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We introduce range-controlled random walks with hopping rates depending on the range N , that is, the
total number of previously distinct visited sites. We analyze a one-parameter class of models with a hopping
rate N a and determine the large time behavior of the average range, as well as its complete distribution in
two limit cases. We find that the behavior drastically changes depending on whether the exponent a is
smaller, equal, or larger than the critical value, ad, depending only on the spatial dimension d. When
a > ad, the forager covers the infinite lattice in a finite time. The critical exponent is a1 ¼ 2 and ad ¼ 1

when d ≥ 2. We also consider the case of two foragers who compete for food, with hopping rates
depending on the number of sites each visited before the other. Surprising behaviors occur in 1D where a
single walker dominates and finds most of the sites when a > 1, while for a < 1, the walkers evenly
explore the line. We compute the gain of efficiency in visiting sites by adding one walker.
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The range N ðtÞ, that is, the number of distinct sites
visited at time t, is a central observable of random walk
theory. This quantity has been the subject of a large number
of works in various fields, ranging from physics and
chemistry to ecology [1–4]. A key result is that the average
range of the symmetric nearest-neighbor random walk
exhibits the following asymptotic behaviors [5]:

NðtÞ≡ hN ðtÞi ∼

8>><
>>:

ffiffiffiffiffi
8ht
π

q
d ¼ 1

πht
ln ht d ¼ 2

ht=Wd d > 2

ð1Þ

where Wd are Watson integrals [6–9] and h the constant
hopping rate [10]. The sublinear behavior in d ≤ 2 dimen-
sions is a direct consequence of the recurrence of random
walks in low dimensions. Beyond the average, the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½N ðtÞ�p

=NðtÞ is known to go to 0 in the large time
limit when d ≥ 2; it remains finite for d ¼ 1. Thus the
range N ðtÞ is an asymptotically self-averaging random
quantity when d ≥ 2, namely, its distribution is asymptoti-
cally a Dirac delta function peaked at the average value. In
1D, the range is a non-self-averaging random quantity.
In addition to its central place in random walk theory, the

range has proven to be a fundamental tool to quantify the
efficiency of random explorations, as it is the case in
foraging theory [11–17]. The minimal models involve a
forager, described as a random walker (RW), that gradually
depletes the resource contained in a medium as it moves.
The medium is a d-dimensional lattice with a food unit at
each site at t ¼ 0. When the walker encounters a site

containing food, it consumes it so that the amount of food
collected at time t is the range N ðtÞ. This class of models
accounts for the depletion of food induced by the motion of
the forager, yet the movement of the walker is not affected
by the consumption of resources. Depending on the
situation, the food collected along the path can provide
additional energy to search for food or, because it repre-
sents extra weight, to slow down the walk. As a result, there
is a clear coupling between the range N ðtÞ and the
dynamical properties of the RW. No modeling of this
effect has been proposed so far, even at a schematic level.
Here, we fill this gap and introduce range-controlled

random walks as a model accounting for this coupling, for
which the hopping rate is a monotonic function hðN Þ of the
range, either increasing or decreasing (see Fig. 1). For
concreteness, we consider the case where the hopping rate
is a power of the amount of collected food: hðN Þ ¼ N a.
However, our results still apply when this algebraic
dependence holds only asymptotically when N ≫ 1. In
the context of search problems [17], models with positive
[resp. negative] exponent a mimic the walker rewarded
[resp. penalized] and accelerated [resp. decelerated] upon
acquiring new targets (see Fig. 1). Because the coupling
between the range and the dynamical properties of foragers
is natural and because our modeling of this coupling is
minimal, the model of range-controlled random walks
quantifies the efficiency of foraging and appears relevant
at broader scale to random explorations.
At the theoretical level, range-controlled random walks

