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Classical shadows are a powerful method for learning many properties of quantum states in a sample-
efficient manner, by making use of randomized measurements. Here we study the sample complexity of
learning the expectation value of Pauli operators via “shallow shadows,” a recently proposed version of
classical shadows in which the randomization step is effected by a local unitary circuit of variable depth t.
We show that the shadow norm (the quantity controlling the sample complexity) is expressed in terms of
properties of the Heisenberg time evolution of operators under the randomizing (“twirling”) circuit—
namely the evolution of the weight distribution characterizing the number of sites on which an operator acts
nontrivially. For spatially contiguous Pauli operators of weight k, this entails a competition between two
processes: operator spreading (whereby the support of an operator grows over time, increasing its weight)
and operator relaxation (whereby the bulk of the operator develops an equilibrium density of identity
operators, decreasing its weight). From this simple picture we derive (i) an upper bound on the shadow
norm which, for depth t ∼ logðkÞ, guarantees an exponential gain in sample complexity over the t ¼ 0

protocol in any spatial dimension, and (ii) quantitative results in one dimension within a mean-field
approximation, including a universal subleading correction to the optimal depth, found to be in excellent
agreement with infinite matrix product state numerical simulations. Our Letter connects fundamental ideas
in quantum many-body dynamics to applications in quantum information science, and paves the way to
highly optimized protocols for learning different properties of quantum states.
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Introduction.—The development of controllable quan-
tum simulators has enabled the creation of complex and
highly entangled quantum states in laboratory settings,
leading to exciting new developments in quantum infor-
mation science and many-body physics [1–8]. These
advances raise the issue of how to efficiently characterize
such quantum states. Full quantum state tomography
requires exponentially many measurements in the size of
the system [9], motivating the need for more scalable and
efficient state-learning protocols. Recent progress in this
direction has come from the development of classical
shadows [10–22], a method to extract many physical
properties of states with a dramatically smaller number
of measurements. In this Letter, we shed light on the inner
workings of classical shadows by making connections to
foundational ideas in quantum dynamics on the spreading
and equilibration of operators.
Classical shadows use randomized measurements [23–25]
to form a compact representation of a many-body

quantum state, Fig. 1(a). The state ρ is first transformed by
a random unitary operation U (chosen from a suitable
“twirling ensemble”), then projectively measured, yielding
a computational basis state jbi. The measured basis state is
then rotated backward (on a classical computer), giving a
“snapshot” σ̂U;b ¼ U†jbihbjU. The average of these snap-
shots (over twirling unitaries and measurement outcomes)

is related to the true state ρ by a quantum channel,
EU;b½σ̂U;b� ¼ MðρÞ. If the measurements are tomographi-
cally complete [11], the channelM can be inverted (again on

FIG. 1. (a) Schematic of classical shadows via shallow circuits. A
state ρ is randomized by a “twirling” circuit U of depth t, then
measured; data are classically processed to estimate Pauli expect-
ation values. (b) Operator spreading and relaxation under chaotic
dynamics. ∘=• denote identity and traceless Pauli matrices,
respectively. (c) Summary of main results of this Letter. The
competition between operator spreading and relaxation determines
the optimal sample complexity of learning Pauli expectation values.
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a classical computer) to produce “inverted snapshots” ρ̂U;b ¼
M−1ðσ̂U;bÞ. These form a compact, approximate description
of the quantum state ρ—its classical shadow [11]. From this
descriptionone can extractmanyproperties of the state,which
remarkably do not have to be specified in advance—the
general philosophy of the method is to “measure first, ask
questions later” [25].
The usefulness of classical shadows depends on their

sample complexity, i.e., the number of experimental sam-
ples needed in order to estimate a certain property
of ρ within a given error. To learn an expectation value
TrðρOÞ, one builds estimators ôU;b ¼ Trðρ̂U;bOÞ that yield
the desired value in expectation {EU;b½ôU;b� ¼ TrðρOÞ}.
The sample complexity is determined by the variance of ô,
captured by the shadow norm kOksh, itself a function of the
twirling ensemble. The freedom in choosing the twirling
ensemble can thus be leveraged to optimize the learnability
of certain properties of a quantum state. For instance, “local
twirling” (where U ¼⊗i ui is a product of single-qubit
random unitaries) gives kOk2sh ¼ 3k for Pauli operators,
where k is the number of qubits on which O acts non-
trivially; this is best suited to learning the value of few-
body operators. On the opposite end, “global twirling”
(where U is a random Clifford unitary on the whole Hilbert
space) gives kOk2sh ¼ TrðO†OÞ, which favors learning,
e.g., the fidelity with a pure many-body state O ¼ jψihψ j,
but performs poorly on Pauli operators (kOk2sh ¼ 2N)
irrespective of locality [11].
Intermediate schemes, dubbed shallow shadows, have

