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We investigate the intermolecular nonradiative charge transfer process in a double hydrogen-bonded
formic acid (FA) dimer, initiated by electron-collision induced double ionization of one FA molecule.
Through fragment ions and electron coincident momentum measurements and ab initio calculations,
we obtain direct evidence that electron transfer from the neighboring FA molecule to fill one of the two
vacancies occurs by a potential energy curve crossing of FAþþ þ FA with FAþ þ FAþ� curves, forming an
electronic excited state of dicationic dimers. This process causes the breaking of two hydrogen bonds and
subsequently the cleavage of C─H and C─O covalent bonds in the dimers, which is expected to be a
general phenomenon occurring in molecular complexes and can have important implications for radiation
damage to biological matter.
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Charge transfer (CT) between molecules is a key process
in many areas of physics, chemistry, biology, and materials
science [1–7]. It contributes substantially to the properties
and dynamics of molecular systems at the microscopic
level, which are essential for the fundamental understand-
ing of phenomena ranging from photosynthesis to DNA
damage [6–10]. In recent years, studying the relaxation
properties of molecular aggregates in their electronic
excited states has attracted a growing interest due to the
discovery of a wealth of new energy and charge transfer
processes, notably intermolecular Coulombic decay (ICD)
[11] and electron transfer mediated decay (ETMD) [12].
In ICD, an inner-valence vacancy is filled by an outer-

valence electron from the same site and the energy released
is transferred in a femtosecond timescale to ionize a
neighboring molecule [13,14]. In ETMD, the initial
vacancy is not filled locally, but by electron transfer from
a neighboring site that leads to the emission of a low-energy
electron from either the donor itself or another neighboring
species [15–21]. The latter process has been identified in
heterogeneous NeKr clusters involving a Neð2p−2Þ dica-
tion [20,21], where a 4p electron of Kr is transferred to fill
one of the two vacancies in Neð2p−2Þ, causing ionization of
another neutral Kr atom in the vicinity. This relaxation path,
however, is energetically not favorable for the homo-
geneous systems. Instead, a radiative charge transfer
(RCT) process may occur in which the energy released
upon neutralization of the dication is emitted as a photon
[22–26]. However, a recent study suggested that RCT is
efficiently quenched by nonradiative CT in mixed ArN2

clusters. This direct CT process can proceed because there
exists a manifold of excited N2

þ� states, which intersect
with the one-site dicationic states [27].
In the present Letter, we address the question whether

such direct CT can be a general pathway for the fragmen-
tation of molecules in more complex biological systems,
which remains largely unexplored. The biological analog
studied here is the formic acid (FA, HCOOH) dimer, which
forms dominantly an eight-membered ring structure with a
double hydrogen bond [Fig. 1(d)] [28,29]. This dimer is
closely related to biological systems like hydrogen-bonded
DNA base pairs [30–37].
We consider the double ionization of a FA dimer and

subsequent reaction pathway induced by electron impact
(E0 ¼ 90 eV). An important motivation of this Letter is
that the low-energy electron-initiated processes are found to
be responsible for an essential part of the radiation effects in
gases and condensed matter [38–40]. As is illustrated in
Fig. 1, the reaction can be divided into three steps. In step 1,
two outer-valence electrons from one molecule of the dimer
are ionized by electron impact (one-site double ionization),
forming a FAþþ · FA state [Fig. 1(a)],

e− þ FA · FA → 3 × e− þ FAþþ · FA: ð1Þ

We notice here that photoionization process is also possible
to create such a one-site dicationic dimer, e.g., by direct
double photoionization or through intramolecular Auger
decay [41,42]. In step 2, an outer-valence electron from
the neighboring site is transferred to fill one of the two

PHYSICAL REVIEW LETTERS 130, 233001 (2023)

0031-9007=23=130(23)=233001(7) 233001-1 © 2023 American Physical Society

https://orcid.org/0000-0001-8713-9619
https://orcid.org/0000-0002-8024-224X
https://orcid.org/0000-0001-6132-092X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.233001&domain=pdf&date_stamp=2023-06-07
https://doi.org/10.1103/PhysRevLett.130.233001
https://doi.org/10.1103/PhysRevLett.130.233001
https://doi.org/10.1103/PhysRevLett.130.233001
https://doi.org/10.1103/PhysRevLett.130.233001


vacancies. This process occurs by a potential energy curve
(PEC) crossing of the FAþþ þ FA curve with a FAþ þ
FAþ� curve where the molecule is electronically excited
[27] [Fig. 1(b)],

