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We give a complete topological classification of defect lines in cholesteric liquid crystals using methods
from contact topology. By focusing on the role played by the chirality of the material, we demonstrate a
fundamental distinction between “tight” and “overtwisted” disclination lines not detected by standard
homotopy theory arguments. The classification of overtwisted lines is the same as nematics, however, we
show that tight disclinations possess a topological layer number that is conserved as long as the twist is
nonvanishing. Finally, we observe that chirality frustrates the escape of removable defect lines, and explain
how this frustration underlies the formation of several structures observed in experiments.
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Many liquid crystal textures are distinguished by topo-
logical invariants derived from homotopy theory [1–3]. The
classification of defects and solitons, both two- and three-
dimensional, using homotopy groups is central to the
modern understanding of liquid crystals and their proper-
ties [4–7]. However, despite the successes of homotopy
theory methods, it has long been recognized that they are
insufficient to fully describe materials with a spatially
modulated ground state, such as smectics and cholesterics
[8–10].
Cholesterics are characterized by the property that the

director field n has everywhere a uniform sense of twist,
n ·∇ × n < 0 for a right-handed material. This constraint
on the twist is central to the rich morphology of structures
displayed by cholesteric materials [7,11–18], but it is not
accounted for in homotopy theory arguments, and standard
topological invariants often fail to distinguish between
qualitatively distinct cholesteric configurations [19]. The
nonvanishing of the twist implies that the director defines a
“contact structure” [20]. Techniques and insights from the
field of contact topology go beyond the existing homotopy
theory and are becoming increasingly important in the
study of cholesteric materials following their introduction
by Machon [19]. They have been used to demonstrate the
preservation of the layer structure in a cholesteric [19]; to
describe chiral point defects and elucidate the role of
boundary conditions in the stability of complex defect
structures in spherical droplets [21]; to explain the stability

of Skyrmions in liquid crystals and chiral magnets [22]; to
analyze defect structures in cylindrical capillaries [23]; and
to shed light on the transition pathways between different
cholesteric textures [24]. The mathematical formalism is
developed only for nonsingular textures, i.e., without
defects. The application of contact methods to defects
was first made in [21] for point defects. Here, we extend
this to disclination lines, both refining the existing homo-
topy theory and extending the mathematical framework.
A classification of defect lines in cholesterics was first

given by Kleman and Friedel [25] who identified three
classes, the χ lines (defects in the director), λ lines (defects
in the pitch axis), and τ lines (defects in the director and
pitch), and subsequently placed within the homotopy
theory of defects [26,27]. This approach puts the pitch
axis on equal footing with the director, even though it is
only the latter that appears in the free energy. More subtly, it
does not build in a consistent handedness (sense of twist).
More recent geometric approaches take the pitch axis to be
derived from the director gradients [28–30] and constrain
the handedness by adopting methods of contact geometry
[19,21–24] and it is this approach that we employ here. We
give a complete classification of the local structure of
disclination lines in cholesterics. This splits into two cases,
corresponding to tight and overtwisted contact structures.
For overtwisted disclinations, the classification is the same
as in nematics. However, tight disclinations possess a
topological layer number that is conserved as long as
the twist does not vanish, resulting in a much finer
topological classification.
We discuss how the classification applies to experimen-

tal situations including wedge geometries, colloidal inclu-
sions, droplets, and blue phases. The methods we make
use of have wider applicability in the analysis of chiral
textures, which we illustrate for changes in layer structure,
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skyrmions, and hopfions. The method of analysis can also
be applied naturally to existing three-dimensional imaging
techniques such as fluorescent confocal polarizing micros-
copy [31,32]. We first describe explicit representatives of
each of the homotopy classes and how they relate to the
Kleman-Friedel nomenclature, deferring a sketch proof
using contact topology to the end.
Our classification can be contrasted with the nematic

case, where there is no constraint on the handedness. In
nematics there are four homotopy classes for the local
structure on the tubular neighborhood of a defect loop
[4,13,33]. Representatives for each class are

n ¼ cos
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where θ, ϕ are the meridional and longitudinal angles, and
ν ∈ Z4 is the Jänich index. In the case ν ¼ 0 this extends to
the global director field for a charge zero defect loop first
given by Friedel and de Gennes [34,35]. It is a feature of
these that the form of the director field (1) is independent of
the geometry of the defect loop, whose shape and ori-
entation can be arbitrary relative to the xy plane in which
the director rotates. Such defect loops are not chiral and
n ·∇ × n takes both signs in the neighborhood of the defect
[35]. In contrast, chiral defect loops have a director
structure that is more closely connected to the geometry
of the defect line in order to maintain a consistent
handedness.
A tubular neighborhood of the defect loop is a solid torus