been recently proposed [26–28] and use twirling ensembles
made of shallow quantum circuits, whose depth t can
be tuned to interpolate between the local and global
twirling limits. The finite depth t makes these easier to
implement on quantum hardware, and enables efficient
classical computation of σ̂ and ρ̂ via tensor-network
methods [26,27]. Surprisingly, these schemes were numeri-
cally observed to perform better than local twirling for
estimating the expectation value of contiguous, multisite
Pauli operators (interesting examples of such operators
include string order parameters for characterizing topo-
logical phases [29,30] and check operators of a quantum
code [31]). The optimal depth t⋆ðkÞ for a Pauli operator
acting on k contiguous sites was observed numerically to
scale as polylogðkÞ in one dimension [26], with a signifi-
cant gain in sample complexity over the local twlirling
protocol. The physical mechanism behind this behavior has
remained elusive thus far.
Here we analyze this problem analytically and find a

mapping of the shadow norm to the dynamics of Hamming
weight (the number of sites on which a Pauli operator acts
nontrivially, henceforth just “weight”) under the twirling
evolution. This mapping reveals that the optimal depth
for the estimation of contiguous Pauli operators is deter-
mined by the competition of two processes under chaotic
unitary dynamics, sketched in Fig. 1(b): operator

spreading [32–37] and operator relaxation, to be defined
below. Based on this picture, we prove that at depth
t⋆ðkÞ ∼ logðkÞ, shallow shadows realize an exponential-
in-k gain in sample complexity over local twirling in any
finite spatial dimension. We further develop an analytical
mean-field approximation for the shadow norm in one
dimension, indicating that at depth t⋆ðkÞ the sample
complexity nearly saturates a lower bound [∼2k, up to
polyðkÞ corrections], as sketched in Fig. 1(c); the prediction
shows excellent agreement with numerics on large Pauli
operators (up to k ¼ 1000) in infinite 1D systems.
Our results shed light on the inner workings of the

classical shadows protocol and how it relates to funda-
mental aspects of quantum dynamics. At the same time,
they give a practical, operational meaning to ideas about
operator dynamics, and promise applications toward highly
optimized classical shadow protocols for near-term quan-
tum devices.
Shadow norm and operator weight.—We begin by

deriving a relationship between the shadow norm and
operator dynamics valid if the twirling ensemble is locally
scrambled [38,39], i.e., such that measure dU over the
ensemble is invariant under U ↦ VU and U ↦ UV for all
product Clifford unitaries [40] V ¼⊗i vi, vi ∈ CliffðqÞ
(this holds for local and global twirling, as well as for
shallow shadows [26–28]).
We will consider a system of q-state qudits arranged on a

d-dimensional lattice consisting of N qudits. For qudits
with q > 2, we use “generalized Pauli operators” defined
by products of clock and shift unitary operators [41]. The
measurement channel reads as

MðρÞ ¼
X
b

Z
dUhbjUρU†jbi

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Probðbjρ;UÞ

U†jbihbjU
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{snapshot σ̂U;b

; ð1Þ

where b ranges over allD ¼ qN computational basis states.
All Pauli operators are eigenmodes of the channel

[20,26,27], and the eigenvalue depends solely on the
twirling ensemble and on the support A of the Pauli
operator: M½OA� ¼ λAOA, where OA denotes a Pauli
operator supported in region A. The eigenvalues can be
expressed as [42]

λA ¼
XN
w¼1

πA;tðwÞðqþ 1Þ−w; ð2Þ

where πA;tðwÞ is the averaged weight distribution [46] of
the twirled operator OAðtÞ≡ UOAU†:

πA;tðwÞ ¼
X

P∶jPj¼w

EUjD−1Tr½POAðtÞ�j2: ð3Þ

The sum runs over Pauli operators P, and jPj is the weight
of P.
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With this result, we can exactly compute the shadow
norm: kOAk2sh ¼ TrðO†

AM
−1½OA�Þ=D ¼ λ−1A [26,27,42].

