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We investigate the vibrational properties of topologically disordered materials by analytically studying
particles that harmonically oscillate around random positions. Exploiting classical field theory in the
thermodynamic limit at T ¼ 0, we build up a self-consistent model by analyzing the Hessian utilizing
Euclidean randommatrix theory. In accordancewith earlier findings [T. S. Grigera et al.J. Stat. Mech. (2011)
P02015.], we take nonplanar diagrams into account to correctly address multiple local scattering events. By
doing so, we end up with a first principles theory that can predict the main anomalies of athermal disordered
materials, including the boson peak, sound softening, and Rayleigh damping of sound. In the vibrational
density of states, the sound modes lead to Debye’s law for small frequencies. Additionally, an excess appears
in the density of states starting asω4 in the low frequency limit, which is attributed to (quasi-) localizedmodes.
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Introduction.—The athermal excitations in glasses differ
characteristically from the ones in ordered systems of the
same chemical substances. While the vibrational properties
of crystalline solids are well understood in terms of
phonons, viz. wavelike small particle displacements from
lattice positions, the vibrational spectra of amorphous
solids exhibit incompletely understood anomalies.
One usually names three phenomena [1]. (i) Whereas the

Debye law holds in crystalline solids in the low energy
regime, there appears a maximum in the reduced vibra-
tional density of states (VDOS) ½gðωÞ=ω2� in amorphous
solids [1–5]. This maximum is referred to as the boson
peak, where ω is the frequency. (ii) Experimental and
computational data suggest that the sound attenuation
results from disorder scattering and is Rayleigh-like ∝ p4

below the boson peak, where p is the wave vector. When
entering the frequency regime of the boson peak the
damping turns into a p2 law [4,6–12] which is additionally
indicated by a (iii) softening of the sound velocity, i.e., a dip
in the reduced dispersion relation around the frequency of
the boson peak [6,7,13]. It has been conjectured that these
phenomena are interrelated and that they are connected to
quasilocalized modes (QLMs) [8,10,13–17]. QLMs have
been found in many computer simulations of disordered
materials. It was also demonstrated that their density of
states follows a universal ∝ ω4 law and that they hybridize
with phonons, so that neither of the two modes are exact
eigenvectors of the dynamical matrix anymore, which is
constituted by theHessian of the potential energy [10,17,18].
The localization of modes in amorphous systems and the

resulting fluctuations of elastic constants is at the heart of
many prominent models, such as the two-level system [19],
the soft potential model [20–22] and its generalizations
[23], mean field approaches [5,24], and the heterogeneous

elasticity theory (HET) [8,13,16]. Nevertheless, all these
approaches require phenomenological parameters and they
generally do not capture the vibrational anomalies starting
from the microscopic laws of motion. For example, the
widely used HET [8,13,16] is a mesoscopic rather than a
microscopic theory which quantitively underestimates the
importance of QLMs [14,15,25].
In this Letter, we start from the microscopic equations of

disordered coupled harmonic oscillators. This approach
leads to the Euclidean random matrix (ERM) problem
suggested by Parisi and co-workers [2,26,27]. Following
them, we rely on a Green’s function formalism to derive a
self-consistent model that rationalizes all aforementioned
anomalies and thus improves on earlier ERM models. The
guiding principle in our derivation is that multiple local
scattering events are of qualitative importance [28]. This is
also hinted at by the discovered influence of nonplanar
diagrams [29,30], which were identified as origin of
Rayleigh damping in the ERM [31–33]. Therefore, we
develop a model that relies on a vertex instead of propa-
gator renormalization.
The system.—We study a system of N particles randomly

placed in a volume V at the positions frigN in the
thermodynamic limit with N=V being constant. The posi-
tions are drawn from a uniform distribution P½frigN � ¼
1=VN . Considering small fluctuations ϕi around the frozen
positions ri, we define the symmetric random matrixM via
the second derivative of an interaction pair potential
UðfϕigÞ ¼ 1

2

P
i;j¼1 fðri − rjÞðϕi − ϕjÞ2 ¼

P
i;j Mijϕiϕj.