[see the schematic in Fig. 1(a)] and so it suffices to classify
textures on D2 × S1, with a singular line along the central
axis 0 × S1, up to homotopies that fix the singular line and
such that the twist n ·∇ × n never vanishes. This classi-
fication splits into two cases: “tight” and “overtwisted,”
reflecting a fundamental dichotomy in contact topology.
Informally a director is overtwisted if it contains a
Skyrmion with a full π twist [19]. Contact topology tells
us that tight director fields cannot be transformed into
overtwisted ones without either the introduction of addi-
tional defects or the twist density n ·∇ × n vanishing [19].
Further, Eliashberg’s theorem [36] implies that overtwisted
disclination lines have the same classification as nematic
defects and do not possess any additional invariants as a
result of their chirality. Thus the classification of over-
twisted disclination loops is the same as that for nematics
and given by a Jänich index ν ∈ Z4. It remains to classify
the tight disclinations. These are given by distinct classes
of “dividing curves” on the boundary of the tubular
neighborhood of the defect to be described presently;
see also Fig. 1.
We now give representatives of each of the tight

homotopy classes. We use polar coordinates ðr; θÞ for
points ofD2 and an angular coordinate ϕ along S1. We take
the solid angle framing [37] to define the zero of the local

azimuthal angle θ and let fe1; e2; e3g be an adapted
orthonormal frame with e3 tangent to the defect line and
e1 the normal vector in the direction θ ¼ 0. The repre-
sentatives can be distinguished according to the direction of
the pitch axis, either parallel or perpendicular to the defect
line, the former being the case for χ lines and the latter for τ
lines. When the pitch is parallel to the defect axis we have a
two-parameter family (of χ lines)

FIG. 1. (a) Schematic of the tubular neighborhood of a defect
line (blue) with the director (green cylinders) shown on some
cross-sections and part of the dividing curve (red). The frame
fe1; e2; e3g is shown on one cross section. The schematic
corresponds to the representative texture n−1=2;1. (b) Examples
from the family of tight cholesteric disclinations (2) for a
selection of values of ðk; qÞ, shown in abstracted, standardized
form. The examples include the “exceptional” cases k ¼ 1 and
q ¼ 0 (3), where the dividing curve has either zero or infinite
slope. Where the dividing curve has more than one component,
one of them has been displayed in darker shade to aid visuali-
zation. The dividing curve facilitates the computation of invar-
iants associated with the tight disclination in a manner described
in the text.

PHYSICAL REVIEW LETTERS 130, 228102 (2023)

228102-2



nχ
k;q ¼ cosðkθ þ qϕÞe1 þ sinðkθ þ qϕÞe2; ð2Þ

where k is an arbitrary half-integer, the winding number of
the director in the disk D2, and q > 0 is a positive half-
integer giving the number of twists of the director along the
S1. When the pitch is perpendicular to the defect line,
representatives can be given as the one-parameter family

naz
k ¼ cosðkθÞe3 þ sinðkθÞer; ð3Þ

where the pitch axis is oriented azimuthally. Here, k > 0 is
a positive half-integer and er is the unit radial vector normal
to the defect line. The more familiar form of τ lines is given
by instead taking the pitch axis along a vector field mk in
the fe1; e2g plane with winding number k (any half-
integer) and setting

nτ
k ¼ sinψe3 þ cosψmk × e3; ð4Þ

where ψ is a helical phase increasing along the pitch axis.
Several examples are shown in Fig. 1(b). Every tight
disclination line is a chiral material that has a neighborhood
homotopic to exactly one of these models.
Examples arise naturally in a Grandjean-Cano wedge

geometry [38–40], where the cholesteric ground state is
disrupted by the introduction of defects. These may be a
λ−1=2λþ1=2 pair, but can also be pairs of defects consisting
of a λ�1=2 line and a disclination line of type nτ∓1=2.
Patterned substrates can be used to stabilize webs of
disclinations of type nτ

þ1=2 [41], and disclinations of type
nτ
−1=2 occur around colloidal inclusions, in the well-known

saturn ring texture [12,13]. Here, the homeotropic anchor-
ing on the boundary of colloid implies the existence of a
region of revered handedness close to the colloid [21],

which region may either be nonsingular, or coupled to the
defect itself. Disclinations with the same structure as the
type nχ

−1=2;1 disclination have been generated around
colloidal inclusions [12,13], and nχ

