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Semiconducting nanowires with strong spin-orbit coupling in the presence of induced superconductivity
and ferromagnetism can support Majorana zero modes. We study the pumping due to the precession of the
magnetization in single-subband nanowires and show that spin pumping is robustly quantized when the
hybrid nanowire is in the topologically nontrivial phase, whereas charge pumping is not quantized.
Moreover, there exists one-to-one correspondence between the quantized conductance, entropy change and
spin pumping in long topologically nontrivial nanowires but these observables are uncorrelated in the case
of accidental zero-energy Andreev bound states in the trivial phase. Thus, we conclude that observation of
correlated and quantized peaks in the conductance, entropy change and spin pumping would provide strong
evidence of Majorana zero modes, and we elaborate how topological Majorana zero modes can be
distinguished from quasi-Majorana modes potentially created by a smooth tunnel barrier at the lead-
nanowire interface. Finally, we discuss peculiar interference effects affecting the spin pumping in short
nanowires at very low energies.
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Introduction.—One of the most challenging aims in
the current condensed matter physics research is the
demonstration of non-Abelian Majorana statistics—
the underlying fundamental property that would enable
the realization of a topological quantum computer [1–5]. It
is theoretically well established that Majorana zero modes
(MZMs) can be realized in semiconducting nanowires with
strong Rashba spin-orbit coupling in the presence of
induced superconductivity and external magnetic field
[6,7]. One of the hallmark features of the MZMs is the
resonant Andreev reflection, which gives rise to a quantized
zero-bias peak in the conductance [8,9]. Although zero-bias
conductance peaks have been observed in experiments
[10], it is known that formation of unwanted quantum dots
or unintentional inhomogeneities at the lead-nanowire
interface can lead to non-Majorana zero-bias conductance
peaks [11–20], and therefore the current attempts to
demonstrate the existence of MZMs utilize multimodal
experimental data with sophisticated protocols to reduce
the likelihood of false positives [21,22]. Other techniques
to detect MZMs based on noise [23–26] and entropy
change [27–30] are also being developed.
The advent of hybrid ferromagnetic insulator-

superconducting (FI-SC) nanowire devices [31,32] opens
paths for novel approaches for probing the existence of
MZMs. In this Letter, we study the charge and spin pumping
in this system in the presence of precessing magnetization.
The precessing magnetization is a well-established method

for generating spin current in magnetic heterostructures and
forms the basis of many contemporary spintronics appli-
cations [33–38]. It is known that under some specific
circumstances the precessing magnetization can also lead
to quantized charge and spin pumping [39–43], which can
be understood as Thouless pumping in the Hamiltonian
formalism [44] and topological winding number in the
scattering matrix formalism [43]. Here, we apply the
scattering matrix formalism to the case of FI-SC nanowire
devices, and find an unprecedented case where the charge
pumping is nonquantized, in agreement with the previous
study [45], but the spin pumping is robustly quantized. We
show that in long single-subband nanowires there exists
one-to-one correspondence between the quantized conduct-
ance, entropy change, and the quantized spin pumping
in the topologically nontrivial nanowires, but these observ-
ables are uncorrelated in the case of accidental zero-
energy Andreev bound states in the trivial phase. Thus,
we conclude that the observation of correlated and quan-
tized peaks in the conductance, entropy change, and spin
pumping would provide strong evidence of MZMs, and we
elaborate how topological MZMs can be distinguished
from quasi-Majorana modes potentially created by imper-
fections at the lead-nanowire interface. Furthermore, we
identify a suitable regime of system parameters for observ-
ing the quantization and consider interference effects in
short nanowires, which affect the conductance and spin
pumping differently at very low energies. Finally, we show
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that the quantized spin pumping can be detected from the
absorption linewidth of the precessing FI.
Spin and charge pumping in long nanowires.—We

consider the system shown in Fig. 1(a) described by a
Bogoliubov–de Gennes (BdG) Hamiltonian