The f is a spring function which quantifies the interaction
strength. We only request for the theoretical investigation
that the Fourier transformation f̂ðpÞ exists. We also assume
rotational invariance, so that f̂ only depends on the absolute
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modulus of the wave vector p ¼ jpj and that the spring
function is regular. This implies f̂ð0Þ − f̂ðpÞ ∝ p2 for
small p. When performing numerical calculations, we set
f̂ðpÞ ¼ ð2πσ2Þ3=2e−σ2p2=2. Here, σ is an intrinsic length
scale of the system, which leads to a dimensionless density
n ¼ Nσ3=V. The density n turns out to be the single state
parameter. In the following, σ will be set to unity. Note, that
we neglect the vector character of ϕ. The scalar ϕs
represent transverse displacements, which predominantly
contribute to the boson peak [34].
The fundamental equations of motion of N coupled

harmonic oscillators read

ϕ̈i ¼ −
XN
j¼1

Mijϕj; for 1 ≤ i ≤ N: ð1Þ

Here, time and (later) frequency are made dimensionless by
a frequency scale ω0 (set to ω0 ¼ 1 for simplicity) that
can be taken from the position of the boson peak in
measurements. Translational invariance and hence momen-
tum conservation follow immediately from the potential
UðfϕigÞ. Consequently, M has the eigenvalue zero. The
associated eigenvector e0 corresponds to the uniform shift
e0 ¼ ð1; 1;…; 1Þ. For positive spring function, the potential
U is positive and thus the matrixM is semipositive definite.
It is noteworthy that the disorder in M and the thermo-

dynamic limit lead to a broadening of the oscillator lines in
the dynamic structure factor and to sound attenuation, even
though the eigenvalues of the matrix M are exclusively
non-negative and thus the oscillator frequencies real. We
interpret this as a instantiation of Landau damping [35]: in
time-reversible equations of motion and in the thermody-
namic limit, damping can arise from energy transfer among
the infinite multitude of modes.
We study the ERM system by analyzing the two-point

response or Green’s function G. It gives the evolution of an
initial displacement field with plane wave form of wave
vector p. Gðp; zÞ is its spectrum at eigenvalue z and is
related to the resolvent of M

Gðp; zÞ ¼ lim
N;V→∞

1

V

XN
i;j¼1

eip·ðri−rjÞ
�

1

z −M

�
ij
: ð2Þ

Here, z ¼ ðωþ i0þÞ2 ∈ C with ω corresponding to the
frequency. The overline indicates the sample average over
the disorder. The resolvent can be connected to observables
like the dynamic structure factor and the density of states
[2,26,36]. See Supplemental Material (SM), Sec. II [37],
for further information.
Self-consistent model.—Following [2,27,30], we per-

form a high density expansion of the resolvent (2).
Using the Dyson equation, G ¼ G0 þG0ΣG, we express
the Green’s function in terms of a bare propagator

G0ðp; zÞ ¼ ½z=n − ϵ0ðpÞ�−1 and the self-energy Σðp; zÞ,
with ϵ0ðpÞ ¼ f̂ð0Þ − f̂ðpÞ giving the bare dispersion rela-
tion. While G0 describes undamped harmonic oscillators,
Σ arises from the disorder in the elastic couplings. We
envision a perturbation traveling through the system, and
consider the field ϕi as excitation at the respective lattice
site so that the interaction between the perturbation and the
disorder can be called scattering event [30]. The self-energy
thus contains all the inelastic scattering events. Σ has a
series expansion in ð1=nÞ and vanishes for n → ∞, where
the disorder vanishes. Thus, 1=n quantifies the disorder and
the weakening of the elastic constants fðri − rjÞ when the
separation of particles gets larger. Using Feynman dia-
grams, we reconstruct the different inelastic scattering
processes. Since this approach has been tried before
[2,27,30], we moved further comments on the technical
details to SM, Sec. I [37].
The derivation of our self-consistent model starts with

the insight that any contribution to the self-energy neces-
sarily ends with the same vertex and that the momentum is
conserved at every vertex. This allows us to write down the
self-energy schematically:

ð3Þ

Here, a straight line represents the bare propagator; a
curly line a density fluctuation, and the circle denotes a
vertex and marks an inelastic scattering event. The square
can be regarded as a renormalized vertex [38], which
absorbs all possible insertions at a bare vertex. The letters
A, B, C just label the different building blocks in (3) which
are of second order in density fluctuation. The three dots
represent more diagrams with more simultaneous density
fluctuations. Every new loop comes with an additional
factor 1=n. Thus, one can truncate the expansion after a few
orders in the high density limit.
A self-consistent model is easily constructed by only

keeping classes of diagrams with the topologies A, B, andC
and, in the lower line of Eq. (3), by replacing the bare
propagator between two bare vertices with the full Green’s
function Gðp; zÞ. (Note, a dressed Green’s function ending
in a renormalized vertex would lead to an overcounting.
This can be easily seen by inserting the Dyson equation.) In
contrast to earlier models [2,33,39], this resummation takes
all the diagrams that topologically match the ones from
second order perturbation theory and hence nonplanar
diagrams into account. We do this for two related reasons:
(i) QLMs are arguably important for the modes of vibra-
tions of low temperature glasses [14,15,17,40] and one
must therefore correctly consider multiple local scattering
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events. Planar diagrams underestimate these scattering
sequences [14,15,28]. (ii) Nonplanar diagrams are needed
to give the correct Rayleigh damping of sound modes for
p → 0 and to prevent a potential infrared divergence of the
self-energy [29,41]. The Feynman rules stated in SM, Sec. I
[37], allow us to write down the associated amplitude for
our self-consistent model

Gðp; zÞ ¼ 1

z=n − ϵ0ðpÞ − Σðp; zÞ ; ð4aÞ

Σðp; zÞ ¼
Z

d3k
ð2πÞ3 Vðk; pÞVðk; p; zÞ; ð4bÞ

�
nG−1

0 ðk; zÞ −
Z

d3q
ð2πÞ3 V

2ðq; kÞGðq; zÞ
�
Vðk; p; zÞ

¼ Vðk; pÞ þ
Z

d3q
ð2πÞ3 ½Vðq − k; 2q − pÞ þ Vðp − q; kÞ

×Gðjp − k − qj; zÞVðp − k; qÞ�Vðq; p; zÞ; ð4cÞ

Vðk; pÞ ¼ f̂ðkÞ − f̂ðk − pÞ ¼ −Vðp − k; pÞ: ð4dÞ

While one could easily include more diagrams, there is no
need for it. On the contrary, we will now argue that this
minimal model successfully captures all the vibrational
phenomena of low temperature glasses. Importantly, we
consider stable glass states while previous approaches had
considered marginally stable glasses where a close-by
instability leads to vibrational anomalies [2,39,42].
Results.—(a) Dispersion relation: The dispersion rela-

tion ϵðpÞ ¼ nðϵ0ðpÞ þ Re½Σðp; z ¼ 0�ÞÞ characterizes the
peak positions of the vibrational modes in the dynamic
structure factor; it is shown in Fig. 1. The limiting
proportionality ϵðpÞ ∝ n for n → ∞ arises from the pair-
wise interaction among all particles. The expansion ϵðp →
0Þ → ðcTpÞ2 indicates the presence of sound waves in the
hydrodynamic limit. They are expected as Goldstone
modes arising from broken translational invariance.
Here, cT is the (transverse) speed of sound. Lowering
the density increases the disorder and weakens the elas-
ticity; the frequencies of vibrations become softer.
Additionally, a dip appears around σp ≈ 10. This indicates
a negative dispersion of the sound velocity, i.e., sound
softening, and also suggests the presence of the boson peak
in the VDOS [6,7,13]. For very small n, ϵðp ≈ 10=σÞ may
become negative, but this density range is not considered.
Considering only diagrams of type A in Eq. (3), a self-
consistent resummation of all planar diagrams is possible
[2,39], which for reference is presented in SM, Sec. V [37].
It captures wave modes equally well and gives comparable
results for ϵðpÞ as included in Fig. 1.
(b) Sound attenuation: The sound attenuation is given

