (4) and (5) describe the fluctuations
of the response around its average.
More generally, our results can be extended to a wide

variety of disordered systems when an extended object or
manifold such as an elastic string or a polymer is driven by
a random force η in a spatially inhomogeneous medium.
These systems undergo a depinning transition when a force
η is applied: below the depinning threshold ηc, the manifold
is pinned by the disorder and its velocity vanishes, while
above the threshold, the velocity-force relation follows a
power-law scaling hðηÞ ∝ ðη − ηcÞβ with the depinning
exponent β > 0 [18–20]. For example, when a DNA chain
translocates through a nanopore by applying a pulling force
via optical tweezer, the exponent β ≈ 1 [21], while for a
harmonic elastic string in (1þ 1) dimensions one gets
β ≈ 0.33 [19]. Other examples include vortices in type-II
superconductors [22] and colloidal crystals [23]. To ana-
lyze the velocity-force characteristic for such an elastic
string driven by a random force, we need to generalize our
method presented above for β ¼ 1 to hðηÞ ¼ bðη − ηcÞβ for
arbitrary β > 0. In Supplemental Material [16], we have
computed exactly both the average velocity-force response
characteristic and its fluctuations for arbitrary β. Our results
show that the associated scaling functionsHβðyÞ and FβðyÞ
depend continuously on β.
Main results [ensemble (ii)].—It is also natural to

estimate the distribution PðCjLÞ of the hitting cost to be
paid to reach a given location L, irrespective of the time
required. First-passage or hitting properties [24–26] are
important in several applications, from chemical reactions
[27] to insurance policies [28]. Note that in this second
setting, the number n of steps is a random variable. We find
that for large L the distribution of C takes the large-
deviation form,

PðCjLÞ ∼ exp½−LΦðC=LÞ�; ð6Þ

where the rate function reads

ΦðzÞ ¼ max
s

½−szþ 1þ uðsÞ� ð7Þ

and uðsÞ satisfies

bsþ ðbses − 1Þu − u2es − bseuηc ¼ 0: ð8Þ

The rate function ΦðzÞ is supported over z ∈ ½l1ðbÞ;∞Þ
and has the following asymptotic behaviors [16]:

ΦðzÞ ≈

8>><
>>:

z ln z − zþ 1 z → ∞
ðz−a1Þ2
2σ2C

z ∼ a1

ψbðzÞ z → l1ðbÞ;
ð9Þ

where l1ðbÞ and ψbðzÞ are given below [see Eq. (11)].
Thus, in the typical regime, the cost fluctuates around the
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typical value C ¼ a1L, where a1 ¼ 1þ b expð−ηcÞ, with
variance VarðCjLÞ ¼ Lσ2C, where

σ2C ¼ 1þ 2b2e−ηcð1 − e−ηcÞ − 2bηce−ηcð1þ be−ηcÞ: ð10Þ
It turns out that the cost variance σ2C has a surprisingly

rich behavior as a function of the parameters ηc and b. First,
for both ηc → 0 and ηc → ∞ the scaled variance σ2C tends to
the limiting value 1 (see Fig. 3). This counterintuitive result
can be understood as follows. For ηc → ∞, all of the steps
are timelike and hence the cost C ¼ n, where n is the
number of steps. The distribution PðnjLÞ of the number
of steps n needed—given the target location L—is
Poisson, PðnjLÞ ¼ e−LLn−1=ðn − 1Þ! for n ¼ 1; 2;…
(see Supplemental Material [16] for the derivation).
Therefore, VarðCjLÞ ¼ VarðnjLÞ ¼ L. On the other hand,
for ηc → 0, all of the steps are spacelike and hence
C ¼ nþ bL, where L is the final position. Thus, we obtain
again VarðCjLÞ ≈ VarðnjLÞ ¼ L.
For intermediate values of ηc, the behavior of σ2C depends

on b. For small values of b, σ2C has a unique minimum
as a function of η (see Supplemental Material [16]).
Interestingly, above the critical value b > bc ≈ 2.953…
(that we computed numerically with Mathematica), σ2C
develops a second minimum and a maximum (see
Fig. 3). This behavior can be qualitatively understood as
follows: for ηc slightly above zero, most of the steps are still
spacelike. Therefore, C ¼ P

n
k¼1 hðηkÞ ≈ bLþ ð1 − bηcÞn,

hence the variance VarðCjLÞ≈ð1−bηcÞ2L, implying that
σ2C ¼ ð1 − bηcÞ2 initially must decrease linearly as ηc
increases from zero. As ηc increases further, timelike steps
becomemore andmore abundant. The cost fluctuations start
increasing again with increasing ηc and become maximal at
some η⋆c . These giant fluctuations reflect the perfect mixing
of timelike and spacelike steps, which can be arranged in the
maximal number of different ways to cover the distance L.
Increasing ηc further beyond the maximum leads the cost
fluctuations to subside, as the pure timelike phase settles in.
The behavior of the lowest edge l1ðbÞ of the support of

