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Accurate simulations of the two-dimensional (2D) Hubbard model constitute one of the most
challenging problems in condensed matter and quantum physics. Here we develop a tangent space tensor
renormalization group (tanTRG) approach for the calculations of the 2D Hubbard model at finite
temperature. An optimal evolution of the density operator is achieved in tanTRG with a mild OðD3Þ
complexity, where the bond dimension D controls the accuracy. With the tanTRG approach we boost the
low-temperature calculations of large-scale 2D Hubbard systems on up to a width-8 cylinder and 10 × 10

square lattice. For the half-filled Hubbard model, the obtained results are in excellent agreement with those
of determinant quantum Monte Carlo (DQMC). Moreover, tanTRG can be used to explore the low-
temperature, finite-doping regime inaccessible for DQMC. The calculated charge compressibility and
Matsubara Green’s function are found to reflect the strange metal and pseudogap behaviors, respectively.
The superconductive pairing susceptibility is computed down to a low temperature of approximately 1=24
of the hopping energy, where we find d-wave pairing responses are most significant near the optimal
doping. Equipped with the tangent-space technique, tanTRG constitutes a well-controlled, highly efficient
and accurate tensor network method for strongly correlated 2D lattice models at finite temperature.
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Introduction.—The paradigmatic Hubbard model [1,2] is
arguably the most intensively studied lattice model for
strongly correlated electrons [3,4]. It has been widely
believed to capture the quintessence of high-temperature
superconductivity [5–9], and recently also realized in optical
lattice quantum simulations [10–15]. The intriguing inter-
play between the spin and charge degrees of freedom in the
Hubbard model may give rise to abundant, even a plethora of
electron orders in the finite-temperature phase diagram
[16–21]. However, large-scale simulations of the 2D
Hubbard model with a broad range of doping and down
to low temperature yet constitute a widely open and truly
challenging problem [4].
Tensor networks (TNs) and their renormalization group

methods provide powerful approaches for quantum many-
body problems [22–25]. In particular, thermal TNs [26–31]
have been conceived and extensively used in the studies
of low-dimensional quantum magnets [32–37] and recently
also in correlated fermions at finite temperature [17,38–42].
However, the accessible system size and lowest temper-
ature that fermion thermal TN methods can handle are still

rather limited. For a comparison, while the T ¼ 0 density
matrix renormalization group (DMRG) can deal with
fermion cylinders of width W ¼ 6–8 [43–46], finite-tem-
perature calculations can currently reach aW ¼ 4 Hubbard
cylinder [17,40]. For cracking electron secrets in the phase
diagram of the 2D Hubbard model, like the strange
metallicity [16], pseudogap [17], and d-wave supercon-
ductivity [46–50], further developments in the algorithm
are highly required.
In this Letter, we propose a tangent space tensor

renormalization group (tanTRG) approach for highly con-
trolled simulations both at half filling and finite doping. It
has the following promising features: (i) A versatile 2D
finite-temperature approach with efficient temperature grid
design. Through a quasi-1D mapping, it systematically
deals with the long-range interactions and evolves 2D
systems based on the matrix product operator (MPO)
representation of the Hamiltonian, making it advantageous
over the Trotter-based approach [26,27,30,51]. In tanTRG
we integrate a flow equation and have a very high degree of
flexibility in designing temperature grids. A remarkably
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larger imaginary-time step can be taken in tanTRG com-
pared to Trotter-based approaches. (ii) Moderate computa-
tional complexity. Compared to the exponential tensor
renormalization group (XTRG) that can simulate a 2D
system down to low temperatures with a relatively high cost
of OðD4Þ [29,39], tanTRG is with only OðD3Þ complexity
that allows for a significantly larger bond dimensionD in the
calculations. These advantages therefore lead to (iii) unprec-
edented finite-temperature simulations of large-scale sys-
tems. As fermion symmetries can be conveniently
implemented in tanTRG with the tensor library QSpace
[52–54], it further reduces the computational costs and
allows for up to D� ¼ 4, 096 SUð2Þcharge × SUð2Þspin mul-
tiplets at half filling (i.e., approximately D ≈ 25000 equiv-
alent Uð1Þcharge × Uð1Þspin states). For doped cases,
Uð1Þcharge × SUð2Þspin can also be implemented. Note the
spin and charge symmetries can be implemented in theMPO
representation of the grand canonical ensemble (GCE)
density operator. It helps further enhance the effective bond
dimension D and renders excellent accuracy for large-scale
Hubbard systems on up to a width-8 cylinder and 10 × 10
square lattice down to sufficiently low temperature.
Tangent space tensor renormalization group.—Finite-