by the imaginary part of the self-energy. It determines the

width of the vibrational mode around the sound pole. The
self-consistent resummation of the planar diagrams alone
[2,30,39] leads to strong hydrodynamic sound damping
(viz. ∝ p2), while experiments [6,12] and simulations
[7,14,43] indicate weaker Rayleigh damping (viz. ∝ p4).
It can be understood to result from wave scattering off the
frozen disorder. To show that the nonplanar diagrams fix
the error of a planar self-consistent approach, we argue that
the imaginary parts of the planar diagrams [class A, first
line in Eq. (4c) and given in diagram (5a)] and nonplanar
diagrams [class B, last line in Eq. (4c) and given in diagram
(5b)] cancel each other exactly for p → 0.

ð5aÞ

ð5bÞ

10-1 100 101

0

5

10

15 n=0.5
n=1
n=2
n=3.5
n=5
n=6.5

FIG. 1. The reduced dispersion relation ϵðpÞ=n (solid lines) is
shown for different densities as a function of wave vector p. It is
compared to the associated bare dispersion ϵ0ðpÞ (dash-dotted
line) and to the result from the planar resummation (dashed lines)
[39]. The limit of sound propagation, ϵðp → 0Þ → ðcTpÞ2 is
indicated for n ¼ 0.5. At this n, the vertical bar marks
pBP ¼ ωBP=cT , the wave number delimiting the sound behavior.
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The thick line represents the full Green’s function. Both
diagrams describe equivalent scattering processes off
two density fluctuations but in different sequence. The
cancellation can be seen by applying the Sokhotski-
Plemelj identity ½x� i0��−1 ¼∓ iπδðxÞ þ Pð1=xÞ to the
full propagator in the hydrodynamic limit and by inte-
grating over k; here, P represents the Cauchy-principal
value. For small p, the symmetry (4d) gives the cancella-
tion; see proof in SM [37], Sec. III. It also fixes the
infrared divergence problem [29,41]. The building block
containing the four vertex [diagram C in (S5) in SM [37] ]
gives the correct imaginary part by itself. In total,
this leads to Gðp; zÞ=n ¼ ½z − ϵðpÞ − iωðpÞΓðpÞ�−1 with
ΓðpÞ¼nImΣðp;z¼ϵðpÞÞ=ωðpÞ¼BRp4 around the sound
pole ωðpÞ ¼ ffiffiffiffiffiffiffiffiffi

ϵðpÞp
in the hydrodynamic limit. The

strength of Rayleigh damping BR increases with disorder.
Figure 2 shows the sound attenuation for different

densities in the two loop approximation; see SM [37]
for details. Since our full model (4) topologically coincides
with the second order, the second order solution confirms
that (4) predicts the correct sound attenuation.
(c) Vibrational density of states: The VDOS can be

calculated from the large wave-vector limit of the Green’s
function where only diagonal elements of M contribute in
Eq. (2) [2,27]; see SM, Sec. IV, for details [37]. The sound
modes already identified in the dispersion relation suggest
that the VDOS contains a Debye spectrum gDðωÞ ¼
ω2=ω3

D for ω → 0. The Debye frequency ωD characterizes
the region of long-wavelength sound and gives an upper
cutoff for waves in solids. It shrinks with increasing disorder
and themagnitude of the Debye law increases for decreasing
n; see panel (a) in Fig. 3. Note, that panel (a) has been

calculated under the assumption that ω2 is small; see SM,
Sec. IV [37]. This approximation breaks down for ω → 1.
The boson peak is situated at the upper end of the spectrumof
vibrations in the model. There, the VDOS can be simplified
as the contributions of the acoustic phonons to the self-
energy become weak. This leads to a closed expression for
the VDOS which is Wigner’s semicircle law as expected in
uncorrelated randommatrix ensembles [5,36,44]. The ampli-
tude of the bosonpeak shown in panel (c) of Fig. 3 only varies
little with increasing disorder, while its position shifts
trivially with

ffiffiffi
n

p
. The ratio of its position to the Debye

frequency, ωBP=ωD [see the inset in panel (c) of Fig. 3], is
smaller as one indicating that ωBP, and not ωD, sets the limit
for wave behavior in random matrix approaches [13,45].
In simulations of stable glasses [46], the boson peak lies low,
ωD=ωBP ≈ 6.
(d) Quasilocalized modes: Recent works [8,14,17,46]

established a close relation between QLMs and Rayleigh
damping by showing that there is a linear relation between
the damping coefficient BR and the coefficient A4 of
the characteristic VDOS of the quasilocalized modes
gloc ¼ A4ω