FAþþ · FA → FAþ · FAþ�: ð2Þ
In step 3, the system relaxes by Coulomb explosion and
further dissociation processes [Fig. 1(c)],

FAþ · FAþ� → FAþ þ FAþ�ðHþ COOHþ;…Þ: ð3Þ
The PECs for the doubly ionized states of FA dimers
are presented in Fig. 1(d) as a function of C-C distance,
which are calculated using the complete active space self-
consistent field method (CASSCF) method [43–45].
Below, we confirm the dissociation pathway by fragment
ions and electron coincident momentum spectroscopy as
well as ab initio molecular dynamics (AIMD) simulation.
Our experiments were carried out using a multiparticle

momentum spectrometer with a pulsed photoemission
electron source [46–48]. The fragmentation of FA dimers
are studied by triple-coincidence detection of two fragment
ions and one outgoing electron (see Supplemental Material
[49]). The three-dimensional momentum vectors for all
detected particles as well as the mass-over-charge ratios of
the ions are determined. For each detected ion pair, we
obtain the related projectile energy-loss (Eloss) spectrum,
which can provide insight into the ionization mechanism of
the reaction [29].
We identify the fragmentation channels using a time-

correlation map between two fragment ions, which is
shown in Fig. 2. This map shows several diagonal struc-
tures, among them the sharp one (solid line) indicates the
dimer fragments into two FAþ cations that are emitted back

FIG. 1. Illustration of direct CT in FA dimers. (a) Two outer-
valence (ov) vacancies are initially created on one site of the
dimer upon electron impact, which forms a FAþþ · FA dicationic
dimer. (b) One of the two vacancies is filled by an electron from
the neighboring site. This process occurs by a PEC crossing of the
FAþþ þ FA curve with a FAþ þ FAþ� curve. (c) As a result, the
dimer fragments with a Coulomb explosion pathway and sub-
sequent neutral dissociation. (d) Calculated PECs of one-site
dicationic ground state (FAþþ · FA) and two-site dicationic
ground (FAþ · FAþ) and various excited state dimers as a
function of C-C distance using the CASSCF method [27].

FIG. 2. Measured time-correlation map between two ions. The distributions at the solid, dashed, dotted, and dash-dotted diagonal lines
show the breakup of the dicationic dimer into FAþ þ FAþ, FAþ þ ðFA-HÞþ þ H, ðFA-HÞþ þ ðFA-HÞþ þ 2 × H, and ðFA-HÞþ þ
Hþ ðFA-OHÞþ þ OH channels.
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to back with momenta of equal magnitude but opposite
direction. In addition, the dashed, dotted, and dash-dotted
diagonal lines indicate the fragmentation channels where
some neutral species are emitted during the Coulomb
explosion process, i.e., FAþ þ ðFA-HÞþ þ H (dashed line),
ðFA-HÞþþðFA-HÞþþ2×H (dotted line), and ðFA-OHÞþþ
OHþ ðFA-HÞþ þ H (dash-dotted line). The width of these
correlation structures becomes broader due to the missing
momenta of the undetected neutral species. Furthermore,
we determine the product ratios as 1∶1.8∶2.0∶32.0 for
[FAþ þ FAþ]: [FAþ þ ðFA-HÞþ]: [ðFA-HÞþ þ ðFA-HÞþ]:
[ðFA-OHÞþ þ ðFA-HÞþ] channels, respectively. Compared
to the ion yield ratios of FAþ: ðFA-HÞþ: ðFA-OHÞþ in
the ionization process of monomers, which are 1∶0.8∶1.72
[55], we observe an enhancement of the fragmentation
yields in the present decay process, particularly for the
ðFA-OHÞþ þ ðFA-HÞþ channel. Experimentally, we have
identified that the FAþ þ FAþ Coulomb explosion channel
is mainly caused by the ICD mechanism upon inner-
valence ionization of one FA molecule with threshold of
about 28 eV [29], while the other channels involving
neutral dissociation are found to be due to one-site double
ionization of the dimer and subsequent nonradiative CT
process, which will be discussed below. It should be noted
that both ETMD and RCT are minor contributions here
because the excess energy is not sufficient to cause further
ionization of the homogeneous FA dimer through ETMD
[12,15–21], and according to [27] RCT is efficiently
quenched by direct CT process.
Figure 3 shows the projectile Eloss spectra related to the