HðtÞ ¼
�
p2

2m
− αRpσz − μðxÞ

�
τz þmðx; tÞ · σ þ ΔðxÞτx;

ð1Þ
where σ ¼ ðσx; σy; σzÞ and τ ¼ ðτx; τy; τzÞ are Pauli matri-
ces that act in the spin and Nambu space, respectively,
p ¼ −iℏ∂x is the momentum operator along the wire
(x-direction), m is the effective electron mass, αR is
the Rashba spin-orbit coupling strength, mðx; tÞ ¼
m0ΘðxÞ½sin θ cosϕðtÞ; sin θ sinϕðtÞ; cos θ� is the magnetic
exchange field induced by the precessing magnetization of
a ferromagnetic insulator, ΔðxÞ ¼ Δ0ΘðxÞ is the induced
superconducting order parameter, ΘðxÞ is the Heaviside
step function, and μðxÞ is the chemical potential. We denote
the chemical potentials in the lead, tunnel barrier and FI-SC
nanowire as μN , μtun, and μ, respectively. We consider
periodic driving mðx; tþ T Þ ¼ mðx; tÞ with period T ¼
2π=ω and frequency ω, and measure energies, momenta,
and lengths in units of ESO ¼ mα2R=2, pSO ¼ 2mαR and
lSO ¼ ℏ=pSO, respectively. The phase diagram of this sys-
tem is shown in Fig. 1(b). The gapped phases of FI-SC
nanowires are classified by the one-dimensional class D Z2

topological invariant which determines the existence of
topologically protected MZMs at the end of the wire [46].
The topologically nontrivial gapped phase emerges in the
regime

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 þ μ2
p

< m0 < Δ0= cos θ and the system is
gapless if m0 > Δ0= cos θ. In the following we stay in
the parameter regime where the FI-SC nanowire is gapped.
The width of the tunnel barrier is 4lSO and μN ¼ 0.
For other barrier widths see Ref. [47].
The precessing magnetization pumps charge and spin

from the FI-SC nanowire into the lead. The pumped charge
Q and spin Sz over one cycle in the adiabatic limit can be
calculated from the expression [53,54]

O ¼
Z

dE
�
∂f
∂E

�Z
T

0

dt Im
�
Tr
�
r̂†Ô

∂r̂
∂t

��
; ð2Þ

where fðEÞ is the Fermi function, the operator Ô for the
pumped charge (spin) is Q̂ ¼ eτz=4π (Ŝz ¼ ℏσz=8π), and
r̂½E;ϕðtÞ� is the instantaneous scattering matrix

r̂ ¼
�
r̂ee r̂eh
r̂he r̂hh

�
; r̂ee ¼

 
r↑↑ee r↑↓ee

r↓↑ee r↓↓ee

!
;

r̂he ¼
 
r↓↑he r↓↓he

r↑↑he r↑↓he

!

accounting for the normal r̂ee and Andreev r̂he processes.
The other blocks can be obtained via particle-hole

symmetry τyσyr̂�ð−EÞτyσy ¼ r̂ðEÞ. In a continuous oper-
ation of the device the time averages of the pumped charge
and spin currents can be written, respectively, as hIei ¼
ωQ=2π and hIsi ¼ ωSz=2π.
In the case of uniform precession (or arbitrary adiabatic

precession) the time dependence of the Hamiltonian can
be removed by switching to the rotating frame Hrot ¼
U†HBdGðtÞU − iℏU†

∂tU via unitary transformation U ¼
e−iϕðtÞσz=2. The coefficients r̃σσ0ee and r̃σσ

0
he can then be obtained

by finding a solution ΨrotðxÞ of the time-independent
Hamiltonian Hrot, and the scattering states in the lab frame
are obtainedusingΨðx; tÞ ¼ UΨrotðxÞ. Thiswaywe find that
the only t-dependent reflection coefficients are

rβ̄βeeðtÞ ¼ r̃β̄βeeeiβϕðtÞ; rββheðtÞ ¼ r̃ββhee
iβϕðtÞ;

where β̄ ¼ −β, and we use β ¼ þ1;−1 and ↑;↓ inter-
changeably. Using these expressions we obtain

