PHYSICAL REVIEW LETTERS 130, 230401 (2023)

Volume-Law to Area-Law Entanglement Transition in a
Nonunitary Periodic Gaussian Circuit

Etienne Granet

and Carolyn Zhang

Department of Physics, Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA

Henrik Dreyer
Quantinuum, Leopoldstrasse 180, 80804 Munich, Germany

® (Received 11 January 2023; accepted 26 April 2023; published 8 June 2023)

We consider Gaussian quantum circuits that alternate unitary gates and postselected weak measure-
ments, with spatial translation symmetry and time p eriodicity. We show analytically that such models can
host different kinds of measurement-induced phase transitions detected by entanglement entropy, by
mapping the unitary gates and weak measurements onto Mdbius transformations. We demonstrate the
existence of a log-law to area-law transition, as well as a volume-law to area-law transition at a finite
measurement amplitude. For the latter, we compute the critical exponent v for the Hartley, von Neumann

and Rényi entropies exactly.
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Introduction.—In recent years, there has been an
immense amount of work on dynamical phase transitions
driven by competition between unitary time evolution and
projective measurements, called measurement-induced
phase transitions (MIPTs). Although generic unitary time
evolution leads to volume-law entangled states in the long-
time limit, interspersing the unitary evolution with local
measurements can stabilize area-law entangled steady
states [1-4]. These MIPTs have been studied in various
setups, mostly through numerical methods [5-31]. A
subclass of circuits called Gaussian circuits allows for
analytical calculations because they only involve unitaries
and measurements built out of fermion bilinears. However,
though the volume-law to area-law MIPT was observed for
interacting circuits, it has not yet been observed in Gaussian
circuits [32-39].

In this Letter, we analytically study Gaussian nonunitary
circuits with spatial translation symmetry and discrete time
translation symmetry. They consist of Gaussian unitary gates
and weak measurements, obtained by coupling the system to
ancillas, measuring the ancillas, and postselecting [40]. We
show that these nonunitary circuits can demonstrate MIPTs
between different entanglement phases as we tune the
measurement amplitude, which is related to the ancilla
coupling. Surprisingly, for specific parameters, we find a
volume-law to area-law transition at a finite measurement
amplitude. We derive the exact critical measurement ampli-
tude and the correlation length exponents {v,} for the
Hartley (n = 0), von Neumann (n = 1) and Rényi (n > 1)
entanglement entropies. To our knowledge, this is the first
example of a volume-law to area-law transition in a
Gaussian nonunitary circuit, and of an analytical computa-
tion of all {v,} at a MIPT.

0031-9007/23/130(23)/230401(6)

230401-1

Setup.—We study nonunitary circuits built out of the
following translation-invariant 1D layers [41,42]:

Uza(t) = & 20 7,
Uyy(t) = 2 0;0;“7

Uy(t) = ™22, (1)

where af‘y <

are Pauli matrices, and periodic boundary
conditions L + 1 =1 are assumed. These layers can be
written as free fermion evolution using the standard

Jordan-Wigner transformation o = 1—2c;c ; and o} =

(cj+c;)]_[’;;ll(l—2c;cf), where c'j‘f,cj are fermion
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FIG. 1. A schematic of n applications of the round described
by (3), with p = 1. |y,,) is the normalized final state.
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creation and annihilation operators. Nonunitarity is intro-
duced by allowing ¢ to be complex, which corresponds to
weak measurement [40] or dynamics in open quantum
systems [43].

We will focus on circuits built out of the following
elementary cycle of layers

U(t, h,4) = Ux(id)Ux(h)Uzz(2), )

for ¢, h, A real parameters. We can use this cycle to build
more complicated rounds described by /-

Z/{:U(tp,hp,/Ip)...U(l‘l,hl,/h), (3)

with ¢,, h,, A, r € {1, ..., p} fixed real parameters. We will
study the entanglement properties of a subsystem of large
size ¢ after n — oo identical rounds I/, in the thermody-
namic limit L — oo, with £ << n < L. This kind of setup,
for p =1, is illustrated in Fig. 1. Because each round is
identical, our models have discrete time translation sym-
metry. While we use the particular structure of cycle and
round defined in (2) and (3), we note that our methods can
be applied to any round built out of (1).

Time evolution via Mobius transformations.—The
actions of the layers in (1) are particularly simple on
coherent states [41]. These are states of the form

(A S(K)) =ATT [+ f(R)c" (=k)e (R)]]0).  (4)

kek;

where K, = (2z/L){-(L/2)+1.....(L/2) -1} and
K] C K; contains all the positive momenta, and |0) the
tensor product of +1 eigenstates of o7 at each site. Here, A
normalizes the state and contains a phase, and f(k) is an
amplitude for fermions at momenta k, —k.