ΦðzÞ is also very interesting. First, the edge l1ðbÞ itself

depends on whether b is smaller or larger than 1=ηc. More
precisely, l1ðbÞ ¼ b for b ≤ 1=ηc, while l1ðbÞ ¼ 1=ηc for
b ≥ 1=ηc. Around the lower edge, we have the following
behavior for z → l1ðbÞþ:

ψbðzÞ ¼

8>>><
>>>:

1þ z−b
1−bηc

ln
�

z−b
1−bηc

�
− z−b

1−bηc
b < 1=ηc

−2
ffiffiffiffiffi
δ1

p ffiffiffiffiffiffiffiffiffiffiffi
z − b

p þ 1þ δ0 b ¼ 1=ηc

− 1
ηc
ln
�
z − 1

ηc

�
þOð1Þ b > 1=ηc;

ð11Þ

with δ0 solution of δ0 þ eδ0=b ¼ 0 and δ1 ¼ δ20=ðb − δ0Þ.
Therefore, the rate functionΦðzÞ attains a finite value at the
lower edge of its support, l1ðbÞ ¼ b, if b ≤ 1=ηc, whereas
it diverges logarithmically at the lower edge of its support,
l1ðbÞ ¼ 1=ηc, if b > 1=ηc. A plot of the full rate function
computed by solving Eqs. (7) and (8) numerically with
Mathematica, along with the asymptotic behaviors above,
is included in Fig. 4 for different values of b and ηc ¼ 1.
Interestingly, the lower edge l1ðbÞ “freezes” to the value

l1ðbÞ ¼ 1=ηc for b > 1=ηc. To understand this freezing
transition, we notice that the lower edge l1ðbÞ is related to
the minimal possible cost Cmin by l1ðbÞ ¼ Cmin=L. In
Supplemental Material [16], we show that if b < 1=ηc, i.e.,
when spacelike configurations are sufficiently inexpensive,
the cost is minimized by a single long jump of length
η ¼ L, corresponding to Cmin ≈ bL [and hence l1ðbÞ ¼ b].
On the other hand, for b > 1=ηc, the minimal cost Cmin ¼
n ¼ L=ηc is attained with n ¼ L=ηc timelike steps of
length ηc leading to l1ðbÞ ¼ 1=ηc.
Derivations.—We focus on the probability PðC;XjnÞ

that a random walker has reached position X after exactly n
steps with a total costC [ensemble (i)]. This quantity can be
formally written as

PðC;XjnÞ ¼
�
δ

�
X −

Xn
k¼1

ηk

�
δ

�
C −

Xn
k¼1

hðηkÞ
��

; ð12Þ

FIG. 3. Variance σ2C of the hitting cost as a function of ηc for
increasing values of b.

FIG. 4. Rate function ΦðzÞ describing the large deviations of
the hitting cost, evaluated by solving Eqs. (7) and (8) numerically
with Mathematica for ηc ¼ 1 and b ¼ 0.5 (continuous line) and
ηc ¼ 1 and b ¼ 2 (dashed line).
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where the average is performed over the variables ηi. Taking
the double Laplace transform P̃ðλ; sjnÞ ¼ R∞

0 PðC;XjnÞ×
e−λX−sCdXdC yields [16] P̃ðλ; sjnÞ ¼ ½gðλ; sÞ�n, where

gðλ; sÞ ¼ e−s

λþ 1

	
1 −

bs
λþ 1þ bs

e−ðλþ1Þηc


: ð13Þ

The distribution of the final position alone is easily obtained
as PðXjnÞ ¼ ½1=ΓðnÞ�Xn−1e−X for an exponential jump
distribution. Thus, the kth moment of C, conditioned on
the total displacement X, can be obtained by Laplace
inversion [16], leading to the exact expressions for the
average and variance of the cost in Eqs. (39) and (42) of
Supplemental Material [16]. The fact that the conditional
variance is nonzero embodies the taxi paradox described
earlier, as different trajectories reaching the same spot
after the same number of steps (¼ time) may indeed charge
different amounts.
Conclusions and outlook.—Motivated by the taxi para-

dox, we have introduced and solved exactly a simple model
for diffusion with a nonlinear cost associated to each jump.
Our results exhibit unexpected phenomena, including giant
fluctuations of the cost and a freezing transition in the large
deviation regime of the total cost. We expect that our results
should apply generally to arbitrary jump distributions pðηÞ
with a finite variance. We have shown that our results can
be directly applied to a variety of physical systems where
an extended object is pulled by a random force in a
disordered medium. In future works, it would be interesting
to investigate fat-tailed jump distributions such as Lévy
walks, which are of central importance in finance and
biology [29]. In particular, very fat-tailed jump distribution
will display condensation phenomena, where a single jump
dominates the trajectory [30]. It would be relevant to
investigate the impact of a nonlinear cost on such setting.
Moreover, one may consider cost functions that penalize
short jumps and rewards instead long excursions with a flat
fee—a pattern commonly found in public transportation
pricing models, where monthly passes are typically cheaper
than collecting single ride tickets.

This work was supported by a Leverhulme Trust
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