Q ¼
Z

dE

�
−
∂f
∂E

�
QðEÞ;

Sz ¼
Z

dE

�
−
∂f
∂E

�
SzðEÞ;

QðEÞ ¼ eðjr↑↓ee j2 − jr↓↑ee j2 þ jr↑↑he j2 − jr↓↓he j2Þ;
SzðEÞ ¼ ℏðjr↑↓ee j2 þ jr↓↑ee j2 þ jr↑↑he j2 þ jr↓↓he j2Þ=2: ð3Þ

FIG. 1. (a) Rashba nanowire (green) with proximity induced
superconductivity (blue) and magnetization (gray) supports MZM
(red). The tunnel barrier μtun can be controlled with a gate voltage.
The precessingmagnetizationmðtÞ pumps spin and charge into the
lead (x < 0) due to the normal and Andreev reflection processes.
(b) Topological phase diagram of the FI-SC nanowire as a function
ofm0 and θ. The phase transition line separating the gapped phases
is given by Δ2

0 þ μ2 ¼ m2
0 and the transition between gapped and

gapless phase occurs atΔ0 ¼ m0 cos θ. (c),(d) The pumped charge
Q and spin Sz as a function of m0 for different μtun. The pumped
spin is quantized to Sz ¼ ℏ=2 in the topologically nontrivial
regime. The results have been calculated for Δ0 ¼ ESO,
μ ¼ 0.5ESO, and θ ¼ 2π=5 in the limit kBT, ω → 0.
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In the limit of low temperature kBT → 0 and frequency
ω → 0 the pumped charge (spin) is related to the corre-
sponding spectral density asQ ¼ Qð0Þ [Sz ¼ Szð0Þ]. These
formulas can be generalized to arbitrary ω by evaluating the
contributions of the scattering paths in the rotating frame
taking into account the spin bias terms in the distribution
functions as described in Ref. [43]. The general expression is
obtained from Eq. (3) by replacing ∂f=∂E with a “quantum
derivative” ½fðEþ ℏω=2Þ − fðE − ℏω=2Þ�=ℏω and com-
puting the reflection coefficients in the presence of the term
−iℏU†

∂tU ¼ −ℏωσz=2. In the absence of a bias voltage
the spectral densities are weighted with symmetric functions
in the energy integrals. Hence, in some figures it is more
illustrative to plot the symmetrized spectral density
Ss
zðEÞ ¼ ½SzðEÞ þ Szð−EÞ�=2.
Figures 1(c) and 1(d) show representative results for Q

and Sz obtained by numerically calculating the reflection
matrix for long FI-SC nanowires using Kwant software
package [55]. Both quantities take arbitrary (typically
small) values in the case of topologically trivial wires.
By tuning the parameters of the system to the topologically
nontrivial phase we observe a sharp transition in Q and Sz.
Within the topologically nontrivial phase Q still takes
arbitrary values depending on the m0, θ and tunnel barrier
μtun introduced between the lead and the system, similarly
as obtained in the previous studies [45]. On the other hand,
Sz is now robustly quantized to ℏ=2 at low temperatures
and frequencies.
Correspondence of spin pumping, conductance, and

entropy.—One of the hallmarks of the nontrivial topology
is the robust quantization of the differential conductance

G ¼
Z

dE
�
−
∂f
∂E

�
GðEÞ; GðEÞ ¼ 2G0Tr½r̂†her̂he� ð4Þ

to a universal value G ¼ 2G0 (G0 ¼ e2=h) at small bias
voltages in the tunneling regime [8]. Moreover, in ballistic
point contacts this zero-bias peak widens into a plateau of
quantized conductance [9]. We show that in long nanowires
there exists one-to-one correspondence between the quan-
tization of the conductance G ¼ 2G0 and the spin pumping
Sz ¼ ℏ=2 in the nontrivial regime. For this purpose we
consider the scattering states in the lead [x < 0 in Fig. 1(a)]
at energy E ¼ 0 and ω → 0

