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We explore oscillatory behavior in a family of periodically driven spin chains which are subject to a
weak measurement followed by postselection. We discover a transition to an oscillatory phase as the
strength of the measurement is increased. By mapping these spin chains to free fermion models, we find
that this transition is reflected in the opening of a gap in the imaginary direction. Interestingly, we find a
robust, purely real, edge π mode in the oscillatory phase. We establish a correspondence between the
complex bulk spectrum and these edge modes. These oscillations are numerically found to be stable against
interactions and disorder.
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Introduction.—Recent years have witnessed a growing
interest in the monitored many-body quantum dynamics. It
has been shown that there exists a generic entanglement
phase transition in a unitary quantum dynamics subject to
continuous monitoring [1–5]. By varying the monitoring
strength, the individual quantum trajectory changes from
a highly entangled volume-law phase to a disentangled area-
lawphase.Besides this phase transition,monitoringquantum
dynamics can generate novel quantum phases, which exhibit
quantumcriticality or even host quantumorders [6–12]. Here
the order can be conventional order or topological order, and
is determined by the form of the measurement operator.
Most of these studies are focused on the static order in the

steady state. In this Letter, we explore quantum ordered
phases with oscillatory behavior in a monitored qubit
system.We investigate this behavior in a periodically driven
nonunitary circuit. We show that the steady state can exhibit
persistent oscillations between two ordered phases.
Moreover, these oscillations break the discrete time-
translation symmetry of the underlying dynamics, similar
to time crystals which have been observed in disordered
Floquet many-body localized systems [13–16]. In our
model, the quantum order is protected by local “forced”
measurements that prefer specific ordered configurations.
Applied local unitaries flip between these ordered configu-
rations, leading to oscillations.
In systems which can be mapped to models of free

fermions, we demonstrate that such an oscillation behavior
is due to a non-Hermitian analog of Majorana zero modes.
Such an idea has been used to understand the ground state
degeneracy in the Ising spin chain [17]. It has further been
employed to understand “(almost) strong modes” that
exhibit long coherence times in various static and driven
Hermitian systems [18,19]. In our model, the zero mode
exists in an imaginary gap in the spectrum, is localized on
the boundary, and anticommutes with the evolution oper-
ator, resulting in persistent oscillation behavior.

Nonunitary Floquet dynamics.—The dynamics of peri-
odically driven systems over one period T is governed by
the Floquet operator V̂ [20]. Analogous to unitary dynam-
ics, in the nonunitary case, the dynamics of the quantum
state is given by the repeated application of V̂ followed by
an explicit normalization of the state,

jψðNTÞi ¼ V̂ðNTÞjψ0i
kV̂ðNTÞjψ0ik

¼ ðV̂ÞN jψ0i
kðV̂ÞN jψ0ik

; ð1Þ

where T has been set to 1. To understand the properties of
the steady states—in the limitN → ∞—we need to analyze
the spectrum of the V̂ operator.
It is also convenient to define an effective non-Hermitian

Hamiltonian ĤF by expressing V̂ as e−iĤF . We denote
the (complex) eigenvalues of ĤF by fEng, their corre-
sponding right eigenstates by fjEnig, and order them such
that ImfEjg ≥ ImfEjþ1g. A generic initial state can be
expressed as

jψ0i ¼
X

cjjEji: ð2Þ

Under time evolution, the unnormalized state,

jψðNTÞi ¼
X
j

cje
−iER

j NeE
I
jN jEji; ð3Þ

where ERðIÞ
j denotes the real (imaginary) part of Ej. Clearly,

as N → ∞, the quantum state approaches jE1i with the
largest EI

1, provided that c1 ≠ 0.
In principle, a degeneracy in the imaginary direction can

emerge so that EI
1 ¼ EI

2 ¼ � � � ¼ EI
NS

for some NS ≥ 2.
Generic initial states then do not evolve to a single final state;
instead, they continue to evolve, even at late times, in the
subspace spanned by fjE1i; jE2i;…; jENS

ig. If the real parts
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ER
j are uniformly separated so that ER

j ≡ E0 þ jð2π=NSÞ,
the steady states can exhibit periodic behavior, with period
NS. In this Letter, we focus on NS ¼ 2.
Free fermions and “zero” modes.—When the