belong to the class of non-Markovian random walks, in
which the memory of trajectory or some of its features
influences the choice of destination sites. Representative
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examples comprise self-avoiding walks [18,19], true
self-avoiding walkers [20–24], self-interacting random
walks [25–36], and random walks with reinforcement such
as the elephant walks [37–41]. In all of these models, the
total hopping rate is kept constant [42]. Determining the
range of non-Markovian random walks is notoriously
difficult, and very few exact results are available.
Beyond this theoretical challenge, non-Markovian ran-

dom walks with memory emerging from the interaction of
the walker with the territory already visited are relevant in
the case of living cells [45–49]. It has indeed been observed
in vitro [50,51], both in 1D and 2D situations, that various
cell types can chemically modify the extracellular matrix,
which in turn deeply impacts their motility. In this context,
range-controlled random walks appear as a minimal model
where the modifications induced by the passage of cells
are described in a mean-field way: all the complexity of
the “perturbation,” be it the concentration field of nutri-
ents [52], the local orientation of matrix fibers [53], or
hydrodynamics fields [54], is assumed to be encapsulated
in the extension of the domain visited by the cell (i.e., the
range of the associated random walk). It is then natural to

mimic the “response” of the cell by a modification of a
dynamical parameter, and we finally end up with a hopping
rate hðN Þ depending on the range as introduced above.
Main results.—In this Letter, we quantify the efficiency

of d-dimensional range-controlled random walks by deter-
mining exact asymptotic expressions of their average range,
as well as the full distribution in d ¼ 1 and in the d → ∞
limit. This allows us to unveil a surprising transition and
show that the behavior of range-controlled random walks
drastically changes depending on whether the exponent a is
smaller, equal, or larger than the critical value, ad, depend-
ing only on the spatial dimension: a1 ¼ 2 in d ¼ 1 and
ad ¼ 1 when d ≥ 2. The explosive behavior occurs in the
supercritical a > ad regime: The forager covers the entire
infinite lattice in a finite time.
The behavior in the a ≤ ad regime can be appreciated

from the growth of the average number NðtÞ of distinct
visited sites. When a < ad, the growth is algebraic with a
logarithmic correction in 2D:

NðtÞ ∼ CdðaÞ ×

8>><
>>:

t
1

2−a d ¼ 1�
t
ln t

� 1
1−a d ¼ 2

t
1

1−a d > 2

: ð2Þ

The amplitudes are

C1ðaÞ ¼
21þ 1

2−a

Γð 1
2−aÞ

Z
∞

0

dv
v

� ffiffiffi
v

p
cosh v

� 4
2−a
; a < 2 ð3aÞ

C2ðaÞ ¼ ½πð1 − aÞ2� 1
1−a; a < 1 ð3bÞ

CdðaÞ ¼
�
1 − a
Wd

� 1
1−a
; a < 1; d ≥ 3: ð3cÞ

In the critical regime a ¼ ad, the growth is exponential

lnNðtÞ ∼
8<
:

λ1t d ¼ 1; a ¼ 2

λ2
ffiffi
t

p
d ¼ 2; a ¼ 1

λdt d > 2; a ¼ 1

ð4Þ

with growth rates

λ1 ¼ 1; λ2 ¼
ffiffiffiffiffiffi
2π

p
; λd ¼ 1=Wd ðd > 2Þ: ð5Þ

We discuss the competition between two foragers by
determining the average number of distinct sites N2ðtÞ
visited by two foragers in 1D where their respective
hopping rates depend on the number of distinct sites the
walker visited before the other. In particular, by defining
N1ðtÞ as the average number of distinct sites visited by a
single walker (without any other walker), we get an
analytical value for the ratio at large times:

FIG. 1. Representation of a walker penalized upon acquiring
new targets. Top: representation of the random walk slowed down
by the load collected on distinct visited sites. Bottom: trajectory
of a symmetric 1D nearest neighbor random walk in the particular
case of hopping rates hðN Þ varying as the inverse of the number
of distinct sites visited, N −1. The grey area corresponds to the
explored territory, and the coloring refers to the number of
distinct sites visited.
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lim
t→∞