The crucial observation of Ref. [41] was that a coherent
state remains a coherent state after the application of any of
the layers in (1), but with modified A and f(k). In
particular, each of the layers in (1) transforms f(k) by a
Mobius transformation:

Uy ()l (A f(k))) = [ (A F (k). (5)

where g = ZZ,YY,X and

Flk) = F(f) =~ (6)

where a, b, ¢, and d are complex functions of 7 and k. We
provide their explicit forms for the three kinds of layers in
the Supplemental Material [40]. The transformation on A
will not be needed in this work. Because the composition of
Mobius transformations is a Mobius transformation, the

action of U(t,h,A) and U can also be written as (6). It
follows that U"|y (A, f(k))) also produces a coherent
state for any n. Like any Mobius transformation, the
transformation associated with ¢/ can be packaged into a

2 x 2 matrix
a b
M, = 7
. ( d) )

acting on the vector (/ <1k)): the new value f(k) is given by
the ratio of the two components of the resulting vector. The
matrix of the Mobius transformation associated with U" is
then simply obtained by repeated matrix multiplications
M. Therefore, in order to obtain the behavior at large n of
U"0), we need to study the fixed points of the Mobius
transformation M, associated with I/ and their stability.
Note that the initial state can be any coherent state, and
therefore any free fermion state with zero total momentum,
as well as some nonzero momentum states by applying
with ¢'(ky) operators on the coherent state [44].

Let us denote the normalized state after n rounds by
lw(A,, f.(k))). The fixed points of the Mobius trans-
formation are the two solutions to the quadratic equation

_af.(k)+b

(8)

We label these fixed points by f, (k) and f& (k) for each
k. The stability of these fixed points are given by |F'(f)|: if
\F'(F)| =0 < 1, then f5, (k) is a stable fixed point. Since
a Mobius transformation can have at most only one stable
fixed point, any choice of initial state f(k) # f& (k) will
be attracted to f (k) as n — oo, for that particular value
of k. It can be shown that

B _Ju-(b)
Fl—r R

\F'Dp=ra ©)

where p_(k) and p, (k) with |u_(k)| < |u, (k)| are the two
eigenvalues of M;. So for |u_(k)| # |u, (k)|, there is a
unique stable fixed point given by f, (k), while f& (k) is an
unstable fixed point. On the contrary, if |u_(k)| = |u(k)],
then there are no stable fixed points and f,(k) will not
converge as n — oo whenever f(k) # f= (k).

These two alternatives completely determine the steady
state entanglement properties. Let us call the values of k for
which |u_(k)| = |py (k)| “critical.” We will only need to
consider k € [0, z] because f(k) must be an antisymmetric
function for (4) to be consistent. If there are no critical
k € [0, 7], we will show that the steady state has area-law
entanglement, which in 1D means that in the thermody-
namic limit S,,(¢) saturates to a finite value when £ — oo.
If there is a finite number of critical &, then the steady state
generically has log-law entanglement: S,,(Z) ~ log(?).
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Finally, if there is a whole interval of critical k,
then the steady state has volume-law entanglement:
Su(6)~¢.

In order to determine analytically whether such critical k
exist for a given Mobius transformation, we use that
|u_(k)| = |u, (k)| if and only if the following two con-
ditions are satisfied:

Tr(M,)

Tr(M,) <
det(/\/lk)

(i) S ~0 (ii)‘iR e (10)

We prove this in the Supplemental Material [40]. We will
now give two examples of nonunitary circuits and
show that, by studying their corresponding Maobius
transformations, we can obtain their phase diagrams
exactly.

Log-law to area-law transition.—We will now show that
alog-law to area-law transition can occur in a simple circuit
containing only one cycle (2), i.e., p = 1 in (3). For this

circuit, we have
N Zes o~ 22 p=20+2ih "
kK — _9; 5
z,’;,e” 2ih

_pY2ih

where

B e tan(k/2) + —mﬁ(_li;z)
Gt = 2 sin(21)

(12)

To investigate the entanglement properties of this circuit,
we study the conditions (10) for the existence of critical &,
as detailed in the Supplemental Material [40]. We find that
if A =20, both conditions in (10) are satisfied for all k.
Because there is a whole interval of critical k (in fact, the
entire range of k), the steady state exhibits volume-law
entanglement, as expected in absence of measurements. For
A > 0, the phase of the system depends on the condition
|tan(2h)| > |tan(2z)]. If this condition holds, then the
steady state always demonstrates area-law entanglement.
Otherwise, there is a critical value A, such that for
0 <1<, there is a unique critical k given by k =
arccos [tan(2h)/tan(27)] for which both conditions of (10)
hold, implying a log-law entanglement. For 4 > 1. there are
no critical k, indicating area-law entanglement. 1.(z, k) can
be computed exactly and is given in the Supplemental
Material [40]. Therefore, when |tan(2k)| < |tan(27)], the
system demonstrates a log-law to area-law transition at
A = A.. Such transitions are well known in free fermionic
nonunitary circuits [33,35,45,46].