temperature properties are determined by the (unnormal-
ized) density operator ρ ¼ e−βH as illustrated in Fig. 1(a),
with β the inverse temperature. The imaginary-time evo-
lution equation reads dρ=dβ ¼ −Hρ, with −Hρ the tangent
vector in TρH (i.e., the tangent space of the full Hilbert
spaceH), which, in general, sticks out of the tangent space
TρM of the MPO manifold M [see Fig. 1(b)], i.e., the
MPO representation of ρ will increase its bond dimension
D in the course of induced flow. In conventional thermal
TN methods [26,29–31,51], the so-called truncation proc-
ess is introduced to bring the evolved MPO back to
manifold M with a fixed D.
Alternatively, here we propose to optimize ρ within the

MPOmanifoldM using the technique of the time-dependent
variational principle (TDVP) [60–64], which was originally
conceived for real-time evolutions of pure quantum states.
For a generalization to density operator ρ, we find the optimal
tangent vector Xρ on the tangent space TρM, i.e.,

dρ
dβ

¼ arg min
Xρ∈TρM

kXρ þHρk; ð1Þ

which defines a tangent vector field ρ ↦ Xρ that induces the
flow of ρðβÞ exactly on the manifold M. With the MPO
parameterization of ρ, the imaginary-time flow equation can
be expressed with local tensors (c.f., Supplemental Material
(SM) [55])

dAi

dβ
¼ −Hð1Þ

i Ai þ AL
i H

ð0Þ
i Si; ð2Þ

whereHð1Þ
i is the one-site effectiveHamiltonian acting on the

on-site tensor Ai, andH
ð0Þ
i is the bond effective Hamiltonian

acting on the bond tensor Si.
Following the splitting method [65], we separate Eq. (2)

into two linear equations dAi=dβ ¼ −Hð1Þ
i Ai and dSi=dβ ¼

Hð0Þ
i Si regarding the site and bond updates, respectively, and

then integrate the equations sequentially in a sitewise sweep
to conduct the time evolution. Taking a left-to-right sweep as

an example, we first update the local tensor Aiðβ0 þ τÞ ¼
e−τH

ð1Þ
i Aiðβ0Þ with the Lanczos-based exponential method,

then left-canonicalizeAi via aQRdecompositionAi ¼ AL
i Si.

Subsequently, we conduct backward evolution of bond

tensor Siðβ0 þ τÞ ¼ eτH
ð0Þ
i Siðβ0Þ, associate it to Aiþ1, and

thenmove on to the next site. Such a sweep process naturally
maintains the canonical form of the MPO [55], and guaran-
tees an optimal approximation within its manifold M.
2D Hubbard model on the square lattice.—We consider

the single-band Hubbard model on a square lattice, whose
Hamiltonian reads

H¼−t
X

hi;ji;σ
ðc†iσcjσþH:c:ÞþU

X

i

ni↑ni↓−μ
X

i

ni; ð3Þ

FIG. 1. (a) The MPO representation of thermal density operator
ρ and corresponding quasi-1D mapping of the square lattice. The
MPO consists of rank-4 tensors Ai with two geometric and two
physical indices. (b) The MPO manifoldM and its tangent space
TρM, where the black arrow denotes the tangent vector −Hρ for
imaginary-time evolution, and the blue one is its component
within the tangent space TρM. The flow induced by the projected
tangent vector field is indicated by the trajectory within the
manifold M. (c) The relative error δF ¼ jF − Fexj=jFexj (with
Fex the exact solution) for half-filled free fermions on a 4 × 8
cylinder. A high accuracy is obtained by a hybrid cooling scheme
with both exponential (β ≤ 1) and linear (β > 1) temperature
grids. There are two dips in δF that represent cancellation points
between different types of errors (see analysis in SM [55]), and
the inset shows the specific heat Ce in excellent agreement with
the exact solution.
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where t ¼ 1 is chosen as the energy scale, and μ controls
the fermion filling n (or hole doping δ ¼ 1 − n). The on-
site repulsion is fixed as U ¼ 8 if not otherwise mentioned.
The calculations are performed on the cylinder lattice (CL)
wrapped around the circumference direction (width W)
while left open along the longitudinal direction (length L),
and also open square (OS) lattice with full open boundaries.
Benchmarks on noninteracting fermions.—We start with

