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We consider Gaussian quantum circuits that alternate unitary gates and postselected weak measure-
ments, with spatial translation symmetry and time p eriodicity. We show analytically that such models can
host different kinds of measurement-induced phase transitions detected by entanglement entropy, by
mapping the unitary gates and weak measurements onto Möbius transformations. We demonstrate the
existence of a log-law to area-law transition, as well as a volume-law to area-law transition at a finite
measurement amplitude. For the latter, we compute the critical exponent ν for the Hartley, von Neumann
and Rényi entropies exactly.
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Introduction.—In recent years, there has been an
immense amount of work on dynamical phase transitions
driven by competition between unitary time evolution and
projective measurements, called measurement-induced
phase transitions (MIPTs). Although generic unitary time
evolution leads to volume-law entangled states in the long-
time limit, interspersing the unitary evolution with local
measurements can stabilize area-law entangled steady
states [1–4]. These MIPTs have been studied in various
setups, mostly through numerical methods [5–31]. A
subclass of circuits called Gaussian circuits allows for
analytical calculations because they only involve unitaries
and measurements built out of fermion bilinears. However,
though the volume-law to area-law MIPTwas observed for
interacting circuits, it has not yet been observed in Gaussian
circuits [32–39].
In this Letter, we analytically study Gaussian nonunitary

circuits with spatial translation symmetry and discrete time
translation symmetry. They consist of Gaussian unitary gates
and weak measurements, obtained by coupling the system to
ancillas, measuring the ancillas, and postselecting [40]. We
show that these nonunitary circuits can demonstrate MIPTs
between different entanglement phases as we tune the
measurement amplitude, which is related to the ancilla
coupling. Surprisingly, for specific parameters, we find a
volume-law to area-law transition at a finite measurement
amplitude. We derive the exact critical measurement ampli-
tude and the correlation length exponents fνng for the
Hartley (n ¼ 0), von Neumann (n ¼ 1) and Rényi (n > 1)
entanglement entropies. To our knowledge, this is the first
example of a volume-law to area-law transition in a
Gaussian nonunitary circuit, and of an analytical computa-
tion of all fνng at a MIPT.

Setup.—We study nonunitary circuits built out of the
following translation-invariant 1D layers [41,42]:

UZZðtÞ ¼ e−it
P

L
j¼1

σzjσ
z
jþ1 ;

UYYðtÞ ¼ e−it
P

L
j¼1

σyjσ
y
jþ1 ;

UXðtÞ ¼ e−it
P

L
j¼1

σxj ; ð1Þ
where σx;y;zj are Pauli matrices, and periodic boundary
conditions Lþ 1≡ 1 are assumed. These layers can be
written as free fermion evolution using the standard
Jordan-Wigner transformation σxj ¼ 1–2c†jcj and σzj ¼
ðcj þ c†jÞ

Qj−1
l¼1ð1 − 2c†lclÞ, where c†j ; cj are fermion

FIG. 1. A schematic of n applications of the round described
by (3), with p ¼ 1. jψni is the normalized final state.
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creation and annihilation operators. Nonunitarity is intro-
duced by allowing t to be complex, which corresponds to
weak measurement [40] or dynamics in open quantum
systems [43].
We will focus on circuits built out of the following

elementary cycle of layers

Uðt; h; λÞ ¼ UXðiλÞUXðhÞUZZðtÞ; ð2Þ

for t, h, λ real parameters. We can use this cycle to build
more complicated rounds described by U:

U ¼ Uðtp; hp; λpÞ…Uðt1; h1; λ1Þ; ð3Þ

with tr; hr; λr; r ∈ f1;…; pg fixed real parameters. We will
study the entanglement properties of a subsystem of large
size l after n → ∞ identical rounds U, in the thermody-
namic limit L → ∞, with l ≪ n ≪ L. This kind of setup,
for p ¼ 1, is illustrated in Fig. 1. Because each round is
identical, our models have discrete time translation sym-
metry. While we use the particular structure of cycle and
round defined in (2) and (3), we note that our methods can
be applied to any round built out of (1).
Time evolution via Möbius transformations.—The

actions of the layers in (1) are particularly simple on
coherent states [41]. These are states of the form

jψðA;fðkÞÞi¼A
Y
k∈Kþ

L

½1þfðkÞc†ð−kÞc†ðkÞ�j0i; ð4Þ

where KL ¼ ð2π=LÞf−ðL=2Þ þ 1
2
;…; ðL=2Þ − 1

2
g and

Kþ
L ⊂ KL contains all the positive momenta, and j0i the

tensor product of þ1 eigenstates of σxj at each site. Here, A
normalizes the state and contains a phase, and fðkÞ is an
amplitude for fermions at momenta k;−k.
The crucial observation of Ref. [41] was that a coherent

state remains a coherent state after the application of any of
the layers in (1), but with modified A and fðkÞ. In
particular, each of the layers in (1) transforms fðkÞ by a
Möbius transformation:

