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The transformer architecture has become the state-of-art model for natural language processing tasks
and, more recently, also for computer vision tasks, thus defining the vision transformer (ViT) architecture.
The key feature is the ability to describe long-range correlations among the elements of the input
sequences, through the so-called self-attention mechanism. Here, we propose an adaptation of the ViT
architecture with complex parameters to define a new class of variational neural-network states for quantum
many-body systems, the ViT wave function. We apply this idea to the one-dimensional J1-J2 Heisenberg
model, demonstrating that a relatively simple parametrization gets excellent results for both gapped and
gapless phases. In this case, excellent accuracies are obtained by a relatively shallow architecture, with a
single layer of self-attention, thus largely simplifying the original architecture. Still, the optimization of a
deeper structure is possible and can be used for more challenging models, most notably highly frustrated
systems in two dimensions. The success of the ViT wave function relies on mixing both local and global
operations, thus enabling the study of large systems with high accuracy.
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Introduction.—Variational approaches for studying quan-
tum many-body systems have proved fundamental for
understanding the properties of extremely complicated
physical systems, famous examples being the Bardeen-
Cooper-Schrieffer state [1] and Laughlin [2] wave functions
to explain superconductivity and fractional quantum Hall
effect, respectively. Given the exponential growth of the
many-body Hilbert space, a compact representation of the
ground state, encoding the correct physical properties, is a
highly nontrivial task for strongly interacting systems.
Recently, a class of wave functions, based on neural net-
works, has been introduced and developed [3,4]. Starting
from restricted Boltzmann machines (RBMs) [3], which are
the simplest neural-network Ansatz (namely only one fully
connected hidden layer), numerous studies have been
carried out testing different types of architectures; examples
include convolutional-neural networks (CNNs) [5–8], recur-
rent-neural networks (RNNs) [9,10], and autoregressive-
neural networks [11,12], but also combinations of neural
networks with standard variational wave functions (e.g.,
Gutzwiller-projected fermionic ones) [13,14].
In the last few years, the transformer architecture [15]

has become the state-of-art choice in natural-language
processing tasks. Its key feature is the ability to model
relationships among all elements of an input sequence
(regardless of their positions), by efficiently transforming
input sequences into abstract representations. Inspired by
successes in natural-language processing, very small mod-
ifications led to the ViT [16], which has been applied to
image classification tasks, achieving competitive results
with respect to state-of-art deep CNNs, while being much

more efficient than them. Within many-body problems,
transformer networks have recently been employed in the
context of lattice gauge theories [11], to perform quantum
tomography in presence of noise [17], and for real- and
imaginary-time evolutions of quantum systems [18].
In this Letter, we demonstrate that the ViT architecture

can be adapted to define a new class of neural-network
quantum states, here dubbed as ViT wave functions. We
apply our Ansatz to the one-dimensional J1-J2 Heisenberg
model, whose Hamiltonian is defined by

Ĥ ¼ J1
X

R

ŜR · ŜRþ1 þ J2
X

R

ŜR · ŜRþ2 ð1Þ

where ŜR ¼ ðSxR; SyR; SzRÞ is the S ¼ 1=2 spin operator at site
R and J1 > 0 and J2 ≥ 0 are nearest- and next-nearest-
neighbor antiferromagnetic couplings, respectively. Its
phase diagram is well established by analytical and numeri-
cal studies [19]. For small values of J2=J1, the ground state
has power-law spin-spin correlations, and the excitation
spectrum is gapless; for large values of J2=J1, the ground
state is twofold degenerate, leading to long-range dimer
order (but exponentially decaying spin-spin correlations),
and the spectrum is fully gapped. These two phases are
separated by a critical point at ðJ2=J1Þc ¼ 0.241167�
0.000005 [20,21]. Interestingly, for J2=J1 > 0.5, incom-
mensurate (but short-range) spin-spin correlations have
been found, whereas dimer–dimer correlations are always
commensurate. In the following, we assess the ground-state
properties of the J1-J2 model on finite clusters, imposing
periodic boundary conditions.
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From the numerical perspective, density-matrix renorm-
alization group (DMRG) [22] or its modern variations
based upon tensor networks Ansätze [23] represent one of
the few approaches that can accurately assess the ground-
state properties of frustrated systems in one dimension, as
the J1-J2 model of Eq. (1). In fact, the main limitation to the
use of quantum Monte Carlo techniques [24] relies on the
unknown sign structure of the ground-state wave function,
which prevents one from performing unbiased projection
techniques (except for J2 ¼ 0, where the so-called Marshall
sign rule applies [25]). The nontrivial sign structure also
represents an obstacle to the definition of accurate varia-
tional wave functions. For example, Gutzwiller-projected
fermionic states [26] have a limited power to reproduce the
correct signs of the ground state for J2=J1 > 0.5 [27]. By
contrast, RBM states are able to reach an excellent
accuracy; however, they suffer from poor scaling behavior,
due to their fully-connected structure in which a single
hidden layer is connected to all physical degrees of freedom
[27]. This fact limits the applicability of RBMs to relatively
small clusters. In this respect, CNN wave functions have
been introduced to deal with local structures, and deep
architectures are necessary to build long-range correlations,
thus introducing severe problems in the optimization
procedure (e.g., diverging or vanishing gradients). RNN
Ansätze have been also considered, which recurrently
process inputs of a sequence one by one, implying that
they cannot be parallelized; in addition, since not all
elements of the network are directly connected, long-range
correlations are built from short-range ones, thus making
the learning process not straightforward [28].
In order to overcome these problems, we propose a