benchmarks on free fermions with U ¼ 0. The tanTRG
calculations can be initialized from a high-temperature
density operator ρ0 ¼ 1 − τ0H with very small τ0 ∼ 10−6,
where a compact representation of ρ0 can be conveniently
constructed from the MPO representation of the
Hamiltonian [66–70]. After that, we cool down the system
by integrating the flow equation, Eq. (2), following flexible
temperature grids, and compute the finite-temperature
properties from ρðβÞ.
In practice, we always start with exponential grids and

exploit the two-site update allowing the MPO bond
dimension D to increase adaptively. Successively, a pretty
large and constant step length 4τ ¼ 1 is adopted in the
linear evolution stage. Very accurate results in free energy
and specific heat are obtained in Fig. 1(c), as not only the
projection but also Lie-Trotter errors are well controlled by
bond dimension D [55]. Remember that the free fermion
system, though being exactly soluble, poses challenges for
TN methods due to the high entanglement associated with
the Fermi surface (FS). Here the accurate results on free
fermions show that tanTRG provides a powerful tool for
tackling more realistic problems.
2D Hubbard model at half filling.—In Fig. 2, we present

the tanTRG results on a width-8 cylinder CL8 × 16, and
leave the results on narrower cylinders (W ¼ 4, 6) to the
SM [55]. In practical calculations, we expand ρ0 to higher
orders [69] with a slightly larger τ0 ∼ 10−4, and a bilayer
technique is used to compute thermodynamic quantities [71].
In Fig. 2(a) the results of the energy per site ε are found in
excellent agreement with the determinant quantum
MonteCarlo (DQMC) [72–75] data down to low temperature
T=t ≃ 1=16 [55].
With the extrapolated ε data, in Fig. 2(b) we show the

computed specific heat Ce ¼ −β∂ε=∂ ln β again fully
agrees with the DQMC results. In particular, the two peaks
in Ce, i.e., Th and Tl, respectively, for charge and spin
peaks [76–78], constitute two-temperature scales. From the
comparisons of CL6 and CL8 data, we find the higher
charge peak Th=t ∼ 2 has fully converged to the thermo-
dynamic limit and the lower spin peak Tl=t ∼ 0.2 still
changes slightly vs system widths.
As shown in Fig. 2(c), the double occupancy Dn ¼

ð1=NÞPihni↑ni↓i (with N ¼ L ×W the total site number)
undergoes a rapid decrease at aroundTh, indicating the onset
of Mott physics. Upon further cooling, the spin-spin corre-
lation FðdÞ ¼ ð1=NdÞ

P
hi;jidhSi · Sji (i.e., averaged over

Nd pairs of sites separated by distance ji − jj≡ d) rises up

and becomes prominent below Tl. Meanwhile, the double
occupancy is found to exhibit a minimum at intermediate
temperature Tl ≲ T ≲ Th [78,79]. This can be understood
via the Maxwell’s relation ð∂Dn=∂TÞU ¼ −ð∂S=∂UÞT ,
which associates the anomalous decrease in double occu-
pancy as raising T with the increase of magnetic entropy
upon localization by enhancing U. This constitutes an
intriguing quantum phenomenon in the Mott phase of
Hubbard model [80,81] that resembles the renowned
Pomeranchuk effect in 3He.
Charge compressibility at finite doping.—Now we move

on to the cases with finite doping. As GCE is adopted in
tanTRG simulations, the hole doping δ varies with T and μ
(for μ ≠ U=2) are shown in Fig. 3(a), again benchmarked
with DQMC. For μ slightly lower than U=2, e.g., μ ¼ 3, δ
approaches zero in the low temperature limit and the sign
problem is not very critical for DQMC. In contrast, when μ
further deviates U=2 and the doping level increases, the
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FIG. 2. (a) The results of the half-filled Hubbard model. The
relative difference δε ¼ jε − εQMCj=jεQMCj of the tanTRG results
(up toD� ¼ 4096 and extrapolated to infiniteD) are plotted vsT in
the inset, with the estimated Trotter errors of DQMC also
indicated. The ground-state energy is obtained by standard two-
site DMRG with D� ¼ 8192 (truncation error ≲10−5). (b) The
electron specific heat Ce of CL6 × 12 and CL8 × 16, where the
two Ce peaks indicate two temperature scales, namely, Th and Tl.
(c) The double occupancyDn and spin-spin correlationsFðdÞwith
d≡ ffiffiffi

