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Generalization is one of the most important problems in deep learning, where there exist many low-loss
solutions due to overparametrization. Previous empirical studies showed a strong correlation between
flatness of the loss landscape at a solution and its generalizability, and stochastic gradient descent (SGD) is
crucial in finding the flat solutions. To understand the effects of SGD, we construct a simple model whose
overall loss landscape has a continuous set of degenerate (or near-degenerate) minima and the loss
landscape for a minibatch is approximated by a random shift of the overall loss function. By direct
simulations of the stochastic learning dynamics and solving the underlying Fokker-Planck equation, we
show that due to its strong anisotropy the SGD noise introduces an additional effective loss term that
decreases with flatness and has an overall strength that increases with the learning rate and batch-to-batch
variation. We find that the additional landscape-dependent SGD loss breaks the degeneracy and serves as
an effective regularization for finding flat solutions. As a result, the flatness of the overall loss landscape
increases during learning and reaches a higher value (flatter minimum) for a larger SGD noise strength
before the noise strength reaches a critical value when the system fails to converge. These results, which are
verified in realistic neural network models, elucidate the role of SGD for generalization, and they may also
have important implications for hyperparameter selection for learning efficiently without divergence.
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Deep learning (DL) [1] has achieved tremendous success
across various fields ranging from image recognition [2]
to playing Go [3] and even solving complex scientific
problems such as protein folding [4]. The parameters
(weights) in a neural network model are trained by
following gradient decent of a global loss function.
Given the large number of parameters in DL, there are
many solutions that have the same (or nearly the same)
minimum loss. Of course, the “goodness” of a solution is
measured by its generalizability, i.e., its performance in
fitting previously unseen testing data, which differs from
solution to solution. Indeed, generalization remains the
most important problem in DL [5]. Previous empirical
studies showed that generalization correlates with the local
curvature of the loss landscape around the solution: Flatter
solutions tend to generalize better than sharper ones [6–12].
Recent work based on an activity-weight duality showed
the dependence of the generalization loss on the flatness of
loss landscape explicitly [13].
In neural networks, the overall loss function is defined on

the training set fsigMi¼1 with size M:

LðθÞ ¼ 1

M

XM
i¼1

lðsi; θÞ; ð1Þ

where lðsi; θÞ is the loss for single sample si and θ denotes
the parameter (weight) vector of the network. From
previous studies [7,14–16], the loss landscapes are highly
degenerate in the overparametrized regime, where the
number of network parameters greatly exceeds the inde-
pendent degrees of freedom in the training samples. This
is evidenced from Hessian spectrum analysis [Fig. 1(a)]:
Most eigenvalues of the Hessian matrix (H≡∇θ∇θL) at
the solution are nearly zero; only a few eigenvalues are
significantly larger than zero, which means that most
directions are approximately degenerate (flat) except for
very few nondegenerate (sharp) directions. Furthermore,
the structure of the Hessian spectrum is stabilized after only
a few epochs [17] of training [15,18], and the subspaces
composed of these degenerate directions are connected
without barriers [19,20]. These studies indicate that, during
most of the training processes, DL searches in a highly
degenerate loss landscape instead of escaping from local
minima in a rugged landscape [21].
A natural question thus arises: In a degenerate loss

landscape with many solutions having almost the same low
loss, how does DL pick a flatter one? The answer has to do
with stochastic gradient descent (SGD), which was origi-
nally adopted due to computational limitation in calculating
gradients of the overall loss function with all the training
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data [23,24]. Unlike the gradient descent (GD) training
with all samples, SGD uses only a random minibatch
of samples fsμigBi¼1, μi ∈ f1;…;Mg with a small size
Bð≪ MÞ to compute the gradients of a minibatch loss:

LμðθÞ ¼ 1

B

XB
i¼1

lðsμi ; θÞ ð2Þ

and update parameters θ at each iteration. The updating rule
of SGD for iteration t is given by