UgðtÞjψðA; fðkÞÞi ¼ jψðÃ; f̃ðkÞÞi; ð5Þ

where g ¼ ZZ; YY; X and

f̃ðkÞ ¼ FðfÞ ¼ afðkÞ þ b
cfðkÞ þ d

; ð6Þ

where a, b, c, and d are complex functions of t and k. We
provide their explicit forms for the three kinds of layers in
the Supplemental Material [40]. The transformation on A
will not be needed in this work. Because the composition of
Möbius transformations is a Möbius transformation, the

action of Uðt; h; λÞ and U can also be written as (6). It
follows that UnjψðA; fðkÞÞi also produces a coherent
state for any n. Like any Möbius transformation, the
transformation associated with U can be packaged into a
2 × 2 matrix

Mk ¼
�
a b

c d

�
ð7Þ

acting on the vector ðfðkÞ
1
Þ: the new value f̃ðkÞ is given by

the ratio of the two components of the resulting vector. The
matrix of the Möbius transformation associated with Un is
then simply obtained by repeated matrix multiplications
Mn

k . Therefore, in order to obtain the behavior at large n of
Unj0i, we need to study the fixed points of the Möbius
transformation Mk associated with U and their stability.
Note that the initial state can be any coherent state, and
therefore any free fermion state with zero total momentum,
as well as some nonzero momentum states by applying
with c†ðk0Þ operators on the coherent state [44].
Let us denote the normalized state after n rounds by

jψðAn; fnðkÞÞi. The fixed points of the Möbius trans-
formation are the two solutions to the quadratic equation

f∞ðkÞ ¼
af∞ðkÞ þ b
cf∞ðkÞ þ d

: ð8Þ

We label these fixed points by f−∞ðkÞ and fþ∞ðkÞ for each
k. The stability of these fixed points are given by jF0ðfÞj: if
jF0ðfÞjf¼f−∞ðkÞ < 1, then f−∞ðkÞ is a stable fixed point. Since
a Möbius transformation can have at most only one stable
fixed point, any choice of initial state f0ðkÞ ≠ fþ∞ðkÞ will
be attracted to f−∞ðkÞ as n → ∞, for that particular value
of k. It can be shown that

jF0ðfÞjf¼f−∞ ¼ 1

jF0ðfÞjf¼fþ∞
¼ jμ−ðkÞj

jμþðkÞj
; ð9Þ

where μ−ðkÞ and μþðkÞ with jμ−ðkÞj ≤ jμþðkÞj are the two
eigenvalues of Mk. So for jμ−ðkÞj ≠ jμþðkÞj, there is a
unique stable fixed point given by f−∞ðkÞ, while fþ∞ðkÞ is an
unstable fixed point. On the contrary, if jμ−ðkÞj ¼ jμþðkÞj,
then there are no stable fixed points and fnðkÞ will not
converge as n → ∞ whenever f0ðkÞ ≠ f�∞ðkÞ.
These two alternatives completely determine the steady

state entanglement properties. Let us call the values of k for
which jμ−ðkÞj ¼ jμþðkÞj “critical.” We will only need to
consider k ∈ ½0; π� because fðkÞ must be an antisymmetric
function for (4) to be consistent. If there are no critical
k ∈ ½0; π�, we will show that the steady state has area-law
entanglement, which in 1D means that in the thermody-
namic limit SmðlÞ saturates to a finite value when l → ∞.
If there is a finite number of critical k, then the steady state
generically has log-law entanglement: SmðlÞ ∼ logðlÞ.
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Finally, if there is a whole interval of critical k,
then the steady state has volume-law entanglement:
SmðlÞ ∼ l.
In order to determine analytically whether such critical k

exist for a given Möbius transformation, we use that
jμ−ðkÞj ¼ jμþðkÞj if and only if the following two con-
ditions are satisfied:

ðiÞI TrðMkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMkÞ

p ¼ 0 ðiiÞ
����R TrðMkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðMkÞ
p ����≤ 2: ð10Þ