Let us finally mention the case h =t = n/4. Here we
find for any A an interval [k., 7 — k.| of critical k, with
0 < k. < n/2 depending on A. This yields a volume law
phase, but without any transition to an area-law behavior at
any finite A, consistent with Ref. [47].

Volume-law to area-law transition.—We now consider a
round with two cycles:

U = Ulty, hy, YU (1. hy. A). (13)

For generic values of the parameters, such circuits
do not have volume-law to area-law MIPTs in A.
However, for

T
t1:h1:——x,

4 tzzhzzz—i—x, (14)

4

where x € [0,7/4], we will show that there exists an
x-dependent 4. such that the steady state demonstrates
volume-law entanglement for 1 < 1, and area-law entan-
glement for 4 > 4.

From the definition of z; , in (12), we have z;,,
Therefore, M, for (13) simplifies to

|Zk, ‘26_4}” _e4ix & (8—4/1 + €4ix)
M, = ( . b . (15)

~Zi, (e 4 e~4iv) |Zk,z1|2€“ _ p-dix

_ *
= Tty

To determine the critical k, we compute

Tr(M;) 5 |2k, |* cosh(42) — cos(4x) (16)
det(My) 1+ [z, '
This quantity is always real, so condition (i)

of (10) is satisfied for all k. Condition (ii) can be
written as

14 cos*(2x)
tan?(k/2) = sinh?(24)

tan’(k/2) + +2cos(4x).  (17)

For this to hold for at least one value of k, we need it to be
true for k = z/2, which minimizes the left-hand side.
Plugging in k = /2, we find that the interval of critical
k disappears when A > 1., where

[cosz (Zx)} |

1
A = zarcsinh | ———=
. arcsinh |- - 20)

5 (18)

Therefore, the steady state demonstrates area-law entan-
glement for 1> A.. For 1<, (17) is satisfied for
k € [k.,m— k., with k. obeying (17) with equality.
Within this interval, f, (k) does not converge to a stable
fixed point, and we will now show that this leads to volume-
law entanglement.

Behavior of entanglement entropy.—Given a state |y) on
a spin chain of size L, the reduced density matrix p, on
[1,7] is given by

pe=Trop (W) {wl). (19)
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We define the entanglement entropies S,,(Z) as

So(¢) = log rank|p],
§1(¢) = =Tr[plogp].

log Tr[p™]
Su(€) = Ep—

Hartley

von Neumann

,  m>2, Rényi. (20)

While it is difficult to obtain the exact behavior of S,,(¢)
at intermediate times, we can compute the coefficient of the
volume-law (O(#)) contribution to S,,(¢) in the n — oo
limit. To that end, we introduce the correlation matrix I" on
the subsystem [1,2, ...7], given by

azj—1 .
() (s =g+ 21
2

with the Majorana fermions ay; | = c¢; + ¢;

ay; = i(c; — cj) I" has a block-Toeplitz structure:

_¢ . ll/ .
F=Mi) ., 1= ( ’ j>7 (22)
' Vi P

where from (4), ¢; and y; are computed to be

i R A0
7Y B ey

0 e R = fuR P -1
=g | ke )

We find that ¢; and y; converge to some ¢; and
w; respectively as n — co, and we define @(k) and
(k) through ¢; = (1/2x) " dke (k) and ;=
(1/2x) [* dke=* (k). When f,(k) converges to a stable
fixed point, we can replace f,(k) in (23) by f (k). Notice
that if there is a critical value of k, then f, (k) generically
fails to be smooth because it jumps between the two fixed
points of the Mobius transformation. This leads to power-
law decay of correlations of Majorana fermions in real-
space according to (23), implying log-law entanglement.
On the other hand, if there are no critical k, f, (k) is smooth
and real-space correlations decay exponentially, implying
area-law entanglement for pure states [48,49].