2
p

, which change rapidly near Th and Tl, respectively. The
anomalous decrease in Dn near Tl as T rises reflects the
Pomeranchuk effect in the Hubbard model.
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DQMC sign problem becomes severe (i.e., hsigni < 10−3,
c.f., Supplemental Material Fig. S14 [55]).
As shown in Fig. 3(a), tanTRG produces accordant data

in the regime where DQMC works well, and can “pen-
etrate” into the shaded low-T regime inaccessible for
DQMC. From Fig. 3(a) we note the electron density is
most strongly fluctuating near δ ∼ 0.1–0.2, as evidenced by
the large compressibility χ ¼ ð∂n=∂μÞT appearing at inter-
mediate doping and low T in Figs. 3(b) and 3(c). We plot
the inverse compressibility χ−1 in Fig. 3(c) for various
dopings, where the χ−1 results exhibit universal linear-T
behaviors for T=t ≳ 3 with little doping dependence.
Considering that the compressibility χ has an intimate
relation to dc resistivity via the Nernst-Einstein relation, the
universal behaviors of χ−1 account for the linearity of
resistivity in the high-temperature (T=t≳ 3) regime. Below
T=t ∼ 3, distinct χ−1 behaviors of the Mott insulator and
bad metals can be clearly observed. In particular, χ−1 is
found to converge to a nonzero constant for T=t ∼ 0.1,
which is argued to be related to the second, doping-
dependent linear-T regime of resistivity controlled instead
by the diffusivity [16].
Matsubara Green’s function and Fermi surface

topology.—Below the crossover temperature scale T=t ∼ 3,
the inverse compressibility χ−1 exhibits a maximum in
Figs. 3(b) and 3(c) for the slightly doped case, e.g.,
δ ¼ 0.04, 0.08, which suggests a dramatic change in the

FS upon cooling. For this we compute the single-
particle Matsubara Green’s function Gðk; β=2Þ ¼P

σheβH=2c†kσe
−βH=2ckσiβ with ckσ ¼ ð1= ffiffiffiffi

N
p ÞPr e

−ikrcrσ
[82] that reflects the spectral weight near the FS through
βGðk; β=2Þ ∼ Aðk;ω ¼ 0Þ at low temperature [83,84]. In
Fig. 4, we show the results of βGðk; β=2Þ in a slightly
doped case, and find quite peculiar temperature evolution
of the FS. Despite some blurring due to thermal fluctua-
tions, an electronlike FS with enclosed area A < 1=2 can be
observed. As the temperature ramps down, an “interacting
Lifshitz transition” [18,85,86] occurs. A holelike FS with
enclosed area A > 1=2 appears in Fig. 4(b), with the
boundary “pushed” outwards with respect to the free-
fermion FS. The unexpected holelike FS seems to violate
the Luttinger theorem and echoes the conclusion in
Refs. [19,20,87,88]—the FS topology change can be
associated with the opening of a pseudogap. Moreover,
we find the signature of the pseudogap gets clearer when
the system size increases, and it becomes very prominent
when a next nearest hopping t0 is introduced [55].
d-wave pairing response.—Next we compute the