Ψα;L
rot ðxÞ ¼

�
χα

0

�
eixk

α
in þ

X
β

�
r̃βαee

�
χβ

0

�
e−ixk

β
o

þ r̃βαhe

�
0

χβ̄

�
eixk

β
o

�
;

composed of an incoming electron with spin-z eigen-
value α ¼ �1 in eigenstate χα ¼ ð1þ α; 1 − αÞT=2 and
kαinlSO ¼ ðαþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μN=ESO

p Þ=2, and four outgoing states
with kβolSO ¼ ð−β þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μN=ESO

p Þ=2. The reflection

coefficients r̃βαee and r̃βαhe are obtained by matching the

solutions Ψα;L
rot ð0Þ ¼ Ψα;R

rot ð0Þ and ∂xΨα;L
rot ð0Þ ¼ ∂xΨα;R

rot ð0Þ,
where Ψα;R

rot ðxÞ are the evanescent states in the FI-SC
nanowire [x > 0 in Fig. 1(a)]. This way we arrive at the
following expressions [47]

jr̃ββee j ¼ jkβ̄o − iz4jjkβo − iz4jP
σðkσoÞ2 þ 2z24

; jr̃β̄βee j ¼ ðkβoÞ2 þ z24P
σðkσoÞ2 þ 2z24

;

jr̃β̄βhej ¼
ðkβ̄oÞ2 þ z24P
σðkσoÞ2 þ 2z24

; jr̃ββhej ¼
jkβ̄o þ iz4jjkβo − iz4jP

σðkσoÞ2 þ 2z24
;

where z4 is the only root of the quartic polynomial�
4z24l

2
SO þ μ

ESO

�
2

þ
�
4z4lSO −

Δe

ESO

�
2

−
m2

0sin
2θ

E2
SO

¼ 0;

having ℜ½z4� > 0 (evanescent mode). Thus, z4 ∈ R. Here,
Δe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 −m2
0cos

2θ
p

> 0 in the gapped phase. Because
jrββee j ¼ jrββhej, it follows from Eqs. (3) and (4) that

Szð0Þ
ℏ=2

¼ Tr½r̂†eer̂ee� ¼ 2 − Tr½r̂†her̂he� ¼ 2 −
Gð0Þ
2G0

: ð5Þ

Therefore, in long nanowires there is a perfect correspon-
dence between the quantized spin pumping Szð0Þ ¼ ℏ=2
and the quantized conductance Gð0Þ ¼ 2G0 in the topo-
logically nontrivial regime. This correspondence is illus-
trated in Fig. 2. In the tunneling regime there exists
quantized peaks in Ss

zðEÞ and GðEÞ at E ¼ 0, which widen

(a) (b)

(c) (d)

FIG. 2. (a) G and (b) Sz as a function of μ for different μtun in
the limit ω; kBT → 0. In the topologically nontrivial phase
(μ <

ffiffiffi
3

p
ESO) there is a perfect correspondence between the

quantized conductance G ¼ 2G0 and spin pumping Sz ¼ ℏ=2,
but these observables are unrelated in the trivial regime
(μ >

ffiffiffi
3

p
ESO). (c),(d) The spectral densities GðEÞ and Ss

zðEÞ in
the nontrivial (μ ¼ ESO) and trivial (μ ¼ 3ESO) phases in the
tunneling regime μtun ¼ −ESO and in the absence of tunnel
barrier μtun ¼ 0. The energy is normalized with the gap Δgap in
the FI-SC nanowire. The model parameters are Δ0 ¼ ESO,
m0 ¼ 2ESO, and θ ¼ 2π=5.