simplified version of the standard ViT architecture. The
main advantage of this Ansatz lies in the possibility of
mixing both local and global structures, thus limiting the
number of variational parameters and simplifying the
learning process (see below). We emphasize that a complex
parametrization is adopted without an a priori encoding of
the sign structure (i.e., no information about the exact
signs). In this work, we show that the ViT wave function
can reach very high accurate results compared with DMRG
calculations, even on large clusters, with fewer than 1 000
parameters and few computational resources compared
with other neural-network wave functions. Most impor-
tantly, the ViT accuracy can be systematically improved by
changing the hyperparameters of the architecture.
Methods.—The fundamental ingredient of a transformer

is the self-attention mechanism. Given a sequence of N
input vectors ðx1;…; xNÞ, for each of them three new
vectors are computed, qi ¼ Qxi, ki ¼ Kxi, and vi ¼ Vxi,
where Q, K, V are generic rectangular matrices of param-
eters. The attention vectors are then constructed, Ai ¼P

N
j¼1 αðqi; kjÞvj, where the attention weights αðqi; kjÞ

determine how much the jth input vector should contribute
to Ai, which is the subsequent representation of the ith

input. The functional form of these weights can be chosen
according to the task [29]. To improve the performance of
the model, multihead attention can be considered, where a
set of matrices Qμ, Kμ, and Vμ, with μ ¼ 1;…; h (with h
the number of heads) is defined, thus leading to a set of
attention vectors Aμ

i . The latter ones are computed in
parallel, concatenated together, and linearly combined.
Finally, each output vector of the multihead attention is
fed separately and identically to a nonlinearity. In general,
this whole architecture is replicated nl times.
Our goal is to use the transformer to parametrize the

many-body wave function, in order to map spin configu-
rations of the Hilbert space σ ¼ ðσ1;…; σLÞ, with σR ¼
2SzR ¼ �1, to complex numbers ΨðσÞ. We take inspiration
from the ViT [16] introduced for computer vision tasks,
where the images are split into patches and these are taken
as the input sequence to a transformer. In the same way,
starting from a spin configuration σ ¼ ðσ1;…; σLÞ, we split
it into N patches of b elements: xi ¼ ðσði−1Þbþ1;…;
σði−1ÞbþbÞ, for i ¼ 1;…; N (the total number of sites must
be a multiple of b). The sequence of these patches is then
used to compute the attention vectors. Then, a simplifica-
tion of the original ViT is considered, taking the attention
weights only depending on positions i and j, but not on the
actual values of the spins in these patches, thus leading to

Aμ
i ¼

XN

j¼1

αμijV
μxj; ð2Þ

where Vμ is a r × b matrix with r ¼ d=h, and d is the so-
called embedding dimension that must be a multiple of the
number of heads h. This approach is dictated by the fact
that the attention weights should mainly depend on the
relative positions among groups of spins and not on the
actual values of the spins in the patches. This is expected to
be true when the patches are far apart and is extended for
generic positions i and j. Finally, after the concatenation of
the heads, a further linear projection is taken, before the
nonlinearity, here chosen as log½coshð·Þ�. This block can be
repeated nl times before applying the output layer in which
all the values are summed to obtain the logarithm of the ViT
wave function ΨViTðσÞ (see Fig. 1).
In order to study frustrated quantum spin models with a

