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Ultrafast laser irradiation can induce spontaneous self-organization of surfaces into dissipative structures
with nanoscale reliefs. These surface patterns emerge from symmetry-breaking dynamical processes that
occur in Rayleigh-Bénard-like instabilities. In this study, we demonstrate that the coexistence and
competition between surface patterns of different symmetries in two dimensions can be numerically
unraveled using the stochastic generalized Swift-Hohenberg model. We originally propose a deep
convolutional network to identify and learn the dominant modes that stabilize for a given bifurcation
and quadratic model coefficients. The model is scale-invariant and has been calibrated on microscopy
measurements using a physics-guided machine learning strategy. Our approach enables the identification of
experimental irradiation conditions for a desired self-organization pattern. It can be generally applied to
predict structure formation in situations where the underlying physics can be approximately described by a
self-organization process and data is sparse and nontime series. Our Letter paves the way for supervised
local manipulation of matter using timely controlled optical fields in laser manufacturing.
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The emergence of instabilities and symmetry breaking
leading to the formation of coherent structures, is one of the
most fascinating aspects of the complex dynamics gov-
erning light-surface interaction [1–3]. When a randomly
rough surface is subjected to ultrafast laser pulses, it
enters a far-from-equilibrium state due to the repeated
absorption of pulsed optical fields. As a result, the surface
exhibits spontaneous spatial organization, which is oriented
by energy gradients generated by laser polarization,
giving rise to laser-induced periodic surface structures
(LIPSS) [4]. These structures form under far-from-equilib-
rium conditions and can be triggered by capillary waves,
convection rolls, and thermoconvective instabilities, [5–8]
which persist through dissipative structures [9]. Elimina-
ting the prevailing laser polarization effects reveals puz-
zling patterns emerging from a sequence of instabilities,
inducing different types of complex patterns, ranging from
chaos to six-fold symmetries [10]. The photoexcited matter
undergoes a transition from a disordered state to a more
coherent one, referred to as a strange attractor in the phase
space of nonlinear dynamics. This transition results in a
metastable state, defining a self-organization structuring
regime. Through this self-organization process, the material
surface can be sculpted seamlessly, enabling nanoscale
manufacturing [11]. Understanding the selection mecha-
nisms involved in this morphogenesis to gain control over
the uniformity, symmetry, and size of the resulting surface
patterns is a major research theme in laser processing
for photonics metasurfaces, biomimetics, or catalysis

functionalization. [12,13]. To apply statistical inference
approaches to complex systems and achieve generalizabil-
ity, advanced physics-guided machine learning strategies
are essential. Upon laser irradiation, a hazy boundary
separates self-organized and organized surface patterns.
When a material is exposed to sufficiently intense laser
irradiation, it tends to organize along the stationary electro-
magnetic fields due to scattered or excited waves [4,14] and
self-organize in response to the random fluctuations of light
absorption with a symmetry breaking with respect to
polarization [15,16]. Light-oriented and self-assembled
dynamical processes are inherently superimposed, and
surface topographies evolve spatiotemporally toward equi-
librium patterns that result from a complex competition
between free energy dissipation imposing entropy produc-
tion and spontaneous ordering. Consequently, any preex-
isting or transient organization can be disrupted by random
perturbations, which can be amplified by positive feedback
to lead the system toward new patterns. Ultrafast laser
texturing has recently been used to obtain deep subwave-
length periodic patterns, which raises questions about the
relevant electromagnetic processes that drive the formation
of these patterns well below the diffraction limit [17,18].
Various types of 2D surface patterning have been reported,
including patterns with oriented, triangular, hexagonal,
labyrinthine, or chaotic symmetries [19–22], featuring
both positive and negative reliefs such as humps, bumps,
peaks, and spikes [10]. To explain the remarkably uni-
form establishment of these patterns on the microscale
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independently from the oriented near-field optical effects
on the random local nanotopography, a more global and
collective perspective is required [10,21]. Nanoscale fluid
flows were shown to be driven by a complex interplay
between electromagnetic, internal, and surface pressure
forces which can become trapped due to the resolidification
process [8,21] The deterministic approach to predict the
underlying optical coupling processes is limited because it
requires the artificial integration of fluctuating conditions
induced by surface roughness. Transiently formed struc-
tures can become unstable under nonlinear amplification
and bifurcate into more complex patterns that are not
accurately described by classical approaches like Navier-
Stokes combined with Maxwell equations. Nonetheless,
the complex pattern landscape has been experimentally
explored and can now be compared with mathematical
models dedicated to nonlinear system dynamics.
The Kuramoto-Sivashinsky approach has become a