PHYSICAL REVIEW LETTERS 130, 237002 (2023)

237002-3



into plateaus upon decreasing the tunnel barrier to μtun ¼ 0.
Importantly, Ss

zðEÞ and GðEÞ are unrelated to each other in
the topologically trivial nanowires. We find that similar
correlation exists also between quantized entropy change
and spin pumping in nontrivial wires [47].
Distinguishing MZMs from Andreev bound states and

quasi-MZMs.—The combined measurements of the spin
pumping and conductance could also be helpful in dis-
tinguishing non-Majorana zero-bias conductance peaks
[11–20] from the zero-bias peaks caused by the MZMs.
To demonstrate this, we have computed the effect of non-
Majorana Andreev bound states, induced by a magnetic
impurity pointing along the spin z direction, on the
conductance and spin pumping in the trivial regime (see
Fig. 3). The impurity induced Andreev bound states can
give rise to zero-energy peaks in GðEÞ and Ss

zðEÞ. The
heights of the peaks are arbitrary but they can accidentally
have a quantized value. However, the heights of the peaks
in GðEÞ and Ss

zðEÞ are unrelated to each other. Therefore
accidental low-energy Andreev bound states can be dis-
tinguished from the MZMs, which give rise to correlated
quantized peaks in GðEÞ and Ss

zðEÞ at E ¼ 0 (cf. Figs. 2
and 3). We point out that a smooth tunnel barrier can induce
two spatially separated MZMs at the lead-nanowire inter-
face [11–15,17], and in certain cases these quasi-MZMs are
so weakly coupled to each other that they can mimic all
properties of the MZMs, including quantized conductance,
4π Josephson effect and even the non-Abelian braiding
statistics [17,56]. However, the quantized spin pumping and
conductance are independent of the strength of the tunnel
barrier, and therefore the topological MZMs can be distin-
guished from quasi-MZMs by demonstrating the robustness

of the quantized signatures upon lowering of the tunnel
barrier [47].
Parametric dependencies.—The dependence of SzðEÞ

on the length L of the FI-SC wire is shown in Fig. 4(a),
where mðxÞ ¼ m0ΘðL − xÞΘðxÞ. The overall shape is
similar to the case of L → ∞, but the hybridization of
the MZMs and the interference effects lead to a very sharp
dip or a peak at very low energies. Their widths decrease
exponentially with L so that robust quantization of Sz exists
at experimentally relevant temperatures and frequencies if
L is sufficiently large and the tunnel barrier is not too large
[Figs. 4(b) and 4(c)]. The quantization of Sz is robust in the
presence of disorder [Fig. 4(d)], but very strong disorder
leads to large sample-to-sample fluctuations of Sz at very
small temperatures and frequencies due to the sharp peaks
and dips in SzðEÞ [47].
We can capture the essential physics behind the shape of

the SzðEÞ using the Mahaux-Weidenmüller formula for the
scattering matrix [57–59]

S¼ 1−2πiW†ðE−HMþ iπWW†Þ−1W;

HM ¼ i

�
0 EM

−EM 0

�
; W¼

�wL
↑ wL

↓ wL�
↑ wL�

↓

wR
↑ wR

↓ wR�
↑ wR�

↓

�
; ð6Þ

where HM describes the coupling EM between the left and
right MZMs and W the coupling of MZMs to the lead

(a) (b)

FIG. 3. The impurity induced Andreev bound states crossing
zero energy give rise to peaks in (a) GðEÞ and (b) Ss

zðEÞ at E ¼ 0.
The heights of the peaks are arbitrary but they can accidentally
have a quantized value as shown in (a). However, the heights of
the peaks in GðEÞ and Ss

zðEÞ are unrelated to each other.
Therefore, accidental low-energy Andreev bound states can be
distinguished from the MZMs, which give rise to correlated
quantized peaks in GðEÞ and Ss

zðEÞ at E ¼ 0 (cf. Fig. 2). Here the
impurity states have been induced with a magnetic impurity Jσz
located at the lattice site xi ¼ 6lSO. The model parameters are
Δ0 ¼ ESO, μ ¼ 0, m0 ¼ 0.3ESO, θ ¼ π=2, μtun ¼ −1.5ESO and
lattice constant d ¼ lSO=4.