Combined with Eq. (2), this yields an exact relationship
between the shadow norm and the weight distribution of a
twirled operator,

kOAk2sh ¼ ½ðqþ 1Þ−w�−1 ð4Þ

where the overline denotes averaging over w according to
πA;tðwÞ. Equation (4) constitutes one of the main results of
our Letter.
Equation (4) reproduces the well-known results for local

and global twirling of qubits (3k and 2N respectively [11])
in the t ¼ 0 and t → ∞ limits [42]. However, our result
allows us to understand the behavior of the shadow norm
away from these well-known limits, by leveraging the
connection to the dynamics of operator weight under
chaotic evolution (i.e., the twirling ensemble U) as a
function of time (i.e., the variable depth t).
Relaxation of operator weight.—We focus on Pauli

operators whose support A is a spatially contiguous region
(though our results also have implications for more general,
noncontiguous Pauli operators [42]). We consider twirling
ensembles of diluted random brickwork circuits, i.e.,
circuits where each gate is Haar random [47] with prob-
ability ϵ and is the identity otherwise. These include
conventional random circuits (ϵ ¼ 1), but allow us to slow
down the twirling dynamics and discretize time more
finely. To study the dynamics of operator weight during
twirling, we introduce “occupation” variables ni (ni ¼ 0 if
a Pauli operator is the identity at site i, and ni ¼ 1
otherwise). Before twirling, we have a fully packed Pauli
operator in region A: ni ¼ 1 if and only if i ∈ A. As the
twirling depth t increases, two things happen: (i) Operator
spreading—the boundary of the operator moves outward,
so that niðtÞ > 0 also on sites i ∉ A that were initially
empty, leading to an increase in weight; and (ii) Operator
relaxation—the bulk of the operator relaxes from its fully
packed initial state (ni ¼ 1 ∀ i ∈ A) toward an equilibrium
density niðtÞ → 1 − q−2 (when all q2 Pauli operators are
equally likely), leading to a decrease in weight.
As the latter is a bulk effect, it always dominates (at early

times) for a sufficiently large region A. Thus the shadow
norm must initially decrease from its t ¼ 0 value (local
twirling), before eventually becoming dominated by oper-
ator spreading and increasing again toward its t → ∞ value
(global twirling), implying a minimum at some finite
optimal depth t⋆.
To characterize the relaxation process, we focus on an

infinite, fully packed Pauli operator, and consider the
average occupation of a site niðtÞ as a function of twirling
depth t. For the twirling ensembles under consideration this
problem can be addressed analytically in one spatial
dimension. We leverage the fact that the vector of occu-
pation probabilities pn (n ∈ f0; 1gN labels occupation

configurations) evolves under the circuit-averaged dynam-
ics via a Markov process, p0

n ¼ P
mMn;mpm with M a

stochastic matrix (
P

m Mm;n ¼ 1 ∀ n), to solve for the
local occupation number analytically [34,36]. We focus on
the “density of holes” hi (hi ≡ 1 − ni) and introduce
vectors in the binary space of (identity, traceless Pauli)
j∘Þ ¼ ð1; 0ÞT , j•Þ ¼ ð0; 1ÞT , and j ⊕Þ ¼ ð1; 1ÞT . The
fully packed initial state pinit

n ¼ Q
i δni;1 evolves under

the averaged circuit into a final state pfinal
n , and we have

hi ¼
P

n p
final
n δni;0, corresponding to a matrix element

ð� � � ⊕⊕ ∘ ⊕⊕ � � � jMtj � � �••• � � �Þ where Mt is the
transition matrix for the averaged depth-t twirling circuit.
It is advantageous to consider the backward evolution

MT
t acting on the state j � � � ⊕⊕⊕ ∘ ⊕⊕⊕ � � �Þ: we

have MT j⊕∘Þ¼ϵaj⊕⊕Þþð1−ϵÞj⊕∘Þþϵð1−aÞj∘∘Þ
[Fig. 2(a)], where M is the transition matrix for a single
2-qudit gate, a ¼ 1=ðq2 þ 1Þ, and ϵ is the dilution param-
eter (see the Supplemental Material [42]). Moreover we
have MT j∘∘Þ ¼ j∘∘Þ (unitary invariance of the identity
operator) and MT j ⊕⊕Þ ¼ j ⊕⊕Þ (conservation of total
probability under the Markov process [48]). Thus the
structure of a domain of ∘ in a background of ⊕ is
preserved under MT

t , and domain walls undergo a random
walk with a bias that tends to expand the∘ domain. When
the domain walls are adjacent, they may annihilate, leading
to an all-⊕ state which is invariant under MT and yields a
contribution ð⊕ j•ÞN ¼ 1; if the domain of∘ survives all

the way to t ¼ 0, the result vanishes as it involves at least
one overlap ð∘j•Þ ¼ 0 [Fig. 2(b)].