θtþ1 ¼ θt − η∇θLμðθtÞ; ð3Þ

where η is the learning rate. The ensemble average of
minibatch loss is equal to the overall loss [25], i.e.,
hLμðθÞiμ ¼ LðθÞ, and the SGD noise originates from the
difference between LðθÞ and LμðθÞ. The SGD noise can
be characterized by its covariance matrix CðθÞ with its
elements given as

CijðθÞ ¼
��

∂L
∂θi

−
∂Lμ

∂θi

��
∂L
∂θj

−
∂Lμ

∂θj

��
μ

: ð4Þ

Previous studies found that SGD noise is highly anisotropic
[26]. In fact, the noise covariance matrixCðθÞwas found to
be correlated (aligned) with the anisotropic Hessian matrix
HðθÞ [6,27–29], which has also been verified by our
numerical experiments shown in Fig. 1(b). Besides its
anisotropic structure, the SGD noise has an overall strength
that depends on the learning rate η and the minibatch size B
[6,10], and increasing η or decreasing B drives the system
to flatter solutions [6,7,12].

In this Letter, by using minimal models of SGD and the
degenerate loss landscape, we aim to understand two
general questions in DL: (i) how does the anisotropic
SGD noise drive the system to flat minima in highly
degenerate loss landscapes? (ii) how does the SGD noise
strength affect the final solutions?
Model construction.—Based on the typical Hessian

spectrum of overparametrized neural networks, we con-
struct a degenerate loss function LðθÞ where we separate all
the parameters θ ¼ ðx; yÞ as nondegenerate (sharp) varia-
bles y ∈ RNS and degenerate (flat) variables x ∈ RNF ,
respectively [21]:

LðθÞ ¼ Lðx; yÞ ¼ 1

2

XNS

i¼1

λðiÞðxÞy2i ; ð5Þ

where λðiÞðxÞ are the eigenvalue function of the ith non-
degenerate variable. The landscape has a region of con-
nected degenerate minima (solutions) at y ¼ 0. At a given
solution ðx; 0Þ, the average flatness along the nondegen-
erate subspace is defined as

FðxÞ≡YNS

i¼1

FðiÞðxÞ1=NS; ð6Þ

where FðiÞðxÞ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λðiÞðxÞ

q
denotes the flatness for the ith

nondegenerate variable, which is inversely correlated with
the Gaussian curvature in the nondegenerate subspace. A
larger FðxÞ corresponds to a flatter minimum, and the
flattest solution ðxF; 0Þ is defined as the solution with the
maximum FðxÞ; see Sec. I A 2 in Supplemental Material
[22] for more details.
To mimic realistic SGD without explicitly introducing

data, we construct an ensemble of minibatch losses by
randomly shifting LðθÞ with the random shifts representing
the random data sampling (minibatch) in SGD. Intuition
for this approach can be derived from a linear regression
model, which is discussed further in Sec. I B 1 in
Supplemental Material [22]. Specifically, we approximate
minibatch loss LμðθÞ by taking small random shifts μ in the
overall loss LðθÞ: LμðθÞ ¼ Lðθ − μÞ. By keeping the first-
order terms in μ, we have

LμðθÞ ¼ Lðθ − μÞ ≈ LðθÞ − μ · ∇LðθÞ; ð7Þ

where we assume the shifts are independent identically
distributed white noise with zero mean and noise strength
2σ. Empirically, noise strength σ depends inversely on the
batch size, and σ ¼ 0 corresponds to GD. Under this
construction, we can show that the noise covariance matrix
C is directly related to the Hessian matrix:C ¼ 2σH2. Note
that, in addition to the random shifts, the minibatch loss can
vary in its shape and the value of its minimum [25]. These

FlaterSharper
(a) (b)