Hamiltonian Ĥ can bemapped to a system of noninteracting
fermions, themany-particle spectrumof Ĥ can be built up by
independently filling in the different single-particle energy
levels. Since the many-particle energies are the sums of the
energies of the occupied levels, a two-dimensional steady-
state subspace manifests in the presence of a single-particle
mode c†0, the imaginary part of whose eigenvalue ϵ0 is 0. We
term such modes that exist in the imaginary gap of the
spectrum i0 modes, to distinguish them from the familiar
zero modes that exist in a real gap. Many-body eigenstates
can be grouped into pairs that differ solely in the occupation
of c†0. States in a pair have energies with the same imaginary
part, and real parts offset by ϵ0.
With this picture in mind, given a V̂ which describes

noninteracting fermions, the many-body spectrum of V̂ is
now obtained from the product of its single-particle
eigenvalues. A single-particle mode c†0 with the property
that V̂c†0 ¼ −c†0V̂ð¼e−iπc†0V̂Þ generates a similar pairing of
many-body states which differ in the occupation of c†0,
thereby having eigenvalues with the same absolute value,
but differing in sign.
Model and setup.—We consider a system of L spins

subject to periodic, nonunitary driving, described by a
Floquet operator V̂. We study operators V̂ which can be
written as a composition of an imaginary time evolution ÛI

and a unitary operator ÛR. We also define the non-
Hermitian Floqet Hamiltonian ĤF. We consider a specific
form for ÛI and ÛR, as follows:

V̂ ¼ ÛIÛR;

ÛI ¼ eβ
P

j
ẐjẐjþ1 ;

ÛR ¼ e−iJzz
P

j
ẐjẐjþ1e−iJxx

P
j
X̂jX̂jþ1e−ihy

P
j
Yj ;

ĤF ≡ i log V̂: ð4Þ

X̂j, Ŷj, and Ẑj refer to the Pauli operators acting non-
trivially only on the spin at site j. The parameters β, Jzz, Jxx,
and hy are all real. ÛI can be interpreted as a forced
measurement with β being the strength of the measurement.
ÛR is composed of unitaries that describe nearest-neighbor
XX andZZ couplings and a pulsewhich rotates each spin by
2hy about the Y axis. The operator V̂ has a Z2 symmetry
represented by the parity operator P ¼ Q

j Ŷj, which rep-
resents a simultaneous π rotation of every spin about the Y
axis. The time evolution proceeds according to Eq. (1).
In the simplest case, where the pulses are near-perfect π

rotations about the Y axis, the nearest-neighbor couplings

Jxx ¼ Jzz ¼ 0, and the measurement strength β → ∞, we
expect to see oscillations between the two ordered phases
j↑↑↑ � � �i and j↓↓↓ � � �i. Our objective is to study the
consequences of moving away from this fine-tuned limit
and examine if there exists a phase with finite β in which
oscillations are present.
Bulk spectrum.—We begin by studying the single-

particle spectrum of the operator V̂ with a fixed β. The
corresponding noninteracting Hamiltonian HF has the
form ĤF ¼ 1

4

P
i;j γiHijγj, with H a complex, antisym-

metric 2L × 2L matrix and γi being Majorana fermion
operators. This Hamiltonian can be diagonalized analo-
gously to a Hermitian free fermion system [21], albeit now
with a complex spectrum and complex Majorana-like
operators gj:

ĤF ¼ i
2

XL
j¼1

ϵjg2j−1g2j: ð5Þ

Since the V̂ (hence also ĤF) that we consider does not
conserve particle number, we plot the quasienergy spec-
trum in pairs of �ðϵ=2Þ, where the þ (−) corresponds to a
single-particle state being occupied (unoccupied), resulting
in 2L points being presented on each plot. A many-body
eigenstate of V̂ is determined by choosing one mode in
each of the L pairs. The process of obtaining and diagonal-
izing ĤF is detailed in Ref. [22].
We first focus on the regime where β is large.