superconductive pairing responses by applying a pairing
field −hpΔtot ≡ −hp

P
hi;ji sijðΔij þ Δ†

ijÞ=2, where Δij ¼
ðci↓cj↑ − ci↑cj↓Þ=

ffiffiffi
2

p
, and sij ¼ 1ð−1Þ for horizontal (ver-

tical) bonds (c.f., inset in Fig. 5). The results of pairing
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FIG. 3. (a) The doping δ for various T and μ. DQMC is accurate
for the lightly doped case or at relatively higher temperature
(T=t > 0.3) while it is hindered in the shaded regime with
hsigni < 10−3. tanTRG offers accurate results even below
T=t ≃ 0.06, under a wide range of dopings. The extrapolation
is based on the D� ¼ 1024, 2048, and 2896 data (and up to D� ¼
4096 for μ ¼ 1.5 case), shown as translucent symbols. (b) The
contour plot of compressibility χ, with the equal-δ (dashed) lines
also indicated, and (c) plots the inverse compressibility χ−1 for
various (interpolated) dopings δ.
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susceptibility hΔtotiT=ðNphpÞ (with Np the bond number)
are shown in Fig. 5. At relatively high temperature, e.g.,
T=t ¼ 1 and 1=8, χSC values are small and insensitive to
dopings. However, as the temperature further decreases to
T=t≲ 1=16, χSC displays a domelike shape with prominent
responses near optimal doping δx ≈ 1=8. Moreover, the
induced superconductive order parameter hΔtotiT=Np is
found to vanish as hp → 0, even for the lowest accessed
temperature. Instead, charge stripes and spin correlation
modulations appear for T ≲ 1=32 [55]. These results, in full
agreement with previous studies [21,45,89,90], show that
the ground-state features can be well captured by tanTRG
calculations down to sufficiently low temperature.
Summary and outlook.—With tangent-space techniques,

we evolve the density operator ρ optimally on the MPO
manifold and propose a powerful approach for exploring
2D many-electron problems. We study the intriguing
behaviors of charge compressibility that reflect strange
metallicity, and unveil a holelike FS in the pseudogap
regime. The d-wave pairing responses are computed down
to T=t ¼ 1=24, which are otherwise rather challenging to
obtain for the 2D Hubbard model.
This approach has a wide variety of features. It can reach

a low-temperature doped regime that is inaccessible for
DQMC, and the OðD3Þ complexity, together with the
implementation of non-Abelian symmetries, enables
tanTRG to deal with wide W ¼ 8 cylinders at finite
temperature. This is clearly beyond the current limit of
W ¼ 4 [17,40], where tanTRG obtains results in agreement
with minimally entangled typical thermal states (METTS)
[17,27,28] (see comparisons in SM [55]). Overall, our
results close the gap between thermal TN and ground-state
DMRG calculations in terms of system size. As the cylinder
width W > 4 is important for observing 2D correlation
physics [45–50,91], we believe tanTRG will play an active

role in exploring the intriguing temperature-doping phase
diagrams, and help establish solid connections between
theories of high-Tc superconductivity with fundamental
models of correlated electrons.
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[37] J. L. Jiménez, S. P. G. Crone, E. Fogh, M. E. Zayed, R.
Lortz, E. Pomjakushina, K. Conder, A. M. Läuchli, L.
Weber, S. Wessel, A. Honecker, B. Normand, C. Rüegg,
P. Corboz, H. M. Rønnow, and F. Mila, A quantum magnetic
analogue to the critical point of water, Nature (London) 592,
370 (2021).

[38] P. Czarnik, M. M. Rams, and J. Dziarmaga, Variational
tensor network renormalization in imaginary time: Bench-
mark results in the Hubbard model at finite temperature,
Phys. Rev. B 94, 235142 (2016).

[39] B.-B. Chen, C. Chen, Z. Chen, J. Cui, Y. Zhai, A.
Weichselbaum, J. von Delft, Z. Y. Meng, and W. Li,
Quantum many-body simulations of the two-dimensional
Fermi-Hubbard model in ultracold optical lattices, Phys.
Rev. B 103, L041107 (2021).

[40] A. Wietek, R. Rossi, F. Šimkovic, M. Klett, P. Hansmann,
M. Ferrero, E. M. Stoudenmire, T. Schäfer, and A. Georges,
Mott Insulating States with Competing Orders in the
Triangular Lattice Hubbard Model, Phys. Rev. X 11,
041013 (2021).

[41] X. Lin, B.-B. Chen, W. Li, Z. Y. Meng, and T. Shi, Exciton
Proliferation and Fate of the Topological Mott Insulator in a
Twisted Bilayer Graphene Lattice Model, Phys. Rev. Lett.
128, 157201 (2022).

[42] A. Sinha, M. M. Rams, P. Czarnik, and J. Dziarmaga, Finite-
temperature tensor network study of the Hubbard model
on an infinite square lattice, Phys. Rev. B 106, 195105
(2022).

[43] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L.
Chan et al. (Simons Collaboration on the Many-Electron
Problem), Solutions of the Two-Dimensional Hubbard
Model: Benchmarks and Results from a Wide Range of
Numerical Algorithms, Phys. Rev. X 5, 041041 (2015).