FIG. 1. (a) Rank-ordered eigenvalues of the Hessian matrix of a
fully connected neural networks with two hidden layers (50
neurons each) in Modified National Institute of Standards and
Technology (MNIST) classification. Ĥ denotes the diagonalized
Hessian matrix. (b) Top 2000 elements of the diagonalized
Hessian matrix Ĥ and the transformed SGD noise covariance
matrix Ĉ. Ĉ is obtained by transforming the original noise
covariance matrix to the basis of H. The network parameters are
trained with SGD fixing learning rate η ¼ 0.05 and batch size
B ¼ 100. The Hessian and covariance matrix are obtained after
sufficient training at epoch 200. See Sec. IVA in Supplemental
Material [22] for the details of the empirical experiments.
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variations may lead to different forms of the C-H depend-
ence, as discussed further in Sec. I B2 in Supplemental
Material [22]. However, our general conclusions hold true,
regardless of the exact form of their dependence, as long as
they are positively correlated (aligned), which results in an
anisotropic noise that is stronger in the sharper direction, as
observed in realistic SGD [Fig. 1(b)].
Evolution of flatness during learning.—By using the

random-shift minibatch model [Eq. (7)] with L given in
Eq. (5), we simulate the learning dynamics according to
SGD updating rules [Eq. (3)]. To account for a more
realistic loss landscape that is not perfectly degenerate,
we use the expansion form of λðiÞðxÞ and include a term
ðε=2ÞPNF

j¼1 λ0x
2
j to slightly break the degeneracy, where λ0

is the average zero-order expansion coefficient and ε is a
small constant (0 < ε ≪ 1) that controls the degree of
degeneracy breaking. Note that with ε > 0 the global
minimum ð0; 0Þ is distinct from the flattest point ðxF; 0Þ
of the loss landscape. To demonstrate the effects of
different noise structures, we also simulate the learning
dynamics using GD without noise and gradient Langevin
dynamics (GLD) with isotropic noise. As shown in
Fig. 2(a), compared to these algorithms, the average flat-
ness during SGD training increases faster with time and
drives the system to a flatter solution. These findings from
our model confirm the effects of anisotropic SGD noise in
finding flatter solutions, which is consistent with the
flatness dynamics observed in realistic neural networks
for MNIST classification [Fig. 2(b)]. See Secs. II B and
IV B in Supplemental Material [22] for details of the
simulations.
Quantitatively, the flatness dynamics depends on the

SGD hyperparameters. Figure 3(a) shows that a larger SGD
noise strength σ drives the system to a flatter solution,
which is also consistent with the flatness dynamics in real
neural networks shown in Fig. 3(b). Specifically, we varied
the SGD noise strength σ by changing the batch size B and
found that the flatness at a given time is larger for smaller B

(or, equivalently, larger σ). Increasing learning rate η has
similar effects, which is also consistent with the model
behavior. The case when fixing B and changing η is shown
in Figs. S9 and S13 in Supplemental Material [22].
Note that the continued increase of flatness observed in

Figs. 2(b) and 3(b) is due to a global scaling of weights
in neural network models [25]. This scaling leads to a
decrease in the cross-entropy loss function and an increase
in the flatness function but does not affect test accuracy.
In our high-dimensional models, there is no such scaling
property, and the flatness eventually saturates after a certain
training time, as shown in Figs. 2(a) and 3(a). Detailed
discussions can be found in Sec. IV C in Supplemental
Material [22].
The overall effects of hyperparameters are presented in a

phase diagram shown in Fig. 3(c), where the average
flatness of the steady-state solution FðxssÞ obtained after
the dynamics converge is shown for different choices of
ðη; σÞ. The phase diagram shows that increasing η and σ
tends to increase the flatness of the solution, but excessive
values of η and σ cause the system to diverge, as indicated
by the gray area in Fig. 3(c).
Anisotropic noise breaks degeneracy of solutions.—