paradigm for describing pattern formation and spatiotem-
poral chaos on surfaces eroded by ion bombardment, which
ultimately reproduces ripple formation and other organized
patterns [23]. A similar approach was initially proposed for
laser-induced nanopatterns, although a clear physical pic-
ture has yet to be established [24]. Along similar lines, the
Swift-Hohenberg (SH) dynamics has been identified as a
relevant candidate for representing the observed complex-
ity of convective instabilities with spatiotemporal fea-
tures, such as chaos, rolls, and hexagons [25,26]. The
SH approach has proven to be useful in identifying
generic spatiotemporal dynamics of patterns in convective
fluids [27,28], as well as curvature- and stress-induced
pattern-formation transition [29]. The SH approach was
formally deduced from the Navier-Stokes equations in the
Boussinesq approximation, with thermal fluctuation effects
in a fluid near the Rayleigh-Bénard instability [30].
The purpose of this Letter is to demonstrate that laser-

induced pattern formation at the nanoscale can be effi-
ciently characterized and predicted by a stochastic SH
model that is variational in time and conservative in space.
Our original strategy relies on the use of machine learning
(ML) integrating partial physical information in the form of
the SH model, which allows us to identify dominating
stable modes for a set of parameters independently of initial
roughness conditions. Incorporating data and prior knowl-
edge is naturally expressed in terms of Bayesian inference,
for which well-established domain-specific methods exist
dating back to Laplace [31], but which cannot be applied in
our experimental situation of few data and partial physical
knowledge: in geophysics and climate science, where the
physical process is well understood, methods focus on state
reconstruction, known as data assimilation [32]; in physics,
since states can be prepared, model calibration was
developed [33], with recent advancements using ML
[34] to integrate the parameters of either the full model
or a correction to incomplete physical knowledge from

data [35]. However, solving the joint inverse problem of
finding both state and model parameters is more challeng-
ing. In the climate sciences, sophisticated machine-learning
techniques were recently proposed, integrating physical
information via constraints, either during training or in
model architecture itself [36–40], but require abundant
time-series data. Our original strategy allows us to solve the
dual inverse problem using only one observed state—a
scanning electron microscope (SEM) image—even with
little data. Furthermore, our modeling is scale invariant and
can be applied to any laser process. By reducing exper-
imental irradiation parameters to simple model coefficients,
they can be optimized and extrapolated for surface pattern
engineering.
Tailoring nanotopographic features on a surface is a

challenging task that has been successfully accomplished
using ultrafast laser processes with time-controlled polari-
zation strategies. Numerous regimes of LIPSS have been
reported with various periodicities, heights, orientations,
and symmetries depending on different polarization
directions between the first E⃗1 and second pulse E⃗2,
characterized by sin α ¼ ðE⃗1 E⃗2Þ=ðkE⃗1k kE⃗2kÞ in Fig. 1(a)
[10,21,41,42]. Figs. 1(b)–1(d) present surface topographies
measured by high resolution atomic force microscopy
(AFM). A circular region with a diameter of 1 μm
corresponding to the laser impact center was mapped in
3D (tilted) mode in Figs. 1(b) and 1(c) and in 2D for

FIG. 1. (a) Schematic illustration of experimental self-
organization regimes induced by bursts of ultrafast laser
(150 fs) double pulses. (b) Self-organized patterns of topography
that develop varying time delays for a given F and N (AFM-3D
mode). (c) Nanopattern variation with respect to laser fluence at
fixed Δt and N (AFM-3D mode). (d) Nanostructure growth by
feedback at different number of pulses (AFM-2D mode), for a
fixed Δt and F. The scale bars represent a length of 500 nm.
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Fig. 1(d). To observe the significant role of temporal pulse
splitting Δt in nanopatterns control, laser peak fluence F
and N were kept fixed at 0.18 J=cm2 and 25, respectively,
as shown in Fig. 1(b). At Δt ¼ 8 ps, organized nanopeak
structures were observed with a high aspect ratio, a height
of ∼100 nm and a diameter of ∼20 nm [11]. An extension
of 2 ps in Δt modifies the observed patterns that turn into a
different organization, a regime referred to as nanobumps
[10]. For Δt ¼ 15 ps, a regime of nanohump generation is
reached with a lower aspect ratio as the structures display a
height of ≈10 nm and a diameter of ≈30 nm.
The role of laser fluence is revealed by fixingΔt ¼ 25 ps