[44] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P.
Qin, R. M. Noack, H. Shi, S. R. White, S. Zhang, and

PHYSICAL REVIEW LETTERS 130, 226502 (2023)

226502-6

https://doi.org/10.1038/nature22362
https://doi.org/10.1126/science.abe7165
https://doi.org/10.1038/s41586-022-04688-z
https://doi.org/10.1038/s41586-022-04688-z
https://doi.org/10.1126/science.aau7063
https://doi.org/10.1126/science.aau7063
https://doi.org/10.1103/PhysRevX.11.031007
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1073/pnas.1720580115
https://doi.org/10.1103/PhysRevX.13.011007
https://doi.org/10.1103/PhysRevX.13.011007
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/PhysRevB.72.220401
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1103/PhysRevX.8.031082
https://doi.org/10.1103/PhysRevLett.106.127202
https://doi.org/10.1103/PhysRevLett.106.127202
https://doi.org/10.1103/PhysRevB.86.245101
https://doi.org/10.1103/PhysRevB.58.9142
https://doi.org/10.1103/PhysRevB.99.140404
https://doi.org/10.1103/PhysRevB.99.140404
https://doi.org/10.1038/s41467-020-14907-8
https://doi.org/10.1038/s41467-021-24257-8
https://doi.org/10.1088/0256-307X/38/9/097502
https://doi.org/10.1088/0256-307X/38/9/097502
https://doi.org/10.1038/s41586-021-03411-8
https://doi.org/10.1038/s41586-021-03411-8
https://doi.org/10.1103/PhysRevB.94.235142
https://doi.org/10.1103/PhysRevB.103.L041107
https://doi.org/10.1103/PhysRevB.103.L041107
https://doi.org/10.1103/PhysRevX.11.041013
https://doi.org/10.1103/PhysRevX.11.041013
https://doi.org/10.1103/PhysRevLett.128.157201
https://doi.org/10.1103/PhysRevLett.128.157201
https://doi.org/10.1103/PhysRevB.106.195105
https://doi.org/10.1103/PhysRevB.106.195105
https://doi.org/10.1103/PhysRevX.5.041041


G. K.-L. Chan, Stripe order in the underdoped region of the
two-dimensional Hubbard model, Science 358, 1155
(2017).

[45] M. Qin, C.-M. Chung, H. Shi, E. Vitali, C. Hubig, U.
Schollwöck, S. R. White, and S. Zhang (Simons Collabo-
ration on the Many-Electron Problem), Absence of Super-
conductivity in the Pure Two-Dimensional Hubbard Model,
Phys. Rev. X 10, 031016 (2020).

[46] S. Jiang, D. J. Scalapino, and S. R. White, Ground-state
phase diagram of the t − t0 − J model, Proc. Natl. Acad. Sci.
U.S.A. 118, e2109978118 (2021).

[47] H. C. Jiang and T. P. Devereaux, Superconductivity in the
doped Hubbard model and its interplay with next-nearest
hopping t0, Science 365, 1424 (2019).

[48] Y.-F. Jiang, J. Zaanen, T. P. Devereaux, and H.-C. Jiang,
Ground state phase diagram of the doped Hubbard model on
the four-leg cylinder, Phys. Rev. Res. 2, 033073 (2020).

[49] H.-C. Jiang and S. A. Kivelson, High Temperature Super-
conductivity in a Lightly Doped Quantum Spin Liquid,
Phys. Rev. Lett. 127, 097002 (2021).

[50] S. Gong, W. Zhu, and D. N. Sheng, Robust d-wave Super-
conductivity in the Square-Lattice t − J Model, Phys. Rev.
Lett. 127, 097003 (2021).

[51] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: ATime-Dependent
Superoperator Renormalization Algorithm, Phys. Rev. Lett.
93, 207205 (2004).

[52] A. Weichselbaum, Non-Abelian symmetries in tensor net-
works: A quantum symmetry space approach, Ann. Phys.
(Amsterdam) 327, 2972 (2012).

[53] A. Weichselbaum, X-symbols for non-Abelian symmetries
in tensor networks, Phys. Rev. Res. 2, 023385 (2020).

[54] B. Bruognolo, J.-W. Li, J. von Delft, and A. Weichselbaum,
A beginner’s guide to non-Abelian iPEPS for correlated
fermions, SciPost Phys. Lect. Notes, 25 (2021).

[55] SeeSupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.130.226502, Sec. I shows tanTRG
results on width-4 and 6 cylinders, Matsubara Green’s func-
tion, d-wave pairing responses, spin and charge correlations,
and the numerical error analysis. Section II describes theMPO
flow equation, Lanczos-based exponential method, and the
Lie-Trotter splitting. Section III is devoted to details of the
DQMC calculations. The Supplemental Material includes
Refs. [56–59].