4. Additionally, it was argued in [47] that the
presence of QLMs implies a p4 sound attenuation.
Furthermore, it has been shown that QLMs give rise to
the boson peak [1,10,14,17,22]. This suggests that QLMs
are at the heart of the vibrational anomalies of disordered
materials. Our results in Figs. 2 and 3 support this narrative.
In finite systems, the participation ratio can be used to

10-2 10-1 100

10-5

100

p4

p2

FIG. 2. Sound attenuation as function of wave vector p.
Rescaled data

ffiffiffi
n

p
ΓðpÞ collapse for high densities n (see legend

in Fig. 1) for small p. Solid lines follow from the imaginary part
of the self-energy given by Eq. (4), dashed lines follow from
planar diagrams [39] (see SM [37]). The sound attenuation is
calculated around the sound pole ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nϵ0ðpÞ
p

. Dotted lines
represent asymptotic power laws.

10-4

10-3

10-2
(a)

10-2 10-1
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10-4  2
(b)

2 3 4 5
0

0.05

0.1

0.15

(c)

0 5 10

0.2

0.5

0.8

n

FIG. 3. Panel (a), full lines show the reduced vibrational density
of states (VDOS), ngðωÞ=ω2, for low frequencies at different
number densities n. Panel (b) presents the VDOS of the
quasilocalized modes (QLM), glocðωÞ=gDðωÞ, where the dashed
line shows the prediction of the HET theory. Panel (c) exhibits the
rescaled boson peak, ngðωÞ=ω2, which is located at the upper end
of the dispersion relation. The inset shows the ratio ωBP=ωD of
boson peak and Debye frequencies. The densities and their
respective colors are the same in all three panels following the
legend in Fig. 1.
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identify QLMs, which is impossible here as the
thermodynamic limit was taken. Thus, we interpret the
QLMs as the modes that have a VDOS proportional to
the Rayleigh term BR. We show the quartic contribution to
the VDOS in panel (b) of Fig. 3, again utilizing a small ω
approximation. We also compare it to the HET prediction
gHETloc =ω4 ¼ 2BR=ðπω2

Dc
4
TÞ [8,10], which underestimates

disorder in stable glasses quantitatively [14,46], where
ðc4Tω2

BPÞA4=BR ≈ 0.05 holds; our ratio 0.045 for n ¼ 0.5
lies close. The anomaly is missing in the VDOS of the self-
consistent planar theory [2,39], which confirms that planar
diagrams overly restrict the sequence of interactions of
vibrational modes with particle sites; for details see SM,
Sec. V [37].
Conclusion and outlook.—Our self-consistent field

theory of ERM accounts for disorder more accurately than
approaches based on mean field or coherent potential
approximations. The latter underestimate multiple local
scattering events, which become important if one has
bound states or localization effects [28]. Neglecting de-
pendent scattering processes in an ERM model leads to
a planar theory for the VDOS in the thermodynamic limit
[36]. This, together with the cancellation of diagrams in
Eq. (5) to get the correct Rayleigh damping suggests that
nonplanar diagrams are essential to correctly address
disorder. Besides this qualitative insight, we constructed
a self-consistent theory for disordered harmonic oscillators
that correctly predicts all the vibrational anomalies of
disordered materials. It can be coarse grained and then
leads to the widely used HET. After understanding the
topology of athermal disorder, the next step is to take the
vector character of the displacement fields into account and
to consider finite temperatures. Additionally, it would be
worthwhile to relate the approach to the soft potential
model and its generalizations.
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