Consequently, the spectrum is gapped for a wide range of
hy. As hy is varied, an eigenvalue gap closes and reopens in
the imaginary direction. With open boundary conditions, i0
modes are present on either side of the gap closing. When hy
is small, the modes are degenerate. However, when hy is
tuned through the reopening of the imaginary gap, a π
splitting between the real parts of the i0 modes emerges, as
shown in Fig. 1. This is accompanied by the presence of
oscillations in the steady state. The transition that we observe
concerns the development of this robust splitting of π in the
real values—not merely the presence—of the i0 modes.
For the case where Jxx ¼ Jzz ¼ 0, the bulk spectrum of

HF, ϵðkÞ can be obtained analytically:

ϵðkÞ ¼ i
2
log

h
zðkÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − (zðkÞÞ2

q i
;

zðkÞ ¼ cosh 2β cosð2hyÞ þ i sinhð2βÞ sinð2hyÞ cosðkÞ: ð6Þ

The gap closing in the imaginary direction corresponds
to jz� i

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
j ¼ 1. This can only happen at k ¼ ðπ=2Þ,

requiring the condition

jcoshð2βÞ cosð2hyÞj > 1 ð7Þ

for the gap to remain open. The phases with and without
a π splitting between the real parts of the i0 modes’

PHYSICAL REVIEW LETTERS 130, 230402 (2023)

230402-2



energies correspond to coshð2βÞ cosð2hyÞ < −1 and
coshð2βÞ cosð2hyÞ > 1, respectively.
Edge i0 modes.—We now analyze the i0modes and their

real-space distribution in detail. We begin by delineating
the role of an i0 mode. When the imaginary time evolution
part of V̂ is sufficiently strong, the steady state is super-
position of two states fj1i; j2ig which have opposite parity
and are the right eigenvectors of V̂. These are degenerate, in
the sense that V̂jii ¼ λijii for i ¼ 1, 2, jλ1j ¼ jλ2j and
jλ1j > jλjj for all other eigenstates jji (j ≠ 1, 2) of V̂. An i0
mode is an operator F̂ that can toggle between j1i and j2i.
Since it toggles between states of different parity,

F̂ anticommutes with P̂. Further, since jλ1j ¼ jλ2j,
V̂ F̂ ¼ eiθF̂ V̂, with θ real. This can be seen from the
effect of V̂ on a superposition of j1i; j2i, since if θ were
complex, there would be only one steady state:

V̂jψi ¼ V̂ðaj1i þ bj2iÞ ¼ V̂ðaj1i þ bF̂j1iÞ
¼ ðaV̂j1i þ eiθbF̂ V̂ j1iÞ ¼ λ1ðaj1i þ eiθbj2iÞ: ð8Þ

Further, since this Letter considers models with
a two-dimensional steady-state space, we must have
F̂2j1i ¼ e2iθj1i, and F̂2j1i ¼ F̂j2i ¼ j1i, implying θ ¼ 0
or π. In the case where θ ¼ π, oscillations with twice the
periodof the driving are observed, and V̂ and F̂ anticommute.
There are two i0 modes F̂ðLÞ and F̂ðRÞ, localized on the left
and right boundaries, respectively. The localization of these
i0 modes guarantees the double degeneracy of the steady

states in the thermodynamic limit. For instance, in the limit
where β → ∞ and hy ≈ ðπ=2Þ, the steady states are jni ¼
ð1= ffiffiffi

2
p Þ½j↑↑↑ � � �i þ ð−1ÞniLj↓↓↓ � � �i� for n ¼ 1, 2. The

role of F̂LðRÞ is played by Ẑ1ðLÞ, and both Ẑ1;L anticommute

with V̂.
Summarizing, the i0 mode satisfies (1) fF̂; P̂g ¼ 0,

(2) fF̂; V̂g → 0 as L → ∞, (3) F̂ decays exponentially
into the bulk, and (4) F̂ ¼ P