To gain an analytical understanding of the results obtained
empirically so far, we study a two-dimensional (2D) model,
which is the minimal model that captures the key features
of the degenerate loss landscape. The loss function is
given by

Lðx; yÞ ¼ 1

2
ελ0x2 þ

1

2
λðxÞy2; ð8Þ

(b)(a)

FIG. 2. Flatness dynamics of the high-dimensional model
(NS ¼ 5,NF ¼ 100) (a) and real training in MNIST classification
(b) using algorithms with different noise structures: gradient
descent (red solid line), stochastic gradient descent (blue dashed
line), and gradient Langevin dynamics with isotropic noise (green
dash-dotted line). See Secs. II B and IV B in Supplemental
Material [22] for more details.

SGD nois
e Divergence

regime

(a)

(b)

(c)

FIG. 3. (a) Flatness dynamics of the high-dimensional model
(NS ¼ 5, NF ¼ 100) with fixed learning rate η ¼ 0.01 and
different noise strengths: σ ¼ 0.001 (red solid line), σ ¼ 0.01
(blue dashed line), and σ ¼ 0.1 (green dash-dotted line). (b) Flat-
ness dynamics of real training in MNIST classification with fixed
learning rate η ¼ 0.05 and different minibatch sizes: B ¼ 200
(red solid line), B ¼ 100 (blue dashed line), and B ¼ 50 (green
dash-dotted line). The flatness F in real scenarios is defined
similarly as in our model where we choose the top ten eigendir-
ections as the nondegenerate subspaces, i.e., F≡Q

10
i¼1 Ĥii

−1=20.
(c) ðσ; ηÞ phase diagram of the average flatness of the steady-state
solution FðxssÞ in the high-dimensional model. See Secs. II B and
IV B in Supplemental Material [22] for more details.
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where we keep only one degenerate variable x and one
nondegenerate variable y (NS ¼ NF ¼ 1) and we expand
λðxÞ ¼ P∞

n¼0 λnx
2n around the global minimum ðx� ¼

0; y� ¼ 0Þ with λn the 2n0th-order expansion coefficient.
As in the high-dimensional case, a small ε is introduced to
break the degeneracy. Given ε ≪ 1, points along the valley
(y ¼ 0) near x ¼ 0 can be considered as near-degenerate
solutions with low loss [∼OðεÞ] but different flat-
ness FðxÞ≡ 1=

ffiffiffiffiffiffiffiffiffi
λðxÞp

.
Simulations of SGD dynamics in the 2D model exhibit

qualitative agreement with the high-dimensional model.
Beyond a critical line, larger η and σ would drive the system
to the flatter solutions; see the Appendix for details. The
anisotropy of SGD noise plays an important role in finding
the flatter solutions, which can be demonstrated from
comparison with the gradient Langevin dynamics with
isotropic noise (see Fig. S3 in Supplemental Material [22]).
To demonstrate effects of the anisotropic noise, we first

consider the stochastic dynamics of this system driven by
gradients of fully degenerate loss function (ε ¼ 0) and an
anisotropic noise with constant noise strength. The dynam-
ics of the system can be described by the following
Langevin equations, which can be obtained as the con-
tinuous-time limit of SGD with a small learning rate
[6,26,27,30] (see Sec. III A in Supplemental Material
[22] for details):

_x¼ −∂xLðx; yÞ þ ξ1ðtÞ; _y¼ −∂yLðx; yÞ þ ξ2ðtÞ; ð9Þ

where ξ1ðtÞ and ξ2ðtÞ are the noise for x and y, respectively.
The corresponding dynamics of the probability density
Pðx; y; tÞ is governed by the following Fokker-Planck
equation [31]:

∂tP ¼ ∂xð∂xLþ ∂xD11 þ ∂yD12ÞP
þ ∂yð∂yLþ ∂xD21 þ ∂yD22ÞP; ð10Þ

where D is the covariance matrix of the noise. For
simplicity, we first consider the case where D11 ¼ κ−1Δ
and D22 ¼ Δ with Δ denoting a constant noise strength
in the y direction and κ > 1 characterizing the noise
anisotropy with no ξ1 ξ2 correlation (D12 ¼ D21 ¼ 0).
By taking advantage of the separation of timescales in

the degenerate and nondegenerate directions, we can
integrate out the fast variable y and solve for the steady-
state distribution (see Sec. III B 1 in Supplemental Material
[22] for the detailed derivation) [32]:

Pssðx; yÞ ¼
1

Zss
exp

�
−
λðxÞy2
2Δ

�
λðxÞ−ðκ−1Þ=2; ð11Þ

where Zss is the normalization factor. The effective loss
function Leffðx; yÞ≡ −Δ ln½ZssPssðx; yÞ� is given by

Leffðx; yÞ ¼
1

2
λðxÞy2|fflfflfflffl{zfflfflfflffl}
Lðx;yÞ

þ Δð1 − κÞ lnFðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
LSGDðxÞ

; ð12Þ

which shows explicitly that the anisotropic noise reshapes
the original loss landscape by introducing an additional
flatness-dependent loss LSGDðxÞ≡ Δð1 − κÞ lnFðxÞ. This
additional loss breaks the degeneracy in the original loss
function as illustrated in Fig. 4. Since the noise covariance
matrix is aligned with the Hessian [6,27–29], the SGD
noise is stronger in the nondegenerate (sharp) direction, i.e.,
κ > 1, LSGD is lower when FðxÞ is larger, and, therefore, an
anisotropic noise with κ > 1 is more likely to converge to
the flatter solutions.
An effective flatness-dependent regularization due to

SGD noise.—To better understand the general effects of the
landscape-dependent SGD noise, we next consider a more
realistic case where the loss landscape is not perfectly
degenerate (ε ≠ 0) and the noise covariance matrix D is
aligned with the Hessian matrix. In our random-shift-
minibatch model, D is found to depend on the Hessian
matrix quadratically: D ¼ ΔSH2, where we define the
product of two hyperparameters ΔS ≡ ησ as the effective
SGD noise level (see Sec. III A in Supplemental Material
[22] for details).
Plugging the explicit expression of D in the Fokker-

Plank equation [Eq. (10)], the steady-state distribution
Pssðx; yÞ can be solved approximately by integrating out
the fast variable y. To characterize the SGD noise, we
define an effective noise strength ΔðxÞ≡D22 ≈ ΔSλðxÞ2
and an effective anisotropy κðxÞ≡ ΔðxÞ=hD11iy, where we
use h·iy to denote integration over y for a fixed x.
Substituting the definition of effective loss function, i.e.,
Leffðx; yÞ≡ −ΔðxÞ lnPssðx; yÞ, we finally obtain the
expression for the additional SGD loss LSGDðxÞ≡
Leffðx; yÞ − Lðx; yÞ in terms of ΔðxÞ and κðxÞ (see
Sec. III B 2 in Supplemental Material [22] for details):

(b)(a)

Flatter

Sharper

FIG. 4. (a) Illustration of two-dimensional degenerate loss
function. Each point on y ¼ 0 is a solution (minimum) with
different flatness; the solution at x1 (blue line) is flatter than that
at x2 (green line). (b) Loss landscape before (solid line) and after
(dash-dotted line) reshaping by anisotropic noise; the landscape
of flatter minimum x1 is lower than sharper minimum x2 after
reshaping.
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LSGDðxÞ ¼ ΔðxÞ
Z �

κðxÞελ0x
ΔðxÞ þ κðxÞλ0ðxÞ

2λðxÞ
�
dx

−
ΔðxÞ
2

ln
λðxÞ
ΔðxÞ −

1

2
ελ0x2: ð13Þ

In the vicinity of global minimum where the noise level
ΔS is small enough to ensure the average loss hLi ≪ 1,
κðxÞ and ΔðxÞ can be approximated as constants, i.e.,
Δ ≈ ΔSλ