In all, the average density of holes hiðtÞ equals the
probability that the two random walkers annihilate in t
steps or less; conversely, niðtÞ equals their survival prob-
ability, which can be computed analytically: at large t,

niðtÞ ¼ 1 − q−2 þ ct−3=2e−γt þ… ð5Þ

for any site i in the bulk of the operator, with c > 0 a
constant and … denoting subleading corrections in t [42].
The relaxation rate γ is related to the circuit’s entanglement
velocity vE (which sets the decay of half-system purity as
∼q−vEt) [49] via γ ¼ 2 lnðqÞvE; see the Supplemental
Material [42]. The t−3=2 is a universal correction related

FIG. 2. (a) Update rules for a domain wall between ⊕ and ∘
states. (b) Random-walk calculation for the average density of
holes hiðtÞ: if the two walkers fail to annihilate within t steps, the
diagram vanishes.
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to the first return of a randomwalker in one dimension [50].
We conjecture that the convergence to equilibrium is
exponential in any finite spatial dimension, and numeri-
cally verify it in two dimensions [42].
Scaling of the optimal depth.—With these key

results in hand, we return to the question of the optimal
depth. From Eq. (4) and Jensen’s inequality, we have
kOAk2sh ≤ ðqþ 1Þw; in one dimension, the average weight
obeys w̄ðtÞ¼P

i niðtÞ≃lðtÞnbulkðtÞ, with lðtÞ ¼ kþ 2vBt
the average spatial length of the twirled operator, which
spreads with butterfly velocity vB [34,36,51], and nbulkðtÞ
the bulk density of traceless Paulis [Eq. (5)] (the structure
of the operator’s fronts can be neglected at large k). The
bound is minimized at depth

t⋆ðkÞ ¼ γ−1
�
lnðkÞ − 3

2
ln lnðkÞ þ o½ln lnðkÞ�

�
ð6Þ

(see the Supplemental Material [42]). At t ¼ t⋆ðkÞ, the
shadownorm is bounded above by ðqþ 1Þð1−q−2Þk × polyðkÞ,
exponentially smaller than the t ¼ 0 (local twirling) value of
ðqþ 1Þk; e.g., for qubits (q ¼ 2) the scaling is 3

3
4
k ≃ 2.28k vs

3k. The scaling logðkÞ [as opposed to more general
polylogðkÞ [26] ] is especially important as it ensures a
matrix-product operator representation for M−1 with
polyðkÞ bond dimension, key to the classical computational
cost of the method [26,27].
We conjecture that t ¼ t⋆ðkÞ minimizes not just the

upper bound ðqþ 1Þw̄, but the shadow norm itself, and that
the achievable scaling of the latter is polyðkÞ × qk—nearly
saturating the qk lower bound obtained by full relaxation
with no spreading. This is supported by an analytical
calculation within a mean-field approximation, where we
neglect correlations between occupations ni, nj at different
sites; see the Supplemental Material [42]. We find that
kOAksh is dominated by Pauli operators of size kþ 2vspB t,
with a renormalized “saddle-point butterfly velocity” vspB
smaller than the original vB, and equal to the entanglement
velocity vE ¼ γ= lnðq2Þ. This predicts the late-time behav-
ior kOAk2sh ∼ qkþ2vspB t ¼ qkeγt. Minimizing the mean-field
shadow norm over t yields the same t⋆ðkÞ as in Eq. (6), and
thus the optimal shadow norm ∼kqk.
It follows also that shallow shadows can be advanta-

geous over local twirling not just for operators with
contiguous support, but also for various types of non-
contiguous operators, notably including typical random
Pauli strings on a finite segment [42].
Numerical simulations.—To check the validity of the

above results, we perform numerical simulations of the
averaged twirling dynamics with infinite matrix product
states (IMPS) [52] (see the Supplemental Material [42]).
Figure 3(a) shows the shadow norm for contiguous
operators in a 1D chain of qubits (q ¼ 2), as a function
of depth t. Three regimes are clearly visible: the t ¼ 0

(local-twirling) value of 3k, a minimum at t ∼ logðkÞ, and
finally exponential growth due to continued operator
spreading after relaxation. In undiluted circuits (ϵ ¼ 1)
the optimal depth t⋆ðkÞ takes very small integer values,
severely limiting the resolution on its scaling [26]. This
issue is greatly alleviated by gate dilution: the shadow norm
approximately behaves as a smooth function of an “effec-
tive depth” τ ¼ γðϵÞt [Fig. 3(b)], where γ is the Pauli
density relaxation rate in Eq. (5)—smaller ϵ yields a finer
sampling of τ. To finely resolve the scaling of t⋆ðkÞ, we set
ϵ ¼ 0.05 obtaining the results in Fig. 4. The data show
remarkable agreement with Eq. (6), including the sublead-
ing correction ∼ ln lnðkÞ. The value of 3=2 for the ratio of
coefficients is universal [determined by the probability of
first return of a random walk via Eq. (5)], which constitutes
a nontrivial check of our analytical results.