We prove this in the Supplemental Material [40]. We will
now give two examples of nonunitary circuits and
show that, by studying their corresponding Möbius
transformations, we can obtain their phase diagrams
exactly.
Log-law to area-law transition.—We will now show that

a log-law to area-law transition can occur in a simple circuit
containing only one cycle (2), i.e., p ¼ 1 in (3). For this
circuit, we have

Mk ¼
 
zk;te−2λþ2ih e−2λþ2ih

−e2λ−2ih z�k;te
2λ−2ih

!
; ð11Þ

where

zk;t ¼
e2it tanðk=2Þ þ e−2it

tanðk=2Þ
2 sinð2tÞ : ð12Þ

To investigate the entanglement properties of this circuit,
we study the conditions (10) for the existence of critical k,
as detailed in the Supplemental Material [40]. We find that
if λ ¼ 0, both conditions in (10) are satisfied for all k.
Because there is a whole interval of critical k (in fact, the
entire range of k), the steady state exhibits volume-law
entanglement, as expected in absence of measurements. For
λ > 0, the phase of the system depends on the condition
j tanð2hÞj > j tanð2tÞj. If this condition holds, then the
steady state always demonstrates area-law entanglement.
Otherwise, there is a critical value λc such that for
0 < λ < λc there is a unique critical k given by k ¼
arccos ½tanð2hÞ=tanð2tÞ� for which both conditions of (10)
hold, implying a log-law entanglement. For λ > λc there are
no critical k, indicating area-law entanglement. λcðt; hÞ can
be computed exactly and is given in the Supplemental
Material [40]. Therefore, when j tanð2hÞj < j tanð2tÞj, the
system demonstrates a log-law to area-law transition at
λ ¼ λc. Such transitions are well known in free fermionic
nonunitary circuits [33,35,45,46].
Let us finally mention the case h ¼ t ¼ π=4. Here we

find for any λ an interval ½kc; π − kc� of critical k, with
0 < kc < π=2 depending on λ. This yields a volume law
phase, but without any transition to an area-law behavior at
any finite λ, consistent with Ref. [47].

Volume-law to area-law transition.—We now consider a
round with two cycles:

U ¼ Uðt2; h2; λÞUðt1; h1; λÞ: ð13Þ

For generic values of the parameters, such circuits
do not have volume-law to area-law MIPTs in λ.
However, for

t1 ¼ h1 ¼
π

4
− x; t2 ¼ h2 ¼

π

4
þ x; ð14Þ

where x ∈ ½0; π=4�, we will show that there exists an
x-dependent λc such that the steady state demonstrates
volume-law entanglement for λ < λc and area-law entan-
glement for λ > λc.
From the definition of zk;t in (12), we have zk;t1 ¼ −z�k;t2 .

Therefore, Mk for (13) simplifies to

Mk ¼
 jzk;t1 j2e−4λ − e4ix z�k;t1ðe−4λ þ e4ixÞ
−zk;t1ðe4λ þ e−4ixÞ jzk;t1 j2e4λ − e−4ix

!
: ð15Þ

To determine the critical k, we compute

TrðMkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMkÞ

p ¼ 2
jzk;t1 j2 coshð4λÞ − cosð4xÞ

1þ jzk;t1 j2
: ð16Þ

This quantity is always real, so condition (i)
of (10) is satisfied for all k. Condition ðiiÞ can be
written as

tan2ðk=2Þþ 1

tan2ðk=2Þ≤
4cos4ð2xÞ
sinh2ð2λÞ þ2cosð4xÞ: ð17Þ

For this to hold for at least one value of k, we need it to be
true for k ¼ π=2, which minimizes the left-hand side.
Plugging in k ¼ π=2, we find that the interval of critical
k disappears when λ > λc, where

λc ¼
1

2
arcsinh

�
cos2ð2xÞ
sinð2xÞ

�
: ð18Þ

Therefore, the steady state demonstrates area-law entan-
glement for λ > λc. For λ < λc, (17) is satisfied for
k ∈ ½kc; π − kc�, with kc obeying (17) with equality.
Within this interval, fnðkÞ does not converge to a stable
fixed point, and wewill now show that this leads to volume-
law entanglement.
Behavior of entanglement entropy.—Given a state jψi on

a spin chain of size L, the reduced density matrix ρl on
½1;l� is given by

ρl ¼ Trlþ1;…;Lðjψihψ jÞ: ð19Þ

PHYSICAL REVIEW LETTERS 130, 230401 (2023)