2
0 ≪ 1 and κ ≈ ðε2 þ 2εΔSλ1 þ 3Δ2

Sλ
2
1Þ−1 ≫ 1,

and LSGDðxÞ can be expressed as

LSGDðxÞ ≈ Δð1 − κÞ lnFðxÞ þ ðκ − 1ÞLðx; y ¼ 0Þ; ð14Þ

which contains the flatness-dependent term LSGD;F ≡
Δð1 − κÞ lnFðxÞ that decreases with FðxÞ and another
loss-dependent term LSGD;L ≡ ðκ − 1ÞLðx; y ¼ 0Þ, which
is proportional to the original loss function Lðx; y ¼ 0Þ at
the nearly degenerate solutions [33] (see Sec. III B 1 in
Supplemental Material [22] for details). Equation (14)
shows clearly how LSGD;F compete with LSGD;L: After
integrating out the fast variable in the sharp direction,
both LSGD;F and LSGD;L are affected by the anisotropy κ;
however, the flatness-dependent SGD loss LSGD;F has an
overall strength proportional to the SGD noise level ΔS.
Therefore, increasingΔS would increase the contribution of
the flatness-dependent SGD loss LSGD;F, which serves as
an effective regularization that favors the flatter solutions.
For the high-dimensional case [Eq. (5)] with NS > 1 and

NF > 1, the generalized effective loss LSGDðxÞ in Eq. (14)
can also be derived approximately under certain assump-
tions. The resulting LSGDðxÞ, albeit much more complex
than that in 2D, also contains a flatness-dependent term
LSGD;F:

LSGD;FðxÞ ≈
XNS

i¼1

ðΔ̄ − κΔðiÞÞ lnFðiÞðxÞ; ð15Þ

whereΔðiÞ ≈ ΔSλ
ðiÞð0Þ2 denotes the effective noise strength

for the ith nondegenerate variable, Δ̄≡ ð1=NSÞ
PNS

i¼1ΔðiÞ

is the average noise strength over all nondegenerate
variables, and κ is the overall anisotropy in the high-
dimensional case (see Sec. III C 1 in Supplemental Material
[22] for detailed derivations). We can see from Eq. (15) that
LSGD;F also scales with the effective SGD noise level ΔS

and favors the flatter solutions.
Furthermore, we can define another average flatness:

F̂ðxÞ≡YNS

i¼1

FðiÞðxÞγi ; ð16Þ

as the geometric average flatness weighted by the relative
noise strength γi ¼ ΔðiÞ=

PNS
i¼1ΔðiÞ, which is positively

correlated with the average flatness of equal weights FðxÞ.

We can show that under certain assumptions F̂ increases
with time with a rate that is proportional to the SGD noise
level ΔS, which explains the flatness dynamics in Fig. 3
(see Sec. III C 2 in Supplemental Material [22] for details).
Taken together, the main conclusions regarding effects of
SGD from the 2D model hold true for the high-dimensional
models.
Discussions.—Generalization is a fundamental problem

in DL. Increasing empirical and theoretical evidence shows
that a flatter solution has better generalization performance.
In this Letter, we studied how SGD-based algorithms drive
the learning system to flatter solution in a highly degenerate
loss landscape that is typical in overparametrized neural
network models. Our findings indicate that the anisotropic
SGD noise introduces an additional flatness-dependent
loss, which serves as an implicit regularization that favors
the flatter solutions. The hyperparameters in SGD, learning
rate η and batch noise level σ, together determine an overall
SGD noise strength. A higher SGD noise strength within
the convergence bound not only allows the system to find
flatter solutions, but also speeds up the search process (see
the Appendix for details). Although our current study is
focused on the “solution valley,” the effect of SGD in
introducing an effective flatness -dependent loss function
should also exist during early stage of training (learning),
which may play an important role in guiding the system
toward the solution valley or the flatter part of the valley.
Overall, our work elucidates the effects of SGD in search-
ing for (learning) flatter solutions, which may also shed
light on the selection of SGD hyperparameters as well as
design of more efficient learning algorithms.