−1=2;1 disclinations also
occur in all of the known blue phases [11].
We now give a proof of the classification, making use of

three concepts from contact topology: convex surface
theory, the Thurston-Bennequin invariant, and the tight-
overtwisted dichotomy. We describe these concepts briefly;
a more complete account can be found in [19,20]. Convex
surface theory is a general tool for studying topological and
geometrical properties of ordered media [20,42,43].
Consider an embedded surface S, either closed or with
boundary orthogonal to the director, that does not intersect
any defects. The director will be tangent to S along a
collection of disjoint curves Γ that divide S into regions
where the director points out of the surface, a set Sþ, and
regions where it points into the surface, S−. This situation is
generic: S is called a convex surface and Γ a dividing curve.
A convex surface cutting across a cholesteric texture
containing several λ-lines is shown in Fig. 2(a). The
director is shown in the left half of the panel, with colors
indicating whether it points into (blue) or out of (orange)
the surface; on the right half of the panel we show only the
dividing curve (red).
The dividing curve allows us to compute local topo-

logical information. For instance, it determines the
Skyrmion charge Q on S via the formula

2Q ¼ χEðSþÞ − χEðS−Þ; ð5Þ

where χE denotes the Euler characteristic. We remark that
under the nematic symmetry n → −n the two sets S� are
interchanged leading to a reversal in the sign of the

FIG. 2. Illustrations of convex surfaces, their dividing curves, and the computation of the Thurston-Bennequin (TB) number. (a) A
convex torus (gray) cutting across a cholesteric texture exhibiting a change in the number of layers. The director, shown as white sticks,
points out from the surface in orange regions and into the surface in blue regions. The topological content of this data is entirely captured
by the dividing curve (red), the set of points where the director is tangent to the convex surface. The green line indicates an example
calculation of a Thurston-Bennequin number. (b) On a convex surface cutting across a Skyrmion, the dividing curve is a closed
contractible loops. By Giroux’s criterion the contact structure is overtwisted. (c) Convex surface tomography of a Hopfion. As the
convex surface is slid across the Hopfion, changes in the dividing curve track the changes in the layer structure. The presence of a closed
component bounding a disk (top right) reveals the presence of a Skyrmion, with a local structure equivalent to that shown in panel (b)
and shows that the Hopfion is overtwisted. The pale blue curves indicate the linked λþ1 lines of the Hopfion.
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Skyrmion charge: this is well-known ambiguity in the sign
of hedgehog (Skyrmion) charge in nematics [4,21].
We illustrate (5) for a single Skyrmion in Fig. 2(b). The

region Sþ is a disk, with χEðSþÞ ¼ 1. The remainder is a
punctured plane, with χEðS−Þ ¼ −1, so that (5) gives
Q ¼ 1. A similar calculation shows that the director in
Fig. 2(a) also has Q ¼ 1. In the case of a spherical surface
the same formula (5) determines the point defect charge
enclosed by S [44].
These properties of convex surfaces and dividing curves

apply generally, including for achiral materials. However,
in chiral materials we can also compute invariants con-
nected to the nonzero twist. One is the Thurston-Bennequin
invariant, which informally represents a count of the
number of cholesteric layers [19]. Given a closed curve
C that is everywhere orthogonal to the director, called a
Legendrian curve, its Thurston-Bennequin number tbðCÞ is
the number of right-handed π rotations of the director as
one moves around C [45]. For such a curve on a surface
which intersects the dividing curve transversely its
Thurston-Bennequin number is the count of intersections
between the curves

tbðCÞ ¼ jΓ ∩ Cj: ð6Þ

An example computation is shown in Fig. 2(a) for a
standard cholesteric texture with λ lines and an extra layer.
The minimum value of tbðCÞ over all curves in a given
isotopy class, which we denote tb, is a topological invariant
[19,20]. For the example shown, this is a count of the
number of cholesteric layers.
More complex textures, such as the Hopfion shown in

Fig. 2(c), can be visualized by studying the dividing curves
on a series of slices through the material, a process called
“tomography.” Changes in the number of components of
the dividing curve, and thus the minimal Thurston-
Bennequin number attainable for a curve on each given
slice, reveal fundamental changes in local topology.
For a disclination, the boundary of a tubular neighbor-

hood serves as a convex surface S. Generically, the director
will not be orthogonal to the disks Dϕ of constant ϕ and
hence we can take its projection into these disks. We refer
to this projection as the profile of the line. On each Dϕ the
profile winds around the disclination with some half-
integer winding number kϕ. As the dividing curve is
identified with the points where the director is tangent to
S, the number of intersections between Γ and the boundary
of Dϕ is 2j1 − kϕj. The winding kϕ need not be constant
and can vary with ϕ. We distinguish two cases: when kϕ is
the same for all ϕ, and when it varies. In the latter case there
are two ways in which the number of intersections can
change: from a “kink,” as in Fig. 3(b); or from a separate
component of the dividing curve that bounds a closed disk,
as in Fig. 3(c). A result of Honda [46] establishes that