nonpositive ground state (in the computational basis), we
choose all the parameters to be complex numbers.
Furthermore, a translationally invariant wave function with
k ¼ 0 can be easily defined by considering the following
two steps. First, we adapt the relative positional encoding
[30] to periodic systems, taking αμi;j ¼ αμi−j; as a result, the
number of variational parameters for computing the atten-
tion vectors [Eq. (2)] is reduced from OðL2Þ to OðLÞ. This
procedure induces translational invariance between
patches. To also include the one within patches, we perform
the linear combination
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Ψ̃ViTðσÞ ¼
Xb−1

r¼0

ΨViTðTrσÞ; ð3Þ

where Tr is the translation operator. We emphasize that this
approach requires a small summation (of b terms), which
does not grow with the system size L.
The optimization process of all the complex parameters

is obtained by using standard variational Monte Carlo
techniques, namely the so-called stochastic reconfiguration
approach (see the Supplemental Material [31] for more
details). In the following, we mainly take nl ¼ 1, which
represents the simplest possible adaptation of the trans-
former architecture; indeed, even within this drastic
assumption, we obtain excellent results in both gapless
and gapped phases. At the end, we show the effect of a
deeper network with nl > 1. All the simulations are
performed by fixing the patch size b ¼ 4.
Results.—We start by discussing how the accuracy of the

ViT wave function with one layer can be systematically
improved by varying its two hyperparameters, i.e., the

number of heads h and the ratio r ¼ d=h. We consider a
cluster with L ¼ 100 sites and three different values of the
frustration ratio: J2=J1 ¼ 0 (unfrustrated, gapless), 0.4
(weakly frustrated, gapped), and 0.8 (strongly frustrated,
gapped); the reference energy is computed by using the
standard DMRG approach (imposing periodic-boundary
conditions on the Hamiltonian [33]). In Fig. 2, we show the
accuracy of the ground-state energy for the unfrustrated
case as a function of d=h fixing the number of heads h, and
for the three values of J2=J1 when increasing the number of
heads h, at fixed ratio d=h. Even though there is a general
difficulty in reconstructing the exact sign structure in highly
frustrated regimes [27,34–37], we obtain an excellent
approximation of the correct energy for all the values of
J2=J1 that have been considered, e.g., an accuracy Δε≲
0.1% for J2=J1 ¼ 0.8 and Δε ≈ 0.01% for J2=J1 ¼ 0.4.
Let us now move to the analysis of the correlation

functions. From the previous results, we choose h ¼ 8 and
d=h ¼ 1 as a good compromise between accuracy and
complexity, for which the network can be trained on
L ¼ 100 sites in a few hours on ten central processing
units (CPUs) or in a few minutes on a graphics processing
unit (GPU). The spin-spin correlations are defined as

CννðrÞ ¼ 1

L

XL−1

R¼0

hŜνRŜνRþri; ð4Þ

where ν ¼ x, y, or z and h…i represents the expectation
value over the variational quantum state. In particular, we
focus on isotropic spin-spin correlations CðrÞ ¼ ½CzzðrÞ þ
CxxðrÞ þ CyyðrÞ�=3 and the corresponding structure factor
in Fourier space SðkÞ ¼ ð1=LÞPL−1

r¼0 e
ikrCðrÞ. In Fig. 3, we

show the results of the real-space correlations CðrÞ for the

FIG. 2. Relative error Δε ¼ jðEViT − EDMRGÞ=EDMRGj of the
ViT wave function by varying the hyperparameters of the
architecture for a cluster with L ¼ 100 sites. Left panel: Δε as
a function of d=h, with a fixed number of heads h, for the
unfrustrated case. Right panel: Δε as a function of the number of
heads h, with d=h ¼ 1, for different values of frustration ratio.
The reference energies are computed by DMRG [33] with a bond
dimension up to χ ¼ 600 obtaining E=J1 ¼ −0.4432295 for
J2=J1 ¼ 0, E=J1 ¼ −0.3803882 for J2=J1 ¼ 0.4, and E=J1 ¼
−0.4216664 for J2=J1 ¼ 0.8.