This work of N. Y. and C. T. was supported by the
National Natural Science Foundation of China (Grants
No. 12090053 and No. 32088101). N. Y. acknowledges
helpful discussions with Feng Yu, Jingxiang Shen, and
Qiwei Yu.

Appendix: Simulation on the 2D landscape.—We
simulate the learning dynamics of x and y according to
SGD updating rules [Eq. (3)] using the random-shift
minibath model [Eq. (7)] with the 2D loss function
given in Eq. (8). To ensure that the global minimum x�
does not coincide with the flattest solution xF, we set
the expansion coefficients λ1 < 0 and λ2 > 0, with λn ¼ 0
for n > 2; for the details of simulation, see Sec. II A 1
in Supplemental Material [22].
Similar to the high-dimensional case, the final steady-

state solution xss (obtained by time averaging of xt after
convergence) depends on the noise strength σ and learning
rate η. Figure 5(a) shows typical trajectories with fixed
learning rate η and different noise strengths σ. In the
parameter space spanned by ðσ; ηÞ, there are three distinct
phases characterized by the flatness of the solution, as
shown in Fig. 5(b): For small σ and η, the steady-state
solution is always the (sharper) global minimum x�, i.e.,
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FðxssÞ ¼ Fðx�Þ (phase I); for intermediate σ and η, flatter
solutions are found with FðxssÞ an increasing function of σ
and η (phase II); for very large σ and/or η, the system
diverges (phase III). The inset in Fig. 5(b) shows the three
phases as we vary σ for a fixed η ¼ 0.04, where σ� and σm
represent the transition boundary between the three phases.
The rate of convergence during training also depends on

the SGD noise strength as shown in Fig. 5(c). To quantify
the convergence rate, we define the search time τs ≡ ηhtsi
as the average first passage time ts of reaching the solution
x ¼ xss multiplied by the learning rate η (since η serves as
the time interval). Analogous to critical slowing down [34],
the search time is much longer near the transition point σ�
as shown in the inset in Fig. 5(d). Beyond the transition
point (σ > σ�), increasing the noise strength σ drastically
speeds up the training processes until σ approaches its
upper limit σm when the system diverges.
The behavior of the system in the convergence regime

(phases I and II) is roughly determined by the product of
these two hyperparameters ησ; therefore, we can define the
same effective SGD noise level ΔS ≡ ησ as in the analytical
part. The transition boundary ΔS ¼ Δ�

S can be approxi-
mated by Δ�

S ¼ −ε=λ1. For large ΔS beyond the transition

boundary, a higher ΔS would drive the system to flatter
solutions with much faster speed. However, excessive
SGD noise causes the system to diverge [7]. Explicitly,
the convergence condition of the system satisfies
ηhλðxÞiss < 2 with hλðxÞiss≈λðxssÞþ 1

2
λ00ðxssÞðhx2iss−x2ssÞ,

which increases with ΔS (h·iss denotes average over the
steady-state distribution; see Sec. II A 4 in Supplemental
Material [22] for details). Therefore, there is a maximum
noise level Δm, beyond which the system fails to converge
[35]. The additional factor η in the convergence condition
makes the dependence on σ and η asymmetric; i.e., for the
same level of SGD noise (ΔS), larger learning rate η makes
the system more likely to diverge, which is consistent with
numerical results shown in Figs. 5(b) and 5(d). Note that
there is no sharp transition boundary between the global
minimum and flatter solutions in the high-dimensional
phase diagram [Fig. 3(c)], since the total contribution of all
degenerate variables with different landscape parameters
would blur the transition boundary.
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