
Fractionalized Prethermalization in a Driven Quantum Spin Liquid

Hui-Ke Jin ,1 Johannes Knolle ,1,2,3 and Michael Knap 1,2

1Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstraße. 4, 80799 München, Germany

3Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

(Received 19 November 2022; revised 2 March 2023; accepted 15 May 2023; published 1 June 2023)

Quantum spin liquids subject to a periodic drive can display fascinating nonequilibrium heating behavior
because of their emergent fractionalized quasiparticles. Here, we investigate a driven Kitaev honeycomb
model and examine the dynamics of emergent Majorana matter and Z2 flux excitations. We uncover a
distinct two-step heating profile—dubbed fractionalized prethermalization—and a quasistationary state
with vastly different temperatures for the matter and the flux sectors. We argue that this peculiar
prethermalization behavior is a consequence of fractionalization. Furthermore, we discuss an exper-
imentally feasible protocol for preparing a zero-flux initial state of the Kiteav honeycomb model with a low
energy density, which can be used to observe fractionalized prethermalization in quantum information
processing platforms.
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Introduction.—Coherent time-periodic modulations
have been established over the recent past years as a
versatile tool for engineering new Hamiltonians for
sought-after equilibrium phases of matter [1–8], as well
as for realizing novel dynamical topological phases which
do not possess an equilibrium analog [9–23]. Experimental
demonstrations include the manipulation of Dirac cones by
circularly polarized light [24,25] and the realization of
topological band structures with ultracold atoms [26–29].
Recent work has proposed to realize exotic interacting
Floquet phases with intrinsic topological order, character-
ized by fractionalized excitations, including fractional
Chern insulators [30], quantum spin liquids [31–39] and
Floquet fracton codes [40].
A major challenge for Floquet engineering concerns

heating due to the continuous energy absorption from the
periodic modulation which necessarily drives the system at
some point to a featureless infinite-temperature state.
Nonetheless, nontrivial Floquet phases can be protected
by either many-body localization in the presence of strong
disorder [41–44] or by resorting to a high-frequency
modulation, that drives the system into a prethermal regime
for an exponentially long time [45–54]. In generic quantum
and classical many-body systems with homogeneous
energy absorption, the prethermal regime arises at inter-
mediate time scales leading to a quasistationary state
described by a low-temperature thermal Gibbs ensemble
of an effective Hamiltonian [55]. However, for Floquet
multiband systems a situation can arise in which the energy
bands are at vastly different temperatures; as for example
shown for the partially filled interacting Thouless pump
[21]. In general, prethermalization in driven systems with
inhomogenous energy absorption stemming from different

types of excitations remains largely unexplored. This raises
the question whether driven topological phases may exhibit
prethermal regimes described by effective Gibbs states or
whether novel types of heating dynamics can emerge
especially in the presence of fractionalized excitations.
In this work, we show that the energy absorption of

driven fractionalized phases can generically be quite
intricate. In particular, we establish that in a periodically
driven system with intrinsic topological order, long-lived
quasisteady states can be attained in which the fractional-
ized excitations are at vastly different temperatures—a
phenomenon we dub fractionalized prethermalization.
To illustrate this unconventional prethermal regime, we
consider a periodically driven Kitaev honeycomb model, in
which spins fractionalize into emergent matter fermions
and Z2 fluxes. When driving the Kitaev honeycomb model
we find situations in which the matter sector heats swiftly
while the fluxes remain at low temperatures, realizing a
fractionalized prethermalization regime in which the two
emergent degree of freedoms are described by vastly
different temperatures. We argue that fractionalized pre-
thermalization not only extends the known phenomenology
of heating dynamics, but also can in turn be used as a tool
for diagnosing the presence of fractionalized excitations in
quantum simulator platforms.
Model.—We consider the Kitaev honeycomb model

[56,57] as an archetypal, solvable model with topological
order:

HK ¼ −
X

a¼x;y;z

X
hijia

Kaσ
a
jσ

a
k; ð1Þ

where σj ¼ ðσxj ; σyj ; σzjÞ are three Pauli matrices and hjkia
(a ¼ x, y, z) denotes the a-type Ising interactions on an
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a-type bond, see Fig. 1(a). In our work we concentrate
on isotropic interactions Kx ¼ Ky ¼ Kz ¼ K ¼ 1. There
exist commuting plaquette operators on each hexagon p,
Wp ≡ σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6, with sites labeled as shown in

Fig. 1(a). The plaquette operators Wp commute with the
Hamiltonian in Eq. (1), ½Wp;HK� ¼ 0, which shows that
the Hilbert space of HK can be block diagonalized into
orthogonal sectors characterized by the conserved Z2 fluxes
fwp ¼ �1g with wp the eigenvalue of Wp.
The Kitaev honeycomb model (1) can be solved by intro-

ducing the four-Majorana representation [56] σaj ¼ icaj c
0
j ,

where ca (c0) are so-called gauge (itinerant) Majorana
fermions. Under this representation,HK becomes a quadratic
Hamiltonian of itinerant Majorana fermions coupled to a
staticZ2 gauge field:HK ¼ −iK

P
a

P
hjki∈a ujkc0jc

0
k, where

ujk ≡ icaj c
a
k lives on an a-type bond with eigen-

values ujk ¼ �1. Moreover, the plaquette operator Wp

can be expressed as a product of ujk around hexagon p,

i.e., Wp ¼ Q
hjki∈∂p ujk [56]. This representation introduces

unphysical states accompanied by gauge redundancy [58].
ThephysicalHilbert space canbe restoredby imposinga local
constraint Dj ≡ cxjc

y
jc

z
jc

0
j ¼ 1 at each lattice site j. Since all

uij’s commute with each other, the eigenstates of HK are
obtained by a Bogoliubov–de-Gennes transformation after
fixing all gauge fields, for instance, asuij ¼ 1. It indicates that
in the Kitaev honeycomb model, the spin degrees of freedom
are fully fractionalized into the gauge andmatter sectors [59].
Theground state jΨ0i is thus a zero-flux statewith allwp ¼ 1.
Our goal is to study the dynamics of the Kitaev spin

liquid phase with fractionalized gauge and matter excita-
tions under a nonequilibrium drive. We are interested in the
generic heating behavior beyond the fine-tuned point of the
pure integrable Kitaev honeycomb model. To this end, we
consider the model in Eq. (1) subjected to a periodic
modulation at frequency ω ¼ 2π=T

HðtÞ ¼
�
HK þHJ þHV for t ∈ ½0; T=2Þ;
HK −HJ −HV for t ∈ ½T=2; TÞ: ð2Þ

The modulation is generated by two additional terms. First,
the Heisenberg interactionHJ ¼ J

P
hjki σj · σk on nearest-

neighbor bonds hjki, which breaks the flux conservation
and is expected to heat both the flux and matter sectors.
Second, in order to allow for inhomogeneous energy
absorption we include the three-spin interaction defined as

HV ¼ V
X
hjkli∈i

σxjσ
y
kσ

z
l ; ð3Þ

where hjkli ∈ i denotes the spin triples on the vortices
(with center i) of the honeycomb lattice, as graphically
indicated in Fig. 1(a). In the Majorana representation, HV

can be rewritten as HV ¼ V
P

hjkli∈i ukiujiulic0i c
0
jc

0
kc

0
l ,

where site i is the center of triangle hjkli ∈ i. Therefore,
HV does not excite fluxes but can heat the matter sector via
the quartic interacting Hamiltonian of itinerant Majorana
fermions. We note that our driving scheme is chosen for a
crisp illustration of fractional prethermalization, e.g.,
allowing numerical feasibility. However, its behavior is
generic as it relies on the basic observation that driving the
physical spin degrees of freedom couples in general
asymmetrically to the intrinsic fractionalized excitations.
Starting with the ground state jΨ0i as the initial state, the

stroboscopic t ¼ NT time evolution is obtained from

UðNTÞ ¼ T t exp
�
−i

Z
NT

0

HðtÞdt
�
≡ exp ð−iNTHeffÞ;

where T t ensures that the exponential is time-ordered. Using
theMagnus expansion [3–5], the effective Hamiltonian up to
the first order readsHeff ¼ HK − ðiπ=2ωÞ½HK;HV þHJ�þ
Oðω−2Þ. In high-frequency limit, we thus recover the Kitaev