FIG. 1. Scheme of the ViT wave function. The input spin
configuration σ is split into patches of size b (which define a set
of N vectors of dimension b). Each of them is linearly projected h
times with different linear projections to produce N vectors of
dimensions r ¼ d=h. Then the attention function is applied in
parallel, and the h different r dimensional output vectors Aμ

i are
obtained. Then, they are concatenated to a d dimensional vector
ConcatðA1

i ;…;Ah
i Þ and, after another linear projection, the non-

linear function log½coshð·Þ� is applied. This architecture can be
replicated and stacked nl times. The last layer simply sums all the
outputs and returns the logarithm of the ViT wave function.
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unfrustrated Heisenberg model (J2=J1 ¼ 0) on a cluster
with L ¼ 100 sites, comparing them to the DMRG out-
comes (with periodic-boundary conditions). Remarkably,
the ViT Ansatz is able to match the DMRG calculations at
all distances, demonstrating that the global structure of the
multihead attention layer is able to build the algebraic long-
range tail.
The high flexibility of the ViT state is also demonstrated

by considering the three different regimes, with commen-
surate [i.e., SðkÞ peaked at k ¼ π] or incommensurate [i.e.,
SðkÞ peaked at k ≠ π] correlations; see Fig. 4.
The gapped phase is characterized by a finite dimer order

(implied by the twofold degeneracy of the ground state, in
the thermodynamic limit). On any finite system, there is an
exponentially small gap between the two states, with k ¼ 0

and k ¼ π, and the insurgence can be detected from the
connected dimer-dimer correlations:

DðrÞ ¼ 1

L

XL−1

R¼0

hŜzRŜzRþ1Ŝ
z
RþrŜ

z
Rþrþ1i − ½Czzðr ¼ 1Þ�2 ð5Þ

where Czzðr ¼ 1Þ is the z component of the spin-spin
correlation function at distance r ¼ 1 defined in Eq. (4).
Notice that this definition considers only the z component
of the spin operators [38]. In Fig. 5, we show the results for
the three values of J2=J1 considered in this work. Again,
the agreement with DMRG calculations is excellent in all
cases, and the ViT state is able to perfectly reproduce the
presence of dimer order.
DeepViT.—The ViTwave function can be systematically

improved by stacking multiple transformer layers, i.e.,
nl > 1. Since the optimization of complex-valued deep
networks is difficult with standard protocols, we develop a
procedure based on the physical interpretation of the
attention weights. We start by setting for each head and
layer αi−j ¼ 0 if ji − jj > cut, with cut < L=b, training
only the remaining weights. Small cut values (e.g., cut ¼ 1)
are good starting points for stable optimizations. Then the
cut is relaxed until reaching L=b, where all-to-all con-
nections among the inputs of each layer are restored. As an
example, the results for the Heisenberg model with L ¼ 40

are shown in Fig. 6. Here, we take nl ¼ 4 (each layer has
h ¼ 2 and d=h ¼ 2) and perform the optimization stages
with cut ¼ 1;…; 10. Every time, when the cut is relaxed,
the accuracy of the energy improves. We stress that the
optimization is performed without Marshall sign prior.

FIG. 3. The isotropic spin-spin correlations in real space CðrÞ
as computed by the ViT wave function (full dots) for the
unfrustrated Heisenberg model (J2=J1 ¼ 0) on a cluster with L ¼
100 sites. The DMRG results are also shown for comparison
(empty circles). Inset: log-log plot of the same correlation
function.

FIG. 4. The spin-spin structure factor SðkÞ as computed by the
ViT wave function (full dots) for J2=J1 ¼ 0 (upper panel),
J2=J1 ¼ 0.4 (middle panel), and J2=J1 ¼ 0.8 (lower panel) on
a cluster with L ¼ 100 sites. The DMRG results are also shown
for comparison (empty circles).

FIG. 5. Dimer-dimer correlations as computed by the ViT
wave function (full circles) for J2=J1 ¼ 0 (upper panel), J2=J1 ¼
0.4 (middle panel), and J2=J1 ¼ 0.8 (lower panel) on a cluster
with L ¼ 100 sites. The DMRG results are also shown for
comparison (empty circles).

PHYSICAL REVIEW LETTERS 130, 236401 (2023)

236401-4



Conclusions.—We have introduced a promising class of
variational wave functions, which are based upon trans-
former neural-network architectures (in particular, vision
transformers). Their main advantages, with respect to
previously defined Ansätze, is the mixing of local and
global structures, which makes them very flexible to
describe a variety of different quantum phases, with both
gapped and gapless spectra. Remarkably, even working
with a relatively simple architecture, with nl ¼ 1, excellent
results are obtained for a frustrated spin model in one
spatial dimension. Generalizations to one-dimensional
models with long-range interactions (e.g., the Haldane-
Shastry model [39,40]) or two-dimensional models, where
ground-state properties are still under debate, are desirable
and represent the topic for future investigations, including
the calculation of long-range entanglement properties [41].
We expect that for these systems the depth of the network
could be important to achieve competitive results with
respect to state-of-art numerical methods.
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