If k € [k., 7 — k.] is critical, then f,(k) in this momen-
tum range does not converge and depends on both the
initial state f((k) and the cycle number n. We choose the
initial state f(k) = O for all k which, in the spin language,
means all spins in the +1 eigenstate of ¢7. For this initial
state, we have f,(k) = x,(k)/y,(k) with

() () e

Since |u_ (k)| = |u.(k)|, we can write u (k) /u_(k) = >
for k € [k, — k.], where
2 cosh(44) — cos(4
0, = arccos 2k |7 cosh(42) ZCOS( ) (25)
1+ |Zk,z,|
Diagonalizing M, we find
(k) = b(k) sin(noy)
"N (—a(k) + cos 6y) sin(n6) + sin(6) cos(nby)’
(26)

where a and b are matrix elements of M,;//det M, as
in (7), and we have indicated their k dependence explicitly.
We see that in this case, f, (k) does not converge to a stable
fixed point as n — oo and instead keeps oscillating. To
compute @(k) and (k), we separate the slowly varying
and quickly oscillating parts of f,(k) by defining

b(k)sinu

. 27
(—a(k) 4 cos6y) sinu + sin 6 cos u 27)

flk, u) =

As shown in the Supplemental Material [40] we compute
@(k) and (k) by averaging over the fast oscillations:

b [ gt k)
o5z
= [ ) =Tk + (k)

We now follow Ref. [50] to compute the entanglement
entropy. Repeating the calculations therein, we find the
following leading behavior when £ — oo:

Su(€) =5 |kt flpOF + W 0P). (29

T

with O(log £) corrections, and with H,,(x) given by

Hy(x) = Tee-11)»
1+x 1+x 1—x 1—x
H(x) = - ) log ) 5

= _1m10g K] ’;x>m+ (1 ;x>m] (30)

for m >2. When f,(k) converges to a stable fixed
point, we plug f (k) into the definition of @(k) and
W (k), and obtain

log

() + [ (k)? = 1. (31)

Since H,,(1) = 0, these momenta do not contribute to the
volume law term O(7), nor to the O(log#) term [51].
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FIG. 2. (a) Phase diagram for the nonunitary circuit described
in (13), with x and A as defined in (14) and (2), respectively. The
phase boundary is given by (18). (b) Scaling of the von-Neumann
entropy. Markers denote the slope of the best linear fits to the
exact entropy S(£) ~ s, + b after 500 cycles on subsystem
sizes up to £ = 100. Dashed lines denote the closed form
expression (29).

On the other hand, when f,(k) does not converge to a
stable fixed point, we can show from (27) that [40]

(k)2 + (k) > < 1. (32)

Therefore, these momenta do contribute to the O(¢) term.
We obtain

if 1 <4,

S,(£) =
@) if 4> A,

{ SmA)7. (33)

o),

with s,,(1) a coefficient computable from (29) (see
Supplemental Material [40]). We compare these exact
calculations with numerical computations of entanglement
entropies in Fig. 2. In the limit A — 4., we define the critical
exponent v by the leading behaviour of s,,(1) when 1 — 4.:

sm(A) = ap(2e = 2) + O[(2, = 1), (34)
where o/ > v. We obtain analytically

SO(//{C - A) ~ (ﬂc - /1)1/2
sl(ﬂc _/1) ~ (Ac _l) log (’16 _/1)
Sm(j'c - ﬂ) ~ (ﬂc - )“)7 (35)

with coefficients given in the Supplemental Material [40]
and subleading terms ~(4. —4)¥?. Therefore, v =1 for
So(¢) and v =1 for S,,(¢), where m > 1, with marginal
logarithmic corrections at m = 1 [52,53]. At the critical
point 4 = 4, the only critical k is k = z/2, but 8,/, =0
according to (25). So f,(x/2) converges to a stationary
value, and the O(log?) coefficients vanish, yielding a
central charge ¢ = 0, consistent with Refs. [35,46].

Discussion.—We presented a general framework for
obtaining exact results on steady states of clean
Gaussian nonunitary circuits with discrete time translation
symmetry using Mobius transformations. A few comments
are in order. First, it was shown in Refs. [8,37] that
entanglement transitions are also purification transitions.
This can also be seen in our analysis: if a Mdbius trans-
formation has a single stable fixed point for all k, the steady
state is independent of the initial state. Therefore, the
corresponding circuit would map mixed states to the pure
state given by f (k), as n — co. On the other hand, when
there is a region of critical k, f, (k) in this interval always
retains its dependence on the initial state, and a mixed state
remains mixed even as n — oo.

Second, we note that the distinction governed by con-
ditions (10) is equivalent to a statement on the reality of the
single-particle energies {¢; } of the effective Hamiltonian H
defined by U = ef!: ¢, is real if and only if k is critical.
Therefore, increasing the nonunitarity of the model through
A has a similar effect as in the continuous-time model
of Ref. [31].

While we only studied steady states of two simple kinds
of rounds, the general framework of Mobius transforma-
tions can be used to study any other circuit built out of the
layers in (1) and their intermediate time dynamics. Note
that these MIPTs can be detected directly by either
measuring two-point correlation functions in the steady
state or by measuring correlations between mode occupa-
tion numbers c¢'(k)c(k). For the latter, the measurement
outcome depends on the criticality of k. Therefore, while
difficult to implement due to the midcircuit postselection,
they are easy to detect.
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