(a) (b)

FIG. 3. (a) Shadow norm of a weight-k Pauli string OA in an
infinite 1D system of qubits (q ¼ 2), under twirling by depth-t
brickwork circuits of Haar-random gates (no gate dilution,
ϵ ¼ 1). Data from IMPS simulations with bond dimension
χ ¼ 2048. Circled dots indicate the optimal depth. (b) Same
quantity for fixed k ¼ 100 and variable gate dilution ϵ. Inset:
same data as a function of “effective depth” τ ¼ γðϵÞt, compared
to qkeγt (dashed line).

FIG. 4. Optimal depth t⋆ðkÞ as a function of Pauli operator
weight k, obtained from IMPS data as in Fig. 3, for k up to 1000.
The gate dilution is ϵ ¼ 0.05 and bond dimension is χ ¼ 2048.
Best fits to t⋆ðkÞ ¼ a00 lnðkÞ − c00 (dotted line) and t⋆ðkÞ ¼
a½lnðkÞ − b ln lnðkÞ� − c (dashed line) are shown. The doubly
logarithmic correction is found to be b ¼ 1.47ð5Þ, consistent with
the predicted 3=2 in Eq. (6). Inset: discrete derivatives
δt⋆ðkÞ=δ lnðkÞ, plotted vs 1= lnðkÞ, indicate a doubly logarithmic
correction b ¼ 1.6ð1Þ, also consistent with 3=2.

PHYSICAL REVIEW LETTERS 130, 230403 (2023)

230403-4



Higher dimensions.—While several details of the above
discussion are special to one dimension, the general picture
applies to systems in any finite spatial dimension. The
leading-order result [t⋆ðkÞ ∼ ln k] depends only on the
balancing of operator spreading and relaxation for oper-
ators whose boundary is much smaller than the bulk. In
systems with all-to-all connectivity or on expander graphs,
where a subsystem’s bulk and boundary generally have
comparable sizes, the optimal twirling depth is expected to
be zero, i.e., local twirling performs best. We test this
expectation on a “Brownian circuit” model whose operator
dynamics are described by simple, closed equations,
and are amenable to exact treatment; we find the optimal
depth is t ¼ 0 unless the operator is supported on a
sufficiently large fraction of the system (k≳ N=2); see
the Supplemental Material [42].
Discussion.—We have studied how classical shadows

based on shallow quantum circuits can be used to learn
expectation values of Pauli operators. We have connected
the sample complexity of classical shadows to the dynam-
ics of operator weight, identifying two competing dynami-
cal processes (operator spreading and relaxation) whose
balance determines the optimal depth t⋆ of the twirling
circuits. This picture elegantly explains previous numerical
observations on one-dimensional systems [26,27], and
extends the result to systems in any finite dimension.
Further, it shows that the optimal depth scales as t⋆ ¼
Oðln kÞ with the weight k of the learned operator, as
opposed to a more general t⋆ ¼ polylogðkÞ scaling [26],
ensuring a polyðkÞ classical computational cost for the
optimal protocol.
Our Letter opens up several directions for future

research. It would be interesting to generalize our results
to different settings for classical shadows, beyond shallow
brickwork circuits on qudits. The recent proposals for
classical shadows in analog simulators [53,54] or on
fermionic [17,18] and bosonic [55] systems are interesting
possible directions. The validity of our results in higher
dimension also suggests interesting applications to, e.g.,
topological or fracton codes and phases [56–61]. Further, it
would be interesting to extend our analysis to measures of
entanglement [23,24], and to make contact with NISQ
experiments [15,62] by understanding the impact of noise
on our results [13,63].
Finally, the concept of operator relaxation may be of

independent interest from the point of view of quantum
dynamics. While operator spreading is central to the study
of quantum chaos [32–37], operator relaxation and similar
diagnostics of local equilibration in operator space
[35,37,64] are comparatively underexplored, and may
prove similarly useful in understanding signatures of
quantum-chaotic behavior [65].
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