“kinks” can always be removed by a homotopy, so that this
case reduces to that of constant kϕ.
The second case, where a component of Γ bounds a disk,

is more fundamental and indicates that the disclination line
is overtwisted. This result is known as Giroux’s criterion
[20,42], which states that a component of the dividing
curve bounding a disk appears if and only if there is an
overtwisted disk close to the convex surface. The director
on the disk bounded by Γ is a Skyrmion tube, with profile
equivalent to that in Fig. 2(b), that terminates on the
disclination line. A fundamental result of Eliashberg [36]
states that overtwisted directors do not have any additional
contact topological invariants and hence their classification
is the same as that of nematics: they are classified locally by
a Jänich index ν ∈ Z4 [47,48]. Thus, overtwistedness
distinguishes singular lines with an essentially varying
kϕ from those for which kϕ is constant or can be made
constant by the removal of kinks. In the latter case, the
director is tight in a neighborhood of the singular line.
For the tight case, the dividing curve is isotopic to a

rational line on the torus, or a set of rational lines all with
the same slope. The examples (2), (3) cover all such
possibilities, and thus any tight disclination has a neighbor-
hood equivalent to one of these models. We will show that
they have different Thurston-Bennequin invariants; it then
follows from standard results of contact topology [20] that
they are not homotopic. For a longitudinal Legendrian
curve C on S with zero linking number with the disclina-
tion, its minimal Thurston-Bennequin number is tb ¼ 2q
for the screwlike (χ) defects (2) and zero for the edgelike (τ)
defects (3). For a meridional Legendrian curve, the minimal
Thurston-Bennequin number is tb ¼ 2j1 − kj for both
screwlike and edgelike defects. Since these invariants take

FIG. 3. Three motifs occur in the dividing curve (red) on a
section of a convex torus. (a) The dividing curve turns every-
where counterclockwise and the winding kϕ is constant. (b) The
dividing curve turns back on itself, indicating a region (green) in
which kϕ ¼ −1=2, while kϕ ¼ þ1=2 in the remainder of the
panel. (c) There is a separate component of the dividing curve
which bounds a disk on the torus, also indicating the presence of a
region (green) with kϕ ¼ −1=2.
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different values for different pairs of k, q (including the
edge-type as q ¼ 0), the different models nχ

k;q and naz
k

represent all homotopically distinct chiral directors.
This completes the topological classification of singular

lines in a cholesteric. We now discuss the consequences
of this result beyond just the classification of chiral
disclinations.
Our classification covers both nonorientable (half-inte-

ger k) and orientable (integer k) singular lines. For integer
lines in a nematic the singularity in the director can be
removed by “escape in the third dimension.” This process
extends to cholesterics only for negative windings and
when k is positive the chiral escape is frustrated [23,48].
The removal of such a singular line either results in regions
where the twist has the wrong handedness [21], or else
requires the introduction of point defects. For instance, a
nχ
þ1;q line is replaced by a string of 2q point defects of

alternating charge. When q ¼ 1, the resulting pair of
defects is a toron [49]. Longer strings of point defects
arising from the removal of this type of singularity occur in
cholesteric droplets and shells [14,15], where the spherical
geometry naturally promotes the formation of a nχ

þ1;q line,
and have recently been observed in chromonic liquid
crystals in a cylindrical geometry [23]. Higher charge χ
lines, locally equivalent to nχ

þ2;q, also occur naturally in a
spherical geometry [14,15]. Rather than splitting into a pair
of nχ

þ1;q lines, these split into a pair of nτ
1 which are

wrapped helically around one another, which may then be
removed via escape—this structure is also predicted by our
classification.
The dichotomy between overtwisted and tight disclina-

tions has implications for the crossing of disclination lines.
Classical homotopy theory arguments applied to choles-
terics show that crossing two disclinations produces a λþ1

line tether connecting them [50]. Consequently, if we take
two tight disclination lines in a cholesteric and pass one
through the other, we end up with a pair of disclination lines
tethered to a λþ1 line, which implies the disclination lines
are overtwisted after the crossing event. Further analysis of
the crossing and reconnection of defects using methods
of contact topology would be an important extension
of Ref. [50].
The director can be obtained from three-dimensional

imaging techniques such as fluorescent confocal polarising
microscopy (FCPM) [31,32]. Generically, each image slice
will be a convex surface and those parts where the director
is tangent to it form the dividing curve. This facilitates the
direct analysis of experimental images to compute topo-
logical data and track layer changes using the convex
surface techniques we have described. The example of
Fig. 2(c) illustrates this process. To identify the class of
disclination lines the fully reconstructed director field is

needed to extract the data from a surface surrounding the
disclination.
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