FIG. 1. Fractionalized prethermalization. (a) Schematic heating
dynamics of a driven Kitaev honeycomb model with fractional-
ized matter and flux excitations. Left: Ground state characterized
by uniform fluxes wp ¼ 1 (blue hexagons) and no matter
excitations. Middle: After a quick relaxation, fluxes remain
frozen (blue hexagons) over an exponentially long timescale
yet matter fermions (gray spheres) are already thermally activated
—the fractional prethermal regime. Right: At late times, fluxes
are excited (wp ¼ −1, red hexagons) and the system eventually
heats up to a global infinite temperature state. (b),(c) For
intermediate frequencies, we observe a regime in which the
energy EðtÞ is close to zero indicating a near-infinite temperature
state of the fermionic matter, while fluxes WðtÞ remain close to
their ground state. The two fractionalized excitations thus are
described by different temperatures, even though the physical
spin degree of freedom is driven. (d) The growth of entanglement
entropy density shows a multistage heating dynamics of the
system. The simulations are performed for V ¼ 1.0 and J ¼ 0.02.
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honeycomb model HK as the effective Hamiltonian that
describes the prethermal regime.
Fractionalized prethermalization.—The different dyna-

mics for gauge and matter sectors can be diagnosed by
constructing suitable observables. The thermalization of
static flux excitations can be captured by the dynamics of
plaquette operators, WðtÞ≡P

phWpit, where the expect-
ation value h·it is obtained with respect to the time-evolved
state jΨ0ðtÞi ¼ UðtÞjΨ0i. We, moreover, keep track of
energy absorption by measuring the energy of the effective
Hamiltonian EðtÞ≡ hHKit. Even though the excitations of
both fractionalized particles can contribute to the total
energy EðtÞ, it can act as a measure for the thermalization of
the itinerant Majorana fermions in the regime in which the
fluxes are almost frozen. We compute both observables at
stroboscopic times t ¼ NT. The time evolution and strobo-
scopic measurements are numerically implemented with
exact diagonalization on a 4 × 3 torus with 24 spins
(qubits). We explicitly impose translational symmetries
along both directions of the torus and work in the zero
momentum sector.
In accordance with the prethermalization paradigm, the

system can get stuck in a prethermal regime for an
exponentially long time ∼ecω when the drive frequency
ω exceeds a critical value. As shown in Figs. 1(b) and 1(c),
we find that the driven Kitaev spin liquid can exhibit
different prethermalization behaviors. (i) When ω < ω1,
both the energy EðtÞ and flux WðtÞ quickly decay to zero
and a conventional steady-state is reached in which both
flux and matter sectors are at infinite temperature. The flux
sector, in particular, is activated by the Heisenberg inter-
action as can be confirmed by rescaling time with J2; see
Supplemental Material [60]. (ii) For intermediate drive
frequencies ω1 < ω < ω2, the system enters a prethermal
regime in which the flux WðtÞ remains close to the ground
state value for an exponentially long time ∼ecω. At the
same time, the energy EðtÞ is already fluctuating around a
small value close to zero corresponding to a high-temper-
ature state. The freezing of fluxes WðtÞ signals that in this
regime the excitations of thermally activated itinerant
Majorana fermions mostly contribute to the energy
growth. The prethermal regime thus cannot be described
by a conventional thermal Gibbs state of an effective
Hamiltonian. Rather, the fractionalized matter and flux
degrees of freedom are at two distinct temperatures. (iii) For
high drive frequency ω > ω2, not only the flux remains in
its ground state, but also the energy absorption of matter
fermions is inefficient leading to prethermal plateaus in
both quantities.
Next, we investigate signatures of fractionalized pre-

thermalization in the dynamics of the entanglement entropy
SðtÞ of the time evolved state jΨ0ðtÞi. Dividing the torus
into two equal subcylinders, we focus on the half-chain
entanglement entropy between the two. One can observe
two plateaus, showing a staircaselike heating process, see