different ion pairs. The threshold energy leading to specific
ionization products can be determined from the onsets of
the measured Eloss spectra, e.g., the Eloss ∼ 24.5 eV is
obtained for the ionization of He that is used for calibration
(solid curve in Fig. 3). For all three fragmentation channels,
we determine the Eloss to be roughly 32.5–33.0 eV, which is
in line with the double-ionization threshold of the FA
monomer (33.08 eV) computed using the coupled cluster
singles, doubles, and perturbative triples theory and the
aug-cc-pVTZ level basis set (vertical dashed line). This
Eloss is higher by about 5.0 eV than the calculated double-
ionization threshold of the FA dimer (vertical dash-dotted
line), which amounts to around 28 eV, corresponding to the
electronic ground state of the dicationic FAþ · FAþ dimer.
The obtained Eloss indicates that these fragmentation
processes are initiated by one-site double ionization of
the dimer, forming a FAþþ · FA state. Further electron
transfer between the molecules involving a PEC crossing
leads to the formation of a two-site dicationic excited state
like ð10a0Þ−1 · ð8a0Þ−1 [Fig. 1(d)]. The molecule can further
dissociate into different ionic and neutral species depending
on the internal energy and ionization state [37,55,56].
To quantify the fragmentation processes, we have per-

formed AIMD simulations starting from the sampled neutral
dimers with a given initial temperature (30 K) and vertical

transition to the two-site doubly charged FAþ · FAþ dimer
[57,58]. Here we further impart an amount of internal energy
(0.2 hartree) into the system to consider approximately the
electronic excited state of the two-site dicationic dimer.
The amount of internal energy is adapted to the measured
Eloss spectra shown in Fig. 3. Our calculations were
performed using an atom-centered density matrix propaga-
tion method with the long-ranged density-functional theory
at the ωB97XD=cc-pVTZ level (see Supplemental Material
[49]). We note that the dimer dynamics before the CT
process like the reduction of the intermolecular separation
are neglected in the present calculations. Further, the internal
electronic excitation energy is assumed to be converted into
vibrational thermal energy (internal conversion).
For the fragmentation channel of FAþ þ ðFA-HÞþ þ H,

the measured and calculated kinetic energy release (KER)
spectra are presented in Fig. 4(a). Here, the kinetic energy
(KE) for the neutral H is reconstructed from momentum
conservation. Our AIMD simulations reproduce very well
the center value (KER ∼ 4.5 eV) of the measured KER
peak. The width of the predicted KER peak is narrow in
comparison with the experimental spectrum due to the
possible nuclear dynamics occurring before the PEC cross-
ing, which are not considered in the simulations. Our
calculations indicate that after the relaxation process the
dicationic dimer starts to explode into two FAþ cations
with a direct breaking of the double hydrogen bond
[Fig. 4(c)]. During the explosion, one of the C─H bonded

FIG. 3. Projectile energy loss spectra. The distributions show
the results for the double ionization of FA dimers leading to
FAþ þ ðFA-HÞþ þ H, ðFA-HÞþ þ ðFA-HÞþ þ 2 × H and
ðFA-HÞþ þ Hþ ðFA-OHÞþ þ OH channels. Also included is
the spectrum for the single ionization of helium atom (Heþ).
I.P., ionization potential. Vertical dashed and dash-dotted lines
represent the double-ionization thresholds of the FA monomer
and dimer, respectively.
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H atoms (Ha) undergoes fast and strong vibrational
motions, see the KE spectrum of Ha in Fig. 4(b). In
addition, it can be seen from the center-of-mass (c.m.)
distance spectrum in Fig. 4(d) that the Ha atom starts to
dissociate from the FAa

þ cation at about 50 fs, which is
also visible from the path-integral trajectories (35–55 fs)
shown in the insets of Fig. 4(c). Our calculations reveal
that the hydrogen loss (H-loss) process is caused by the
increased internal vibration energy (Evib) of FAa

þ particu-
larly at t ∼ 50 fs [Fig. 4(f)] in comparison to that of the
nondissociative FAb

þ cations [Fig. 4(e)].
In the double H-loss process, i.e., ðFA-HÞþ þ

ðFA-HÞþ þ 2H channel, the kinetic energy sum of the
ðFA-HÞþ þ ðFA-HÞþ ion pair is provided in Fig. 5(a),
which is also compared with the AIMD calculations. Both
spectra show very good agreement with each other, which
display a single-peak structure centered at about 3.75 eV.
Our calculations indicate that, during the Coulomb explo-
sion, two C─H bonded H atoms tend to dissociate
subsequently from each of the FAþ cations. As shown