230401-3



We define the entanglement entropies SmðlÞ as

S0ðlÞ ¼ log rank½ρ�; Hartley

S1ðlÞ ¼ −Tr½ρ logρ�; von Neumann

SmðlÞ ¼
logTr½ρm�
1−m

; m ≥ 2; Rényi: ð20Þ

While it is difficult to obtain the exact behavior of SmðlÞ
at intermediate times, we can compute the coefficient of the
volume-law (OðlÞ) contribution to SmðlÞ in the n → ∞
limit. To that end, we introduce the correlation matrix Γ on
the subsystem ½1; 2;…l�, given by

hψ j
�
a2j−1
a2j

�
· ða2k−1 a2k Þjψi ¼ δj;kþ iΓjk; ð21Þ

with the Majorana fermions a2j−1 ¼ cj þ c†j and

a2j ¼ iðcj − c†jÞ. Γ has a block-Toeplitz structure:

Γ¼ðΠj−iÞi;j¼1;…;l Πj ¼
� −φj ψ j

−ψ−j φj

�
; ð22Þ

where from (4), φj and ψ j are computed to be

φj¼
i
2π

Z
π

−π
dke−ikj

fnðkÞþfnðkÞ�
1þjfnðkÞj2

ψ j¼
1

2π

Z
π

−π
dke−ikj

fnðkÞ−fnðkÞ� þ jfnðkÞj2−1

1þjfnðkÞj2
: ð23Þ

We find that φj and ψ j converge to some φ̄j and
ψ̄ j respectively as n → ∞, and we define φ̂ðkÞ and
ψ̂ðkÞ through φ̄j ¼ ð1=2πÞ R π−π dke−ikjφ̂ðkÞ and ψ̄ j ¼
ð1=2πÞ R π−π dke−ikjψ̂ðkÞ. When fnðkÞ converges to a stable
fixed point, we can replace fnðkÞ in (23) by f−∞ðkÞ. Notice
that if there is a critical value of k, then f−∞ðkÞ generically
fails to be smooth because it jumps between the two fixed
points of the Möbius transformation. This leads to power-
law decay of correlations of Majorana fermions in real-
space according to (23), implying log-law entanglement.
On the other hand, if there are no critical k, f−∞ðkÞ is smooth
and real-space correlations decay exponentially, implying
area-law entanglement for pure states [48,49].
If k ∈ ½kc; π − kc� is critical, then fnðkÞ in this momen-

tum range does not converge and depends on both the
initial state f0ðkÞ and the cycle number n. We choose the
initial state f0ðkÞ ¼ 0 for all k which, in the spin language,
means all spins in the þ1 eigenstate of σxj . For this initial
state, we have fnðkÞ ¼ xnðkÞ=ynðkÞ with�

xnðkÞ
ynðkÞ

�
¼ Mn

k ·

�
0

1

�
: ð24Þ

Since jμ−ðkÞj ¼ jμþðkÞj, we can write μþðkÞ=μ−ðkÞ ¼ e2iθk
for k ∈ ½kc; π − kc�, where

θk ¼ arccos

�jzk;t1 j2 coshð4λÞ − cosð4xÞ
1þ jzk;t1 j2

�
: ð25Þ

Diagonalizing Mk, we find

fnðkÞ ¼
bðkÞ sinðnθkÞ

ð−aðkÞ þ cos θkÞ sinðnθkÞ þ sinðθkÞ cosðnθkÞ
;

ð26Þ

where a and b are matrix elements of Mk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMk

p
as

in (7), and we have indicated their k dependence explicitly.
We see that in this case, fnðkÞ does not converge to a stable
fixed point as n → ∞ and instead keeps oscillating. To
compute φ̂ðkÞ and ψ̂ðkÞ, we separate the slowly varying
and quickly oscillating parts of fnðkÞ by defining

fðk;uÞ ¼ bðkÞ sinu
ð−aðkÞ þ cosθkÞ sinuþ sinθk cosu

: ð27Þ

As shown in the Supplemental Material [40] we compute
φ̂ðkÞ and ψ̂ðkÞ by averaging over the fast oscillations:

φ̂ðkÞ¼ i
2π

Z
2π

0

du
fðk;uÞþ fðk;uÞ�
1þjfðk;uÞj2 ;