Fig. 1(d). The first plateau in SðtÞ corresponds to the
thermalization of itinerant Majorana fermions in the matter
sector before also the flux sector explores the full configu-
rational space at much later times.
It turns out that the entanglement entropy of the initial

state jΨ0i can be expressed in a separable form
S0 ¼ SG þ SM, where SG and SM are the entropy of Z2

gauge fields and itinerant Majorana fermions, respectively
[64]. In order to quantify the above numerical results, we
obtain the entanglement of an infinite-temperature state in
the matter sector, by computing the entanglement of a
random vector in the Hilbert space of itinerant Majorana
fermions only. This entanglement corresponds to the Page
saturation value of matter fermions, taking into account all
the nontrivial conservation laws. The difference between
the entanglement of the infinite-temperature state and the
ground state entanglement SM in the matter sector is
≈0.21Nc (Nc ¼ 12 is the size of subcylinder), which is
consistent with the entropy increase found from the time
evolved state in Fig. 1(d). After an exponentially long time,
SðtÞ reaches Sð∞Þ ≈ 0.66Nc which indeed corresponds to
the entanglement of a fully random state covering both the
matter and flux sectors. Thus a true infinite temperature
state is reached. Note, the entropy per site deviates slightly
from the maximum possible value of log(2) due to the
finite-size corrections and the imposed translational
symmetries.
We have shown that our periodic drive thermalizes the

matter sector more efficiently than the flux sector leading to
a novel staircase prethermalization profile of the entangle-
ment entropy. This is in stark contrast compared to a
conventional thermal equilibrium state. In thermal equilib-
rium, fluxes are excited at a finite density as determined by
their finite-temperature Boltzmann weight. In order to
quantitatively analyze this difference, we compute the
thermodynamic expectation values of the (normalized)
energy Eβ and flux Wβ as a function of temperature
[Fig. 2(a)]; see Supplemental Material for details [60].
For the Kitaev honeycomb model prepared in an equilib-
rium state at intermediate temperature β ≈ 1, the fluxes are
already thermally activatedW ≈ 0, while the corresponding
energy is still close to the zero-temperature value, E ≈
0.9Eðβ ¼ ∞Þ [65]. Thus, in equilibrium the flux sector is
much stronger affected than the matter sector as the
temperature increases.
Without fractionalized excitations, one could expect

generic Floquet prethermalization paradigm, in which
the system is governed by the effective Hamiltonian HK
at an effective temperature that is set by the energy pumped
into the system. By contrast, the dynamical Hamiltonian
in Eq. (2) exhibits a completely different prethermali-
zation behavior. At intermediate drive frequencies, the
effective time to thermalize flux sector takes 2 orders of
magnitude longer than that for itinerant Majorana fermions.
Specifically, the energy EðtÞ quickly drops to (almost) zero
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at time t ≈ 1, while the flux WðtÞ still remains frozen for
times t ≈ 100. When inspecting, for example, times
t ≈ 100, which are well within the fractionalized prethermal
plateau for ω ¼ 8, the temperatures corresponding to the
expectation values of the matter and flux sector are
1=βmatter ≈ 50 and 1=βflux ≈ 0.04, respectively. Hence, they
differ by about 3 orders of magnitude. While we argue that
the phenomenon is generic as any periodic modulation of
physical spins typically couples nonsymmetrically to the
fractionalized excitations, the unusual large separation of
heating times arises in our Floquet protocol because the
Heisenberg interaction is small compared to the three-spin
term defined in Eq. (3), and the latter only heats the matter
sector.
Experimental feasibility.—One intriguing prospect is to

experimentally observe fractionalized prethermalization.
First, we discuss the implementation of the dynamical
Hamiltonian, which consists of three terms, the Kitaev
honeycomb model HK , the Heisenberg interaction HJ, and
the three spin interaction HV . The first two can be directly
decomposed into two-qubit Ising gates which in principle
can be realized in various quantum architectures such as
superconducting quantum processor [66,67] and trapped
atoms or molecules [68–70]. Moreover, the three spin term
can also be conveniently prepared with two-qubit Ising
gates by noting that σxjσ