in Fig. 5(c), a fast H-loss process occurs with a high
probability at about 50 fs, in which the formation mech-
anisms are essentially similar to the aforementioned H-loss
process (Fig. 4), while in the second H-loss process, the KE
of the C─H bonded H atom (dotted line in Fig. 5(b)] is
initially too low to activate the H-loss process. We found
that an amount of the internal energy is transferred
gradually from the Evib of the ðFA-HÞþ group [solid line
in Fig. 5(b)] to the KE of the H atom. This leads to the final
dissociation of FAþ into ðFA-HÞþ and H atom at the later
times (t > 100 fs), see Fig. 5(d). More dynamical trajec-
tories are presented in Fig. 2 of the Supplemental Material
[49]. Similar results are also obtained for the fragmentation
dynamics of ðFA-OHÞþ þ OHþ ðFA-HÞþ þ H channel,
where the C─O bond breaking and OH abstraction are
found to be caused by the increased KE of OH species (see
Supplemental Material [49]).
To summarize, our studies of nonradiative charge trans-

fer between FA molecules reveal an efficient pathway for
fragmentation of molecular complexes induced by low-
energy electron impact. This intermolecular relaxation
process is initiated by the removal of two outer-valence
electrons from one site of the dimer, which is followed
by direct CT through a PEC crossing of FAþþ þ FA with
FAþ þ FAþ� curves. This leads to the formation of
electronic excited states of dicationic dimers, undergoing
Coulomb explosion and molecular fragmentation. The
occurrence of the direct CT process is proved by determin-
ing the initial state as a charge-localized FAþþ · FA

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Fragmentation dynamics of the dicationic dimer into
FAþ þ ðFA-HÞþ þ H pathway. (a) Measured KER spectrum in
comparison to AIMD calculation. (b)–(f) The AIMD calculated
results as a function of propagation time for the KE of C─H
bonded H atoms (b); The center-of-mass distance Rc:m: between
(c) FAþ and ðFA-HÞþ þ H and between (d) ðFA-HÞþ and
neutral H. The Evib for the (e) nondissociative FAþ cation and
the (f) dissociative ion FAþ → ðFA-HÞþ þ H. The insets in
(c) show the path-integral trajectories in the time range of 0-15
and 35–55 fs.
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FIG. 5. Fragmentation dynamics of the dicationic dimer into
ðFA-HÞþ þ ðFA-HÞþ þ 2 × H pathway. (a) Measured and
AIMD calculated kinetic energy sum spectrum of ðFA-HÞþ þ
ðFA-HÞþ ion pair. (b) The calculated KE of C─H bonded H atom
(dotted line) and the Evib of ðFA-HÞþ group (solid line) for one
typical trajectory of the second H-loss channel. The calculated
Rc:m: between ðFA-HÞþ and neutral H for the (c) first and
(d) second H-loss channels.
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dicationic state from the correlated projectile energy loss
spectra. Our studies demonstrate that even ground state
dications can further decay by direct CT involving with a
neighboring molecule, which is fundamentally distinct
from the ICD mechanism [11,13,14]. This Letter provides
a new route to experimentally separate ICD and direct CT
with the determinations of the initial electronic states.
The fragmentation dynamics of FA dimers following

direct CT were well described by the AIMD calculations,
which indicate that the two hydrogen bonds are broken
once the CT process occurs in the dimers, resulting in two
FAþ ions. Depending on the internal energy or the
ionization state, the C─H and C─O covalent bonds are
further cleaved in the timescale of about 50–100 fs. The
present results could have important consequences for
radiation damage to biological tissues both for the funda-
mental reason of generating various radicals and because of
the chemical bond breaking caused by this direct CT
process. Furthermore, we found that direct CT can lead
to a significant enhancement of fragmentation yields (∼36
times higher than ICD in the FA dimers), and the abundant
reactive radicals can constitute more severe local damage in
the biological system, which has not been considered
previously. The present observation is expected to be a
general phenomenon occurring in radiation biology and
chemistry where the dication can be created directly by the
ionizing radiations like x rays, neutrons, and swift ions or
indirectly through collision with the secondary electrons
[38–40]. Indeed, our further calculations indicate that it
may also occur in the complex system involving a Mgþþ
dication in the electronic ground state and a neutral glycine
leading to the C─C bond breaking of the molecule (see
Supplemental Material [49]), where glycine is the simplest
prototype of the amino acids commonly found in proteins
and the metal ions like Mgþþ are essential for living
organisms [59–61]. We note that the present observation is
not limited to dications, but similar processes will also take
place upon multiple ionization of the high-Z atoms in the
human body, e.g., by x-ray irradiation [59–61], leading to
extensive local damage to biomolecules.
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