ψ̂ðkÞ¼ 1

2π

Z
2π

0

du
fðk;uÞ− fðk;uÞ� þ jfðk;uÞj2−1

1þjfðk;uÞj2 : ð28Þ

We now follow Ref. [50] to compute the entanglement
entropy. Repeating the calculations therein, we find the
following leading behavior when l → ∞:

SmðlÞ ¼
l
2π

Z
π

−π
dkHmð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jφ̂ðkÞj2þjψ̂ðkÞj2

q
Þ; ð29Þ

with OðloglÞ corrections, and with HmðxÞ given by

H0ðxÞ ¼ 1x∈ð−1;1Þ;

H1ðxÞ ¼ −
1þ x
2

log
1þ x
2

−
1 − x
2

log
1 − x
2

;

HmðxÞ ¼
1

1 −m
log

��
1þ x
2

�
m
þ
�
1 − x
2

�
m
�
; ð30Þ

for m ≥ 2. When fnðkÞ converges to a stable fixed
point, we plug f−∞ðkÞ into the definition of φ̂ðkÞ and
ψ̂ðkÞ, and obtain

jφ̂ðkÞj2 þ jψ̂ðkÞj2 ¼ 1: ð31Þ

Since Hmð1Þ ¼ 0, these momenta do not contribute to the
volume law term OðlÞ, nor to the OðloglÞ term [51].
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On the other hand, when fnðkÞ does not converge to a
stable fixed point, we can show from (27) that [40]

jφ̂ðkÞj2 þ jψ̂ðkÞj2 < 1: ð32Þ

Therefore, these momenta do contribute to the OðlÞ term.
We obtain

SmðlÞ ¼
�
smðλÞl; if λ < λc

Oðl0Þ; if λ > λc;
ð33Þ

with smðλÞ a coefficient computable from (29) (see
Supplemental Material [40]). We compare these exact
calculations with numerical computations of entanglement
entropies in Fig. 2. In the limit λ → λc, we define the critical
exponent ν by the leading behaviour of smðλÞwhen λ → λc:

smðλÞ ¼ amðλc − λÞν þO½ðλc − λÞν0 �; ð34Þ

where ν0 > ν. We obtain analytically

s0ðλc − λÞ ∼ ðλc − λÞ1=2
s1ðλc − λÞ ∼ ðλc − λÞ log ðλc − λÞ
smðλc − λÞ ∼ ðλc − λÞ; ð35Þ

with coefficients given in the Supplemental Material [40]
and subleading terms ∼ðλc − λÞ3=2. Therefore, ν ¼ 1

2
for

S0ðlÞ and ν ¼ 1 for SmðlÞ, where m ≥ 1, with marginal
logarithmic corrections at m ¼ 1 [52,53]. At the critical
point λ ¼ λc, the only critical k is k ¼ π=2, but θπ=2 ¼ 0

according to (25). So fnðπ=2Þ converges to a stationary
value, and the OðloglÞ coefficients vanish, yielding a
central charge c ¼ 0, consistent with Refs. [35,46].

Discussion.—We presented a general framework for
obtaining exact results on steady states of clean
Gaussian nonunitary circuits with discrete time translation
symmetry using Möbius transformations. A few comments
are in order. First, it was shown in Refs. [8,37] that
entanglement transitions are also purification transitions.
This can also be seen in our analysis: if a Möbius trans-
formation has a single stable fixed point for all k, the steady
state is independent of the initial state. Therefore, the
corresponding circuit would map mixed states to the pure
state given by f−∞ðkÞ, as n → ∞. On the other hand, when
there is a region of critical k, fnðkÞ in this interval always
retains its dependence on the initial state, and a mixed state
remains mixed even as n → ∞.
Second, we note that the distinction governed by con-

ditions (10) is equivalent to a statement on the reality of the
single-particle energies fϵkg of the effective HamiltonianH
defined by U ¼ eiH: ϵk is real if and only if k is critical.
Therefore, increasing the nonunitarity of the model through
λ has a similar effect as in the continuous-time model
of Ref. [31].
While we only studied steady states of two simple kinds

of rounds, the general framework of Möbius transforma-
tions can be used to study any other circuit built out of the
layers in (1) and their intermediate time dynamics. Note
that these MIPTs can be detected directly by either
measuring two-point correlation functions in the steady
state or by measuring correlations between mode occupa-
tion numbers c†ðkÞcðkÞ. For the latter, the measurement
outcome depends on the criticality of k. Therefore, while
difficult to implement due to the midcircuit postselection,
they are easy to detect.
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