L
j¼1 v2j−1aj þ v2jbj in free

fermion systems.
Additionally, we require that F̂2 ∝ 1, since the steady-

state space is two dimensional. This condition is trivially
satisfied by the ansatz (4) for free fermion systems.
In the parameter regime shown in Fig. 1 with

hy < ðπ=4Þ, there are i0 modes as well, except with equal
real parts. In this regime, although there are doubly
degenerate steady states, oscillations are absent (i.e.,
θ ¼ 0). These i0 modes are obtained by replacing (2) with
½F̂; V̂� ¼ 0.
For F̂, v⃗ can be computed in the thermodynamic limit by

using a transfer matrix method, which proceeds by rewrit-
ing the equation fF̂; V̂g ¼ 0 as

�
v2jþ2

v2jþ1

�
¼ T

�
v2j
v2j−1

�
; ð9Þ

for 1 ≤ j ≤ L − 2. Crucially, this equation holds only for
the bulk. We can choose to fulfill either the boundary
equation which relates v2 to v1 (to obtain F̂L) or v2L to
v2L−1 (in the case of F̂R).
Here, we analytically solve for v⃗ for Jxx ¼ Jzz ¼ 0. By

imposing the boundary conditions for v1 and v2, we
find that

�
v2j
v2j−1

�
¼ λj−11

�
cosðhyÞ
sinðhyÞ

�
;

λ1 ≡ i cotðhyÞ cothðβÞ: ð10Þ

Requiring that this edge mode decays exponentially fast
into the bulk, we have the condition

jλ1j < 1 ⇒ coshð2βÞ cosð2hyÞ < −1; ð11Þ

which is exactly the condition for the band gap closing in
the imaginary direction obtained in Eq. (7). Thus, we have
demonstrated a non-Hermitian bulk boundary correspon-
dence. Extensions of Hermitian topological invariants
have previously been used in studies that numerically
obtained non-Hermitian edge modes [24,25], adding to
this correspondence.
We further compare this with the numerical results

shown in Fig. 2. For Jxx; Jzz ≠ 0, we can also numerically
demonstrate that the i0 modes are localized on the edges.

Re

Im
Im

Re

FIG. 1. Complex spectrum of ĤF given in Eq. (4) with
L ¼ 1000, Jxx ¼ 0.4, Jzz ¼ 1, and β ¼ 2 with open boundary
conditions for various hy. The imaginary gap closes and reopens
with the presence of a π splitting between the i0 modes.
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Lastly, we introduce random spatial inhomogeneity in
the Y fields. hy in Eq. (4) now assumes a position index j,
i.e., hy;j ¼ ðπ=3Þ � δh̃, where h̃ is uniformly drawn from
½−1; 1� for each site. Even in the presence of strong
disorder, the i0 modes still persist [22], provided that
the gap does not close in the imaginary direction.
The robustness of the edge modes requires L → ∞ since

the two edge modes can couple in small systems to produce
a splitting in both the real and imaginary directions,
resulting in a single steady state. The analysis of the
splitting with finite L is presented in Ref. [22].
Dynamics and interaction.—We now turn to the dynam-

ics to study the signature of these i0 modes. The dynamics
can be simulated in two ways: first, by exploiting the
mapping to free fermions and using the machinery of
fermionic Gaussian states (FGS) [26–31], and second,
using matrix product state (MPS) methods [32,33] in terms
of the spin degrees of freedom.
A limitation of FGS is that only fermionic states with a

definite parity can be simulated. Since V̂ conserves parity,
the oscillations cannot be observed directly using FGS,
since the two steady states jψ�i ∼ j↑↑↑ � � �i � iLj↓↓↓ � � �i
have different parities. Instead, beginning with states of
different parities, one can show that the final states at long
times have an overlap ∼1 with one of jψ�i, providing
indirect evidence for the presence of oscillations. A second
limitation is that FGS cannot describe models with inter-
actions. Thus, we use MPS methods to study the dynamics,
utilizing the ITensor C++ package [34].
We consider random product initial states jψi0 ¼

j↑↑↓↑↓ � � �i, where each spin points up or down along
the z axis. This state is stroboscopically evolved using
Eq. (1), and the quantity hZðtÞi≡ð1=LÞPjhψðtÞjẐjjψðtÞi
is calculated. Oscillations in hZi occur when there are i0
modes with a difference of π in the real parts of their
quasienergies, and not otherwise (see Fig. 3).