(a) (b)

(c) (d)

FIG. 4. (a) The dependence of SzðEÞ on the length L of the
wire. The hybridization of the MZMs and the interference effects
lead to appearance of a very sharp peak or a dip at very low
energies. (b) Sz as a function of kBT for ω → 0. (c) Sz as a
function of ω for kBT → 0. (d) Sz as a function of kBT for ω → 0
in the presence of disorder potential VðxÞτz, where the VðxÞ at
each lattice site x are uncorrelated uniformly distributed random
numbers between ½−8ESO; 8ESO� and we have used lattice
constant d ¼ lSO=50. The error bars denote the 10th and 90th
percentile values. The model parameters are Δ0 ¼ ESO, μ ¼ 0,
m0 ¼ 2ESO, and θ ¼ π=2. In (a) μtun ¼ −2ESO, in (b),(c) and (d)
L ¼ 26.5lSO.
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modes in the basis ðc†↑; c†↓;−c↑;−c↓Þ. Without loss of

generality we can choose 0 < wL
↑; w

L
↓ ∈ R. Moreover, the

couplings of the lead modes to the left MZM wL
σ are always

much larger than the couplings to the right MZM wR
σ . By

neglecting the corrections caused by wR
σ we obtain

GðEÞ=ð2G0Þ ¼ SzðEÞ=ðℏ=2Þ ¼ F ðEÞ [47], where

F ðEÞ ¼ E2

E2 þ ðE2
M − E2Þ2=Γ2

;
Γ
2π

¼
X
σ

ðwL
σ Þ2: ð7Þ

This formula accurately describes the shape of the sharp
dips typically occurring in the SzðEÞ, whereas the peaks
originate from the interference effects when EM is small
and the couplings wR

σ become relevant [47]. Our results
agree with the earlier reported dips in GðEÞ due to the
coupling of MZMs [60], but interestingly the interference
effects can turn the dips also into peaks in SzðEÞ.
Finally, we note that the out-of-equilibrium electrons act

back on the magnet, affecting its dynamics. In particular,
the spin current ejected into the leads increases the Gilbert
damping parameter α̃ entering in the Landau-Lifshitz-
Gilbert equation that describes the magnetization dynamics
[35]. We find that in our setup the change in the Gilbert
damping is Δα̃ ∝ Sz= sin2 θ, which could be used to extract
experimentally the pumped spin Sz from ferromagnetic
resonance measurements [47]. Alternatively, it could be
possible to fabricate nanostructures where the pumped spin
current could be measured by utilizing the inverse spin Hall
effect [61,62].
Conclusions.—We have shown that spin pumping is

robustly quantized and there exists one-to-one correspon-
dence to the quantized conductance and the entropy change
in topologically nontrivial nanowires, so that the observa-
tion of correlated and quantized peaks in the conductance,
entropy change, and spin pumping would provide strong
evidence of topological superconductivity. In the adiabatic
limit our results can be generalized to arbitrary trajectory in
½θðtÞ;ϕðtÞ� space as long as the system stays gapped and
topologically nontrivial, and the azimuthal angle ϕðtÞ
winds around the z axis. We have neglected the non-
equilibrium effects such as the dynamical spin accumu-
lation at the interface of the FI-SC nanowire and the normal
lead. Such effects can lead to nonlinear corrections to the
calculated spin current as a function of ω but they do not
affect the quantized response at low frequencies where the
spin current is proportional to ω. The maximum frequency
is limited by the topological energy gap, so we estimate that
ω≲ 10 GHz [22].
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