y
kσ

z
l ∝ ðσxjσxi Þðσykσyi Þðσzlσzi Þ. Second,

the experimental preparation of jΨ0i, the ground state of the
Kitaev honeycomb model, as an initial state is highly
nontrivial. However, we need not to start in the ground state
of the model, but a flux eigenstate at low energy density is
sufficient. Thus, we propose a zero-flux state jΨ̃0i which
can be more easily realized in experiments and can lead to
similar results as those obtained with jΨ0i. Our proposal for
preparing jΨ̃0i is motivated by the idea that the ground state
of the Kitaev honeycomb model in the gapped A phase is
continuously connected to a toric code state [56]. We
can, therefore, leverage previous work for the preparation

o jΨ̃0i, which showed that a toric code state can be effi-
ciently prepared with a finite-depth quantum circuit [71].
On the honeycomb lattice all z-type bonds form a

superlattice, i.e., a square lattice shown in Fig. 3(a). We
introduce an effective spin τ ¼ ðτx; τy; τzÞ, that lies on each
link of the square lattice, with a new local basis of
ðj⇑i≡ j↑↑i; j⇓i≡ j↓↓iÞ. This basis indeed spans the
ground-state manifold of the Kitaev honeycomb model
with Kx ¼ Ky → 0 and Kz > 0. The plaquette operators
Wp can be rewritten in terms of effective spins τ as
Wp → W̃p ¼ τzuτ

y
l τ

z
dτ

y
r , where the superlattice sites u, l,

d, and r are shown in Fig. 3(a). We further divide this
superlattice into to two sublattices, the vertical and hori-
zontal superlattice sites marked by blue and yellow
diamonds, respectively. The effective plaquette operators
W̃p with site u belonging to the horizontal (vertical)
sublattice are defined on the plaquettes (vertices) of the
superlattice.
Introducing Uv ≡ e−iτ

xπ=4e−iτ
yπ=4 and Uh ≡ eiτ

zπ=4 [60],
we apply a unitary transformation U−1

vh ¼ Q
vertical sites ×

U−1
v

Q
horizontal sites U

−1
h , after which the effective plaquette

operators can be further rewritten as W̃p∈vertices → Zs ¼
τzuτ

z
l τ

z
dτ

z
r, and W̃p∈plaquette → Xp ¼ τxuτ

x
l τ

x
dτ

x
r . Then jΨ̃0i

FIG. 2. Nonthermal heating. (a) The equilibrium thermal expec-
tation values of normalized energy (dashed) and flux (solid) as
functions of temperature 1=β. (b) The dynamics of EðtÞ=Eðt ¼ 0Þ
(dashed) and WðtÞ=Wðt ¼ 0Þ (solid) in the Kitaev honeycomb
model driven at frequency ω ¼ 8. The model parameters are the
same as those in Fig. 1. At intermediate times t ¼ 100, vertical
gray line, we obtain for the fluxes WðtÞ=Wðt ¼ 0Þ ≈ 0.94 (star)
and for the energy EðtÞ=Eðt ¼ 0Þ ≈ 0.03 (cross), which are
effectively at temperatures 1=βflux ≈ 0.04 and 1=βmatter ≈ 50when
comparing with the thermal expectation values as indicated by
star and cross in (a).