Interactions are introduced including e−iJyy
P

j
ŶjŶjþ1 in

ÛR, which corresponds to a four-fermion interaction

e−iJyy
P

j
γ2j−1γ2jγ2jþ1γ2jþ2 . Such interactions can lead to ther-

malization in unitary models, which usually destabilizes
any order [35,36]. However, as shown in Fig. 3, oscillations
persist in the presence of interactions.
Finally, we consider Y fields that are random in both time

and space, modeled as e−i
P

j
hy;jðtÞŶj , where hy;jðtÞ ¼

hy þ δh̃y;jðtÞ, and h̃y;jðtÞ is drawn uniformly from ½−1; 1�
at every time step. Again, oscillations persist, both in the
interacting and the noninteracting models, confirming the
stability of the i0 mode.
Discussion.—In this Letter, we have studied the emer-

gence of oscillatory behavior in a periodically driven

FIG. 2. A plot showing the exponential decay of the i0mode for
L ¼ 1000, hy ¼ ðπ=3Þ, and β ¼ 2.0, compared against the decay
rate obtained analytically from Eq. (10).

(a) (b)

(c) (d)

FIG. 3. Plots of hZi without (a),(b) and with interactions
[(c),(d), Jyy ¼ 0.3]. (a) Oscillations are absent and the i0 modes
are degenerate. (b) Oscillations with double the period are
present, and the i0 modes show a π splitting. (c) A clean
interacting system. (d) A system with strong stochasticity in
hy;j. In all cases, Jxx ¼ 0.3, β ¼ 0.75, L ¼ 100.

FIG. 4. A phase diagram summarizing the three different
phases that are observed as β and hy are tuned, in the case
where Jyy ¼ Jzz ¼ Jxx ¼ 0 and the phase boundary is analyti-
cally determined. The phase diagram remains qualitatively the
same for nonzero Jxx and Jzz, with possibly more gap closings for
larger Jxx; Jzz. The gapless critical phase is a special feature of
nonunitary free fermion dynamics and will be replaced by a
volume-law phase in the presence of the interaction, e.g., Jyy ≠ 0.
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nonunitary system of qubits. We have found that a critical
strength of measurement is required to observe oscillations
that break the discrete time-translation symmetry in these
systems. Such dynamical behavior is accompanied by the
emergence of a non-Hermitian i0 mode, which is robust to
various perturbations, both quenched and stochastic. Such
models can be realized in quantum circuits where one- and
two-site unitary gates as in ÛR are applied to the qubits.
The imaginary time evolution can be implemented by
subjecting the system to weak measurements correspond-
ing to the following Kraus operators at each site j,

M�
j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 coshð2βÞp ½coshðβÞ � sinhðβÞẐjẐjþ1�; ð12Þ

and postselecting for the þ outcome.
The steady states in either phase studied in the text obey

an area-law entanglement scaling. However, there is an
intermediate regime between the two steady states where
the spectrum is gapless in the imaginary direction. The
transition from a regime where there is an imaginary gap
in the spectrum of ĤF, to one where there is not, is
reflected in a change in the entanglement behavior of the
steady states, from an area law to a (parameter-dependent)
critical phase [6,7,37]. The properties of this phase are
detailed in Ref. [22]. Figure 4 shows the phase diagram
for these noninteracting models as both hy and β are
varied.
Whereas we find oscillations even in clean systems,

traditional time crystals rely on strong disorder to evade
thermalization and thus exhibit order. In our models, the
periodic weak measurements may be interpreted as effec-
tively “cooling” the system to the steady-state subspace.
The localization of the i0 mode on the edge and its spectral
gap to bulk states lend additional explanations for this
stability [17,38], while unitary time crystals do not rely on
such edge modes [13].
In future work, we hope to characterize the i0 mode in

the presence of interactions. It is possible that such an
operator might only pair states in a part of the spectrum of
ĤF, but still provide detectable signatures in the dynamics.
We would also like to study the role of symmetry breaking
in these oscillations, and especially how it might be used to
generate oscillations of period greater than 2, and for the
case of NS > 2 steady states. Lastly, it would be interesting
to understand if analogous i0 modes can be found in
models that involve a rectification of the system based on
measurement outcomes [39].
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