[56] A. J. Dunnett and A.W. Chin, Efficient bond-adaptive
approach for finite-temperature open quantum dynamics
using the one-site time-dependent variational principle for
matrix product states, Phys. Rev. B 104, 214302 (2021).

[57] J.-W. Li, A. Gleis, and J. von Delft, Time-dependent
variational principle with controlled bond expansion for
matrix product states, arXiv:2208.10972.

[58] H. F. Trotter, On the product of semi-groups of operators,
Proc. Am. Math. Soc. 10, 545 (1959).

[59] M. Suzuki, Relationship between d-dimensional quantal
spin systems and (dþ 1)-dimensional Ising systems—
equivalence, critical exponents and systematic approximants
of the partition function and spin correlations—, Prog.
Theor. Phys. 56, 1454 (1976).

[60] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H.
Verschelde, and F. Verstraete, Time-Dependent Variational

Principle for Quantum Lattices, Phys. Rev. Lett. 107,
070601 (2011).

[61] J. Haegeman, M. Mariën, T. J. Osborne, and F. Verstraete,
Geometry of matrix product states: Metric, parallel trans-
port, and curvature, J. Math. Phys. (N.Y.) 55, 021902
(2014).

[62] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken,
and F. Verstraete, Unifying time evolution and optimization
with matrix product states, Phys. Rev. B 94, 165116
(2016).

[63] M. Yang and S. R. White, Time-dependent variational
principle with ancillary Krylov subspace, Phys. Rev. B
102, 094315 (2020).

[64] L. Hackl, T. Guaita, T. Shi, J. Haegeman, E. Demler, and J. I.
Cirac, Geometry of variational methods: Dynamics of
closed quantum systems, SciPost Phys. 9, 048 (2020).

[65] E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical
Integration, 2nd ed. (Springer Berlin, Heidelberg, 2006),
10.1007/3-540-30666-8.

[66] F. Fröwis, V. Nebendahl, and W. Dür, Tensor operators:
Constructions and applications for long-range interaction
systems, Phys. Rev. A 81, 062337 (2010).

[67] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, Matrix
product operator representations, New J. Phys. 12, 025012
(2010).

[68] C. Hubig, I. P. McCulloch, and U. Schollwöck, Generic
construction of efficient matrix product operators, Phys.
Rev. B 95, 035129 (2017).

[69] B.-B. Chen, Y.-J. Liu, Z. Chen, and W. Li, Series-expansion
thermal tensor network approach for quantum lattice mod-
els, Phys. Rev. B 95, 161104(R) (2017).

[70] B.-B. Chen, L. Chen, Z. Chen, W. Li, and A. Weichselbaum,
Exponential Thermal Tensor Network Approach for Quan-
tum Lattice Models, Phys. Rev. X 8, 031082 (2018).

[71] Y.-L. Dong, L. Chen, Y.-J. Liu, and W. Li, Bilayer linearized
tensor renormalization group approach for thermal tensor
networks, Phys. Rev. B 95, 144428 (2017).

[72] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar,
Monte Carlo calculations of coupled boson-fermion sys-
tems. I, Phys. Rev. D 24, 2278 (1981).

[73] J. E. Hirsch, Discrete Hubbard-Stratonovich transformation
for fermion lattice models, Phys. Rev. B 28, 4059 (1983).

[74] J. E. Hirsch, Two-dimensional Hubbard model: Numerical
simulation study, Phys. Rev. B 31, 4403 (1985).

[75] F. Assaad and H. Evertz, World-line and determinantal
quantum Monte Carlo methods for spins, phonons and
electrons, in Computational Many-Particle Physics,
edited by H. Fehske, R. Schneider, and A. Weiße (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 277–356,
10.1007/978-3-540-74686-7_10.

[76] D. Duffy and A. Moreo, Specific heat of the two-
dimensional Hubbard model, Phys. Rev. B 55, 12918
(1997).

[77] T. Paiva, R. T. Scalettar, C. Huscroft, and A. K. McMahan,
Signatures of spin and charge energy scales in the local
moment and specific heat of the half-filled two-dimensional
Hubbard model, Phys. Rev. B 63, 125116 (2001).

[78] J. P. F. LeBlanc and E. Gull, Equation of state of the
fermionic two-dimensional Hubbard model, Phys. Rev. B
88, 155108 (2013).