and N ¼ 25, as depicted in Fig. 1(c). At F ¼ 0.18 J=cm2, a
low-contrast nanopeak regime is formed, evolving into a
nanostripe pattern with a slight increase in laser fluence
increase to 0.20 J=cm2. At F ¼ 0.22 J=cm2, a transition
region is established, combining both stripes and cavities.
Finally, at F ¼ 0.24 J=cm2, the surface is uniformly
organized with hexagonally arranged nanocavities having
a depth of ≈25 nm and a diameter of ≈30 nm. Both
nanohumps and nanovoids result from hydrothermal flows
guided by surface tension and rarefaction forces, leading
to thermoconvective instability at the nanoscale, similar
to well-known Rayleigh-Bénard-Marangoni instabilities
[8,10,21,43–54]. Laser dose also plays a role, as positive
feedback regulates pulse-to-pulse topographical transfor-
mations. As shown in Fig. 1(d), at a fixed F ¼ 0.24 J=cm2

and Δt ¼ 8 ps with different N, corresponding to the para-
meters of nanopeaks formation presented in Fig. 1(a), three
different surface organizations were observed. Pulse-to-
pulse growth dynamics exhibits the transitions from con-
vection cells (N ¼ 15), to the creation of crests on the
convection cells (N ¼ 20). The nanopeaks grow on the
edges of the crests to reach their optimal shape, concen-
tration, and organization at N ¼ 20.
The adimensional form of the generalized SH equation

used in this Letter is (see derivation in the Supplemental
Material [55])

_̃u ¼ ϵũ − ð1þ ∇̃2Þ2ũþ γũ2 − ũ3: ð1Þ

The SH model was introduced in [30] as a model of
Rayleigh-Bénard convection, modified by the inclusion of
a u2 nonlinearity allowing for small amplitude destabiliza-
tion and the emergence of experimentally observed hex-
agonal patterns. With appropriate boundary conditions, the
original SH equation exhibits a type-I-s instability that is
isotropic, invariant with respect to translations and to
u → −u [26]. Perturbations of ub ¼ 0 are selectively ampli-
fied depending on the norm of the wave number, leading to
the formation of complex patterns with no preferential direc-
tion. The generalized SH model has the Lyapunov func-
tional L½ũ�¼R

Ωðũ=2Þð∇4ũþ2∇2ũþ ũÞþ 1
4
ũ4−ðγ=3Þũ3−

ðϵ=2Þũ2dx and _̃u ¼ −ðδL=δũÞ, as can be readily verified.
During the SH dynamics, the Lyapunov functional L

decreases in the same way as entropy decreases during
the formation of physical patterns, and it converges
asymptotically to a stable value [26] (see Fig. 2). We
numerically solve the SH equation using a second-order
Strang splitting pseudospectral solver with an adaptive time
step [56–60], offering a good compromise between accu-
racy and speed. Figs. 2(a)–2(c) and Figs. 2(d)–2(f) show
evolution dynamics of pattern formation for two pairs
of ϵ, γ.
A ML model is employed to learn the relationship

between observed laser parameters θ and patterns, using
only few, nontime series data (I), assuming an approximately
SH process, not explicitly given in terms of θ, parametrized
by ϕ (consisting of a scale factor l, the maximum wave
number in a domain of side 224 pixels given as a multiple of
2π, the adimensional model parameters ϵ and γ, and t̃, which
can be seen as a stabilization time) (II), with unknown initial
conditions u0 (III). We motivate this choice by symmetry
considerations (Supplemental Material [55]) as well as the
similarity between SEM images and SH solutions (Fig. 3).
Combining experimental information with that obtained via
the ML model, we find that the timescale of the convective
instability is consistent with that reported in [10]
(SupplementalMaterial [55]), further supporting our choice.
Learning the relationship between laser parameters and

FIG. 2. Lyapunov functional of the generated field solutions of
the SH equation as a function of evolution time t̃ for fixed ϵ and γ
(ϵ a centered 2D Gaussian ramp to mimic the laser fluence
distribution), depicted as a heat map in symlog scale, for
independent initial conditions. Lyapunov functional evolution
is largely independent of initial conditions and decreases during
dynamics. The SH equation is able to reproduce, among others,
highly symmetric hexagonal solutions (top), as well as labyrin-
thine solutions surrounded by nanopeaks.
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patterns consists in solving the dual inverse problem of
estimating an unknown initial state and model parameters
with severe constraints, which is a challenging task and
cannot be tackled, in general, using only ML methods.
However, for a self-organization process, stating initial
conditions exhaustively is wasteful, since for random
perturbations of the uniformly zero solution of SH most
Fourier modes are attenuated. Therefore, a feature mapping
Fm is defined that is simplifying (noninjective) and dis-
criminating [if ui, uj have different patterns then
FmðuiÞ ≠ FmðujÞ] such that the image of the data distribu-
tion under Fm is conditionally independent of u0 given the
physical knowledge ϕ. This considerably simplifies the
problem since the initial state no longer needs to be
estimated. Learning Fm [61] from few data is impractical
[62], (II) precludes deriving it on first principles, and, using
traditional image features, would limit discriminating power

for unknown patterns. Fm is, therefore, chosen as a deep
convolutional neural network (CNN) [63] pretrained for a
broad classification task on Imagenet [64], since CNNs are
translation equivariant (making them suited for a pattern
specification task). Their features are learned automatically
from data, and retain scale information [65]. Given exper-
imental data fθi; uigi¼1;…;N , we learn ϕ̃α that maximizes the
log likelihood of the observed FmðuiÞ

α ¼ argmax
α

XN

i¼1

logp½FmðuiÞjϕ̃αðθiÞ�: ð2Þ

Assuming that the distribution ofϕ given θ is peaky,we label
experimental ui with ϕ̃i the SH parameters of its nearest
neighbor (NN), in the image ofFm, among a large number of
u pregenerated with the SH solver from random u0. By
integrating physical knowledge in this way, the problem of
maximizing the likelihood above can be replaced with a
lower bound. Explicitly, assuming data are sampled from
independent and identically distributed Gaussian random
variables,

ᾱ ¼ argmin
α

1

N

XN

i¼1

kϕ̃i − ϕ̃αðθiÞk2; ð3Þ

which is a low-dimensional problem that can be solved with
few data [66] with a support vector regressor [67] ϕ̃α

parametrized by α.
Figure 3 demonstrates the remarkable accuracy of our

ML strategy in predicting the shape and scale of exper-
imental patterns, even for never-before-seen laser param-
eters. Our strategy is more efficient than local methods that
rely on nearest neighbor information, since the distance to
the SEM experimental patterns in the image of the feature
mapping Fm is smaller. As shown in Fig. 4, the complexity
of the learned relationship between laser parameters and
SH parameters grows with the number of experimental
observations, with sharp boundaries of rapidly varying
parameter values in regions of many data. The ML model
can extrapolate to regions with few data for N and Δt, but
less so for F, which would require higher experimental
resolution. Importantly, we find that predicted SH param-
eters are correlated, and the correlation sign changes withN
(Supplemental Material [55]): lp, for example, is inversely
correlated with pattern characteristic size and increases
with N (the increase is not uniform, being greater for large
lp regions). This parameter is particularly important as the
characteristic size of a stable mode is of great interest for
applications. Because lp and other parameters are corre-
lated, it cannot be set freely; but as seen in Fig. 4, parameter
isosurfaces are orthogonal at places: at, e.g., N ¼ 25, a
high-gradient transition regime for lp, at F ¼ 0.18 J=cm2,
Δt ¼ 15 ps in the Δt direction is observed, while for F, Δt
in the same region, the other SH parameters remain roughly

FIG. 3. Each row shows a 224 by 224 pixel SEM experimental
image, with 1 μm ≈ 237 pixels which was never seen by the ML
model during learning, the corresponding ML-predicted image
for the same laser parameters, and three nearest neighbors (NN)
of the former among solver generated images; and a bar plot of l2
distance in the image of the feature mapping Fm between SEM
image, ML-predicted image (ml), and NN (nn1, nn2, nn3). Image
labels, left to right: F, Δt, N (SEM); predicted SH parameters lp,
ϵp, γp, t̃p (other). Bar plots: ML predictions are more accurate, as
distance between SEM and ML predictions is smaller than to NN,
the former integrating global information. On the first and second
rows, NN with different length scales can be observed, suggesting
concurrent multiscale SH processes. The ML model, which
integrates single-scale SH knowledge, can only predict one of
these processes.
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constant. Thus, varying lp in the direction of ∇lp allows
adjusting the characteristic size of the particular stable
mode defined by the other SH parameters. This opens the
door to pattern optimization for specific applications.
Interestingly, (γp) determines whether holes or bumps

are observed; F ¼ 0.2 J=cm2 separates a region of high and
low γp, roughly independently of N; the sign of γp appears
to be determined by F and Δt only. Furthermore, for large
bifurcation parameter (ϵp), many modes are nonattenuated
and patterns are less ordered. Correspondingly, large ϵp
patches are observed at high F or low Δt (highest energy
coupling). For N ¼ 25, superimposing the γp ¼ 0 isosur-
face on the ϵp prediction, it can be seen that it is roughly
perpendicular to isosurfaces of ϵp. These abrupt transition
regimes of ϵp are consistent with experimental observations
where two patterns of different order are superimposed on
the same SEM image. (t̃p) for constant lp, ϵp, γp, symmetry
increases with t̃p, as symmetrical patterns require large t̃p
to stabilize from a uniformly random state. As can be seen
in the bottom row of Fig. 4, t̃p tends to increase with N,
consistently with the physical view that a large N increases
the time the dissipative system is in a far from equilibrium
state. This increase is not uniform across F, Δt pairs, and
the area of laser parameter space of relatively large t̃p
decreases with N.
We show that ultrafast laser-irradiated surface nanoscale

patterns can be numerically modeled by a scale-invariant

generalized Swift-Hohenberg equation. A machine learn-
ing model is trained to learn the connection between the
stochastic SH equation and laser parameters, independently
of initial conditions, using a deep convolutional network to
extract features and by incorporating physical information.
Our original strategy can be applied generically to accu-
rately predict the shape and scale of physical patterns
resulting from diverse self-organization processes.
Importantly, this applicability extends even to cases where
the underlying physical model is approximate and the
availability of experimental data is limited, including non-
time series data. The ML model is able to identify regions
of laser parameters that are relevant for applications and can
even be used to predict novel patterns, since the convolu-
tional neural network features are not learned from
observed patterns. Regions where pattern superpositions
are observed could be modeled more accurately via a
mixing of SH processes, as a manifestation of superposed
states of self-organization, providing new routes toward
nanoscale surface manipulation by light.

This work has been funded by a public grant from the
French National Research Agency (ANR) under the
“France 2030” investment plan, which has the reference
EUR MANUTECH SLEIGHT-ANR-17-EURE-0026.

Appendix A: Experimental setup.—In the proposed
experiment, Mach-Zehnder interferometry was used to
combine the effect of polarization mismatch with an
adjustable interpulse delay Δt, enabling fine control of
surface topography at the tens of nanometer scale [10]. By
breaking the surface isotropy imposed by a single polari-
zation state, a wide range of self-organization regimes was
achieved on a nickel monocrystal oriented in the (001)
direction. Specifically, using a cross-polarization strategy,
setting a depolarization angle of α ¼ 90° and a range of
time delays between 8 and 25 ps were set, as shown in
Fig. 1(a). The pulse duration was fixed at 150 fs, and the
laser dose was finely controlled by the numberN of double-
pulse sequences. Prior to laser irradiation, the Nickel sur-
face was mechanically polished with a Ra < 5 nm to ensure
that the surface dynamics followed a hydrodynamics-
governed process, smoothing the inhomogeneous electro-
magnetic response.

Appendix B: Image similarity.—It is important to note,
regarding the ML strategy, that the problem is approached
within the image of a feature mapping Fm, where the
concept of similarity differs from visual similarity. In this
feature space, an image is equivalent to any of its images in
the orbit of the group of symmetries of Fm, such as
translations, but also a variety of other symmetries that
are learned from data automatically. Intuitively, similarity
in feature space corresponds to similarity of patterns,
which can be described in terms of, e.g., “bumpiness,”
“roundness,” etc.

FIG. 4. Each plot shows, as a heat map, the ML model
prediction of a single SH parameter (bottom to top: scale factor
lp; order parameter ϵp; symmetry breaking parameter γp;
simulation stabilization time t̃p) as a function of laser fluence,
time delay, and number of pulses (respectively, x axis and y axis,
and column). Experimental points are overlaid on each plot.

PHYSICAL REVIEW LETTERS 130, 226201 (2023)

226201-5



*jean.philippe.colombier@univ-st-etienne.fr
[1] T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur,

Microstructuring of silicon with femtosecond laser pulses,
Appl. Phys. Lett. 73, 1673 (1998).

[2] Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Self-
Organized Nanogratings in Glass Irradiated by Ultrashort
Light Pulses, Phys. Rev. Lett. 91, 247405 (2003).

[3] S. Ilday, G. Makey, G. B. Akguc, Ö. Yavuz, O. Tokel, I.
Pavlov, O. Gülseren, and F. Ö. Ilday, Rich complex
behaviour of self-assembled nanoparticles far from equilib-
rium, Nat. Commun. 8, 14942 (2017).

[4] J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel,
Laser-induced periodic surface structure. I. Theory, Phys.
Rev. B 27, 1141 (1983).

[5] F. Keilmann, Laser-Driven Corrugation Instability of Liquid
Metal Surfaces, Phys. Rev. Lett. 51, 2097 (1983).

[6] J. F. Young, J. E. Sipe, and H. M. van Driel, Laser-induced
periodic surface structure. III. Fluence regimes, the role of
feedback, and details of the induced topography in germa-
nium, Phys. Rev. B 30, 2001 (1984).

[7] G. D. Tsibidis, E. Skoulas, A. Papadopoulos, and E.
Stratakis, Convection roll-driven generation of supra-
wavelength periodic surface structures on dielectrics upon
irradiation with femtosecond pulsed lasers, Phys. Rev. B 94,
081305(R) (2016).

[8] A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F.
Garrelie, R. Stoian, and J.-P. Colombier, High-frequency
periodic patterns driven by non-radiative fields coupled with
Marangoni convection instabilities on laser-excited metal
surfaces, Acta Mater. 194, 93 (2020).

[9] I. Prigogine and P. Van Rysselberghe, Introduction to
thermodynamics of irreversible processes, J. Electrochem.
Soc. 110, 97C (1963).

[10] A. Nakhoul, C. Maurice, M. Agoyan, A. Rudenko, F.
Garrelie, F. Pigeon, and J.-P. Colombier, Self-organization
regimes induced by ultrafast laser on surfaces in the tens
of nanometer scales, Nanomater. Nanotechnol. 11, 1020
(2021).

[11] A. Nakhoul, A. Rudenko, C. Maurice, S. Reynaud, F.
Garrelie, F. Pigeon, and J.-P. Colombier, Boosted sponta-
neous formation of high-aspect ratio nanopeaks on ultrafast
laser-irradiated Ni surface, Adv. Sci. 9, 2200761 (2022).

[12] E. Stratakis, J. Bonse, J. Heitz, J. Siegel, G. Tsibidis, E.
Skoulas, A. Papadopoulos, A. Mimidis, A.-C. Joel, P.
Comanns et al., Laser engineering of biomimetic surfaces,
Mater. Sci. Eng. R 141, 100562 (2020).

[13] A. C. Overvig, S. C. Malek, and N. Yu, Multifunctional
Nonlocal Metasurfaces, Phys. Rev. Lett. 125, 017402
(2020).

[14] A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, and J.-P.
Colombier, Self-organization of surfaces on the nanoscale
by topography-mediated selection of quasi-cylindrical and
plasmonic waves, Nanophotonics 8, 459 (2019).

[15] O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, Self-
organized pattern formation upon femtosecond laser abla-
tion by circularly polarized light, Appl. Surf. Sci. 252, 4702
(2006).

[16] A. Abou Saleh, A. Rudenko, L. Douillard, F. Pigeon, F.
Garrelie, and J.-P. Colombier, Nanoscale imaging of

ultrafast light coupling to self-organized nanostructures,
ACS Photonics 6, 2287 (2019).

[17] R. Stoian and J.-P. Colombier, Advances in ultrafast laser
structuring of materials at the nanoscale, Nanophotonics 9,
4665 (2020).

[18] J. Bonse and S. Gräf, Maxwell meets Marangoni—a review
of theories on laser-induced periodic surface structures,
Laser Photonics Rev. 14, 2000215 (2020).

[19] H. Qiao, J. Yang, J. Li, Q. Liu, J. Liu, and C. Guo,
Formation of subwavelength periodic triangular arrays on
tungsten through double-pulsed femtosecond laser irradi-
ation, Materials 11, 2380 (2018).

[20] F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger,
and R. Kling, Controlling 2D laser nano structuring over
large area with double femtosecond pulses, Appl. Surf. Sci.
470, 677 (2019).

[21] A. Abou Saleh, A. Rudenko, S. Reynaud, F. Pigeon, F.
Garrelie, and J.-P. Colombier, Sub-100 nm 2D nanopattern-
ing on a large scale by ultrafast laser energy regulation,
Nanoscale 12, 6609 (2020).

[22] M. Mastellone, A. Bellucci, M. Girolami, V. Serpente, R.
Polini, S. Orlando, A. Santagata, E. Sani, F. Hitzel, and
D.M. Trucchi, Deep-subwavelength 2D periodic surface
nanostructures on diamond by double-pulse femtosecond
laser irradiation, Nano Lett. 21, 4477 (2021).

[23] R. M. Bradley and P. D. Shipman, Spontaneous Pattern
Formation Induced by Ion Bombardment of Binary Com-
pounds, Phys. Rev. Lett. 105, 145501 (2010).

[24] J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, The
role of asymmetric excitation in self-organized nanostruc-
ture formation upon femtosecond laser ablation, in AIP
Conference Proceedings (American Institute of Physics,
Berlin/Heidelberg, 2012), Vol. 1464, pp. 428–441, 10.1007/
s00339-011-6472-3.

[25] K. R. Elder, J. Vinals, and M. Grant, Ordering Dynamics
in the Two-Dimensional Stochastic Swift-Hohenberg
Equation, Phys. Rev. Lett. 68, 3024 (1992).

[26] M. C. Cross and P. C. Hohenberg, Pattern formation outside
of equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[27] W. Decker, W. Pesch, and A. Weber, Spiral Defect Chaos in
Rayleigh-Bénard Convection, Phys. Rev. Lett. 73, 648
(1994).

[28] B. Echebarria and H. Riecke, Defect Chaos of Oscillating
Hexagons in Rotating Convection, Phys. Rev. Lett. 84, 4838
(2000).

[29] N. Stoop, R. Lagrange, D. Terwagne, P. M. Reis,
and J. Dunkel, Curvature-induced symmetry breaking de-
termines elastic surface patterns, Nat. Mater. 14, 337
(2015).

[30] J. Swift and P. C. Hohenberg, Hydrodynamic fluctua-
tions at the convective instability, Phys. Rev. A 15, 319
(1977).

[31] A. Tarantola, Inverse Problem Theory and Methods for
Model Parameter Estimation (SIAM, PhilaPhiladelphia,
2005), 10.1137/1.9780898717921.

[32] A. Carrassi, M. Bocquet, L. Bertino, and G. Evensen, Data
assimilation in the geosciences: An overview of methods,
issues, and perspectives, Wiley Interdiscip. Rev. 9, e535
(2018).

PHYSICAL REVIEW LETTERS 130, 226201 (2023)

226201-6

https://doi.org/10.1063/1.122241
https://doi.org/10.1103/PhysRevLett.91.247405
https://doi.org/10.1038/ncomms14942
https://doi.org/10.1103/PhysRevB.27.1141
https://doi.org/10.1103/PhysRevB.27.1141
https://doi.org/10.1103/PhysRevLett.51.2097
https://doi.org/10.1103/PhysRevB.30.2001
https://doi.org/10.1103/PhysRevB.94.081305
https://doi.org/10.1103/PhysRevB.94.081305
https://doi.org/10.1016/j.actamat.2020.04.058
https://doi.org/10.1149/1.2425756
https://doi.org/10.1149/1.2425756
https://doi.org/10.3390/nano11041020
https://doi.org/10.3390/nano11041020
https://doi.org/10.1002/advs.202200761
https://doi.org/10.1016/j.mser.2020.100562
https://doi.org/10.1103/PhysRevLett.125.017402
https://doi.org/10.1103/PhysRevLett.125.017402
https://doi.org/10.1515/nanoph-2018-0206
https://doi.org/10.1016/j.apsusc.2005.08.120
https://doi.org/10.1016/j.apsusc.2005.08.120
https://doi.org/10.1021/acsphotonics.9b00702
https://doi.org/10.1515/nanoph-2020-0310
https://doi