FIG. 3. Preparation of a zero-flux state jΨ̃0i. (a) Representation
of a toric code state of effective spins τ on the superlattice (dashed
square) formed by the z bonds of the Kitaev honeycomb model.
The blue (yellow) diamonds indicate the vertical and horizontal
sublattices on which the effective spins τ live. (b) After applying a
unitary transformation Uvh on this toric code state, we obtain a
zero-flux state jΨ̃0i. (c),(d) The system in Eq. (2) initialized with
jΨ̃0i exhibits similar nonequilibrium fractionalized dynamics as
obtained with the ground state of Kitaev honeycomb model jΨ0i.
The simulations are performed for V ¼ 1.0 and J ¼ 0.02.
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with all wp ¼ 1 is equivalent to a toric code state with all
Zs ¼ 1 and Xp ¼ 1 up to a unitary transformation Uvh.
This indicates that we can introduce a quantum circuit to
prepare jΨ̃0i on a finite-size cluster by the following steps
(here we use a cluster with 24 qubits as an example).
(i) Begin with a product state j↑i⊗24 ¼ j⇑i⊗12. (ii) Prepare
a toric code state in the basis of j⇑i and j⇓i by using the
quantum circuit introduced in Ref. [71]. (iii) Apply a
unitary transformation Uvh to the toric code state and then
obtain jΨ̃0i. Note that two-qubit gates, such as Uv and Uh,
can be decomposed into several CNOT gates and one-qubit
gates [72–74]. Crucially, the depth of the circuit is linear in
system size, see Supplemental Material [60].
For this zero-flux state jΨ̃0iwe now evaluate the heating

dynamics on a plane with 24 qubits under drive of Eq. (2).
The energy of jΨ̃0i is 0.57E0 with E0 ≈ −21.3 K the
ground-state energy of a Kitaev honeycomb model on
such a lattice. Thus, the toric-code inspired state prepara-
tion leads to a finite effective temperature for the matter
sector, while the fluxes remain at zero temperature.
Generally, the detail of the dynamics depends on the
excitations injected in the initial state. Remarkably, we
observe a multistage relaxation dynamics also for the initial
state jΨ̃0i, and hence fractionalized prethermalization is
robust phenomenon; see Figs. 3(c) and 3(d).
Discussion.—We have shown that Floquet driven sys-

tems can exhibit unusual heating behavior in the presence
of fractionalized excitations. Despite driving a physical
degree of freedom of an ergodic system, we establish the
emergence of distinct prethermal plateaus characterized by
different temperatures for fractionalized excitations. Our
concrete example of the driven Kitaev honeycomb model
confirmed that in the fractional prethermal regime the
matter and flux sectors are governed by two different
temperatures.
In contrast to the thermal equilibrium states of the Kitaev

honeycomb model, the matter sector thermalizes more
efficiently than the flux sector in our driving protocol
because of the three-spin interaction HV . Though HV can
perturbatively emerge in the presence of a magnetic field,
we found that driving a magnetic field term unavoidably
heats up the flux sector first. Nevertheless, the concept of
fractionalized prethermalization is generic and insensitive
to the details of the drive protocol because generically a
drive couples asymmetrically to fractionalized excitations.
For future work it will be very worthwhile to study other

examples of driven fractionalized quantum many-body
phases, e.g., the one-dimensional Hubbard model with
spin-charge separation, as they might show similarly rich
fractionalized prethermalization physics. Moreover, it will
be interesting to study whether classical spin liquids can
exhibit a related phenomenology. Often quantum spin
liquids emerge in the low-energy manifold of certain
systems. Investigating under which conditions fractional
prethermalization occurs in such systems will be pertinent

as well. The Kitaev spin liquid studied here exhibits a block
diagonal Hilbert space structure on all energy scales [59].
Hence, weak perturbations are expected to similarly affect
the whole spectrum, which renders the fractionalized
prethermalization phenomena of the Kitaev spin liquid
rather robust.
We emphasize that while fractionalization generically

leads to two-temperature prethermal states as we discuss,
the converse is not true; see, e.g., Ref. [21]. Since the
experimental identification of quantum spin liquids is
notoriously difficult [75], an exciting possibility would
be to use fractionalized prethermalization as a signature of
fractionalization. In conclusion, our work considerably
enriches the phenomenology of driven phases of matter
and we expect that fractionalized phases will be a versatile
area for exotic nonequilibrium physics.

Data analysis and simulation codes are available on
Zenodo upon reasonable request [76].
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Note added.—Recently, Ref. [37] appeared, which pro-
posed the same toric-code based protocol for preparing a
zero-flux state in the Kitaev honeycomb model.
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