N2ðtÞ
N1ðtÞ

¼ r2ðaÞ ¼
	
2
1−a
2−a a < 1

1 a > 1:
ð6Þ

This ratio quantifies the efficiency gain in finding new sites
by adding one RW. In particular, we observe that for
foragers accelerating fast enough with the number of
distinct sites visited (a > 1), there is no gain in adding
the second walker.
One forager.—Let PnðtÞ≡ P½N ðtÞ ¼ n� be the range

distribution and ΠnðtÞ≡ P½N ðtÞ ≥ n� the corresponding
complementary cumulative distribution. In the 1D situa-
tion, an exact expression for the entire distribution of the
range can be obtained. This exact solution relies on the
observation that (see [55,56])

fN ðtÞ⩾ng ¼
	Xn−1

k¼1

τk⩽t



ð7Þ

where τk is the time elapsed between the visit of the kth and
ðkþ 1Þst site by the RW defined above. The key points are
that (i) during this exploration, the walker has a constant
hopping rate, ka, and (ii) the τk’s are independent random
variables. Performing the Laplace transform ½bfðsÞ≡R∞
0 fðtÞe−stdt� of the probability of these events we get

bΠnðsÞ ¼
1

s

Yn−1
k¼1

bFkðsÞ ð8Þ

where bFk is the Laplace transform of the distribution of the
random variable τk. Here τk is the exit time from an interval
of k sites starting on the boundary. At small s (correspond-
ing to large time), bFk is given by the exit time distribution
of an interval of length kþ 1 starting at distance one of the
border of a continuous Brownian motion with diffusion
constant Dk ≡ 1

2
ka [4],

bFkðsÞ ¼
sinh

� ffiffiffiffi
s
Dk

q
k
�
þ sinh

� ffiffiffiffi
s
Dk

q �
sinh

� ffiffiffiffi
s
Dk

q
ðkþ 1Þ

� : ð9Þ

This expression involves k=
ffiffiffiffiffiffi
Dk

p
∝ k1−a=2, and reveals the

existence of three different regimes.
(i) In the subcritical regime a < ac ¼ 2, taking the limit

k → ∞ and s → 0 while keeping k2−as finite, gives

bFkðsÞ − 1 ∼ −
ffiffiffiffiffi
2s

p
k−a=2 tanh

� ffiffiffi
s
2

r
k1−a=2

�
ð10Þ

and then (see Supplemental Material [57], SM, S1 and S2)

bPnðsÞ ¼ bΠnðsÞ − bΠnþ1ðsÞ
∼ −∂nbΠnðsÞ

∼ −∂n
�

1

s cosh ðn1−a=2s1=2= ffiffiffi
2

p Þ 4
2−a

�
: ð11Þ

In particular, for a ¼ 0, we recover the well-known range
distribution [2] for a standard randomwalk. One can extract
the average range, viz. Eqs. (2) and (3a), from the asymptotic
behavior of the Laplace transform (11) in the s → 0 limit.
In addition, PnðtÞ acquires a scaling form PnðtÞ ¼
t−½1=ð2−aÞ�ϕaðxÞ (x ¼ n=t½1=ð2−aÞ�), where ϕa is a function
of the scaling variable x depending on the exponent a.
Explicit analytical expressions are provided and displayed in
the SM for accelerated and slowed down foragers.
(ii) In the critical regime, a ¼ ac ¼ 2 in 1D, F̂kðsÞ −

1 ∼ −s=k and PnðtÞ ∼ δðn − etÞ (see SM). Thus N ðtÞ is
asymptotically deterministic, chiefly characterized by
exponentially growing average eλ1t with λ1 ¼ 1 as stated
in Eq. (5).
(iii) In the supercritical regime, a > ac ¼ 2, the dynam-

ics is explosive, and the entire infinite lattice is covered in a
finite time (see SM).
In the d → ∞ limit, the entire distribution of the range

can also be obtained (see SM). In this case, the average N
and the variance V of the number of distinct visited sites
exhibit asymptotically identical growth:

N ∼ ½ð1 − aÞt� 1
1−a ∼ V: ð12Þ

This shows the self-averaging nature ofN in the subcritical
regime (for d → ∞) as the standard deviation is negligible
compared to the average.
For finite dimensions, when a ≤ ad, the asymptotic

behavior of the average range can be obtained from
heuristic arguments. In the case of varying hopping rates,
we use (1) and a self-consistent estimate h ¼ Na of the
typical hopping rate. In 1D, for instance, this leads to
N ∝

ffiffiffiffiffiffiffiffi
Nat

p
, from which N ∝ t½1=ð2−aÞ�, in agreement with

the exact solution provided in Eq. (2). Similarly we arrive at
the announced growth laws (2) in higher dimensions. These
results show that ad ¼ 1 when d ≥ 2. We now turn to the
determination of the amplitudes CdðaÞ (for a < ad) and the
growth rates λd (for a ¼ ad).
In d > 2 dimensions, the proper interpretation of (1) is

that a RW hops to unvisited sites with probability that
approaches 1=Wd [2]. Thus

NðtÞ ∼ ðWdÞ−1HðtÞ ð13Þ

where H is the average total number of hops. Using

HðtÞ ∼
Z

t

0

dτ½NðτÞ�a ∼ ð1 − aÞ½CdðaÞ�at 1
1−a ð14Þ
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we arrive at CdðaÞ ¼ ð1 − aÞ½CdðaÞ�a=Wd leading to the
announced result (3c).
The relation (13) is asymptotically exact, but averaging

the total number of hops

H ¼
Z

t

0

dτ½N ðτÞ�a ð15Þ

gives (14) only if hN ai ¼ hN ia. This is erroneous (when
a ≠ 1) if the random quantity N is non-self-averaging
as it is in 1D. Since N is self-averaging if d ≥ 2, the
prediction (3c) is exact (see also the agreement with
numerical simulations displayed in Fig. 2). In the critical
regime, a ¼ 1, we have _H ¼ N which we insert into (13)
and obtain the differential equation _H ¼ H=Wd, whose
solution is H ∝ et=Wd . The range is also exponential,
confirming (4) and (5) for d > 2.
In 2D, the exact asymptotic is N ∼ πH= lnH, see (1).

When a < 1, taking h ¼ Na in Eq. (1) in the 2D case, we
obtain N ∝ ðNat= lnNatÞ and N ∝ ðt= ln tÞ½1=ð1−aÞ�. We
note the constant prefactor C2ðaÞ, as defined in (2).
Then similarly to Eq. (14),

H ∼
Z

t

0

dτ½NðτÞ�a

∼ ð1 − aÞ½C2ðaÞ�at 1
1−aðln tÞ− a

1−a: ð16Þ

Equating N to

πH
lnH

∼ πð1 − aÞ2½C2ðaÞ�aðt= ln tÞ 1
1−a

fixes the amplitude and yields the announced result (3b). In
the critical a ¼ 1 regime, the growth is stretched exponen-
tial in 2D [see Eq. (4)]. Indeed, HðtÞ asymptotically
satisfies _H ¼ ðπH= lnHÞ, whose solution is H ∝ e

ffiffiffiffiffi
2πt

p
.

This confirms (4) with λ2 ¼
ffiffiffiffiffiffi
2π

p
in 2D. Thus we have

established (4) and (5) in all dimensions (see SM Fig. 3 for
the comparison with numerical simulations).
Two foragers.—We now discuss the competition of

foragers. The forager with label j has the hopping rate
F a

j , where F j is the number of sites first visited by the
forager. For one forager, F 1 ¼ N 1 is just the range. For
two foragers, F 1 þ F 2 ¼ N 2 is the total range. Foragers
do not directly interact, but their motion changes the
environment that, in turn, affects the motion of the foragers.
To compare the two-forager and single-forager cases, we

consider the ratio N2=N1 of the average numbers of distinct
visited sites in both settings. The ratio r2ðaÞ defined in
Eq. (6) depends only on the exponent a and is nontrivial
only in 1D, as r2ðaÞ ¼ 2 for d ≥ 2 as a consequence
of [58], the number of common sites visited by the
two RWs being asymptotically negligible compared to
the number of distinct sites visited by each one of them
in this case. Hereinafter we consider foraging in 1D in
the nonexplosive regime, a ≤ 2. For 1D RWs, the ratio
r2ð0Þ ¼

ffiffiffi
2

p
is smaller than 2 reflecting the severe space

limitation in 1D (see SM).
One has to differentiate between two regimes, a < 1 and

a > 1. When a < 1, both foragers visit the 1D lattice
equally (on average). Thus the rate of finding new sites is
known by solving the problem at a ¼ 0. Using a proper
rescaling of the times by ðN2=2Þa corresponding to the
hopping rate of one of the forager [similarly to what we did
with (1)], one establishes (6). When a > 1, the hypothesis
that sites are equally visited breaks down. To understand
the transition, suppose one walker (W1) has found k ≫ 1
sites, while he other (W2) has found l ≪ k sites. If W2

finds a new site at some time t ≫ 1, which walker will be
first to find a new site? The walker W2 will find a new site
in a typical time ∝ k=la, as it is positioned at the border of
the interval of at most kþ l ≈ k distinct sites visited byW1

and W2. The position of W1 is unknown, effectively
uniform in the interval of k distinct sites visited, but it
hops much faster than W2 and so the average time of

FIG. 3. Comparison of the theoretical prediction of the ratio
r2ðaÞ ¼ max ð1; 2½ð1−aÞ=ð2−aÞ�Þ (black dashed lines) and numerical
simulation limt→∞½N2ðtÞ=N1ðtÞ� (red circles, whose diameters
correspond to the largest error bar estimation) of the average
number of distinct sites visited by two foragers, N2ðtÞ, versus the
average number of distinct sites visited by a single one, N1ðtÞ.

FIG. 2. Comparison of the coefficient C3ðaÞ obtained in (3c)
(black dashed line) and the results of numerical simulations (red
circles) obtained by evaluating limt→∞½NðtÞ=t1=ð1−aÞ�. The sub-
figure represents NðtÞ=t1=ð1−aÞ (red squares) for increasing values
of t in the particular case a ¼ 1=2. It shows the convergence to
C3ðaÞ (black dashed line).
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finding a new site is k2=ka ¼ k2−a. Thus, if a > 1, even
though it is further away from the border than W2, the
walkerW1 will be the first to find a new site (k2−a ≪ k=la).
This situation is stable if a > 1 (the dominant walker with
the most distinct visited sites will become more and more
dominating) and unstable if a < 1 (the subdominant walker
catches up). The theoretical prediction is validated by
numerical simulations (Fig. 3).
We introduced random walks with range-dependent

hopping rates behaving as N a when N ≫ 1. Our analysis
provides the exact full distribution of the range in 1D,
and also on a complete graph mimicking an infinite-
dimensional setting. For a random walk on a hypercubic
lattice Zd with d ≥ 2, we used a heuristic approach relying
on results for the classical random walk (a ¼ 0). We argued
that this argument gives asymptotically exact results for the
average range when d ≥ 2. The above subcritical behaviors
occur when a < ad with a1 ¼ 2 and ad ¼ 1 when d ≥ 2.
When a > ad, the entire infinite lattice Zd is covered in a
finite time.

We thank the Erwin Schrödinger Institute for excellent
working conditions.
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