PHYSICAL REVIEW LETTERS 130, 226502 (2023)

226502-7

https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1103/PhysRevX.10.031016
https://doi.org/10.1073/pnas.2109978118
https://doi.org/10.1073/pnas.2109978118
https://doi.org/10.1126/science.aal5304
https://doi.org/10.1103/PhysRevResearch.2.033073
https://doi.org/10.1103/PhysRevLett.127.097002
https://doi.org/10.1103/PhysRevLett.127.097003
https://doi.org/10.1103/PhysRevLett.127.097003
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1103/PhysRevResearch.2.023385
https://doi.org/10.21468/SciPostPhysLectNotes.25
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.226502
https://doi.org/10.1103/PhysRevB.104.214302
https://arXiv.org/abs/2208.10972
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1063/1.4862851
https://doi.org/10.1063/1.4862851
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.102.094315
https://doi.org/10.1103/PhysRevB.102.094315
https://doi.org/10.21468/SciPostPhys.9.4.048
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1103/PhysRevA.81.062337
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1103/PhysRevB.95.035129
https://doi.org/10.1103/PhysRevB.95.035129
https://doi.org/10.1103/PhysRevB.95.161104
https://doi.org/10.1103/PhysRevX.8.031082
https://doi.org/10.1103/PhysRevB.95.144428
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevB.28.4059
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1007/978-3-540-74686-7_10
https://doi.org/10.1103/PhysRevB.55.12918
https://doi.org/10.1103/PhysRevB.55.12918
https://doi.org/10.1103/PhysRevB.63.125116
https://doi.org/10.1103/PhysRevB.88.155108
https://doi.org/10.1103/PhysRevB.88.155108


[79] T. Paiva, R. Scalettar, M. Randeria, and N. Trivedi,
Fermions in 2D Optical Lattices: Temperature and Entropy
Scales for Observing Antiferromagnetism and Superfluidity,
Phys. Rev. Lett. 104, 066406 (2010).

[80] F. Werner, O. Parcollet, A. Georges, and S. R. Hassan,
Interaction-Induced Adiabatic Cooling and Antiferromag-
netism of Cold Fermions in Optical Lattices, Phys. Rev.
Lett. 95, 056401 (2005).

[81] Z. Cai, H.-h. Hung, L. Wang, D. Zheng, and C. Wu,
Pomeranchuk Cooling of SUð2NÞ Ultracold Fermions in
Optical Lattices, Phys. Rev. Lett. 110, 220401 (2013).

[82] Note that k is no longer a good quantum number under the
open boundary condition, and thus there exist k0 ≠ k s.t.
Gðk; k0; β=2Þ ≠ 0. Nevertheless, we find that the off-
diagonal components are negligible, i.e., about 1% of total
weights at T ¼ 2 and 8% at T ¼ 1=3.

[83] W. Jiang, Y. Liu, A. Klein, Y. Wang, K. Sun, A. V.
Chubukov, and Z. Y. Meng, Monte Carlo study of the
pseudogap and superconductivity emerging from quantum
magnetic fluctuations, Nat. Commun. 13, 2655 (2022).

[84] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson,
Superconductivity and non-Fermi liquid behavior near a
nematic quantum critical point, Proc. Natl. Acad. Sci.
U.S.A. 114, 4905 (2017).

[85] K.-S. Chen, Z. Y. Meng, T. Pruschke, J. Moreno, and M.
Jarrell, Lifshitz transition in the two-dimensional Hubbard
model, Phys. Rev. B 86, 165136 (2012).

[86] S. Sakai, Y. Motome, and M. Imada, Evolution of Electronic
Structure of Doped Mott Insulators: Reconstruction of Poles
and Zeros of Green’s Function, Phys. Rev. Lett. 102,
056404 (2009).

[87] V. F. Maisi, S. V. Lotkhov, A. Kemppinen, A. Heimes, J. T.
Muhonen, and J. P. Pekola, Excitation of Single Quasipar-
ticles in a Small Superconducting Al Island Connected to
Normal-Metal Leads by Tunnel Junctions, Phys. Rev. Lett.
111, 147001 (2013).

[88] N. Doiron-Leyraud, O. Cyr-Choinière, S. Badoux, A. Ataei,
C. Collignon, A. Gourgout, S. Dufour-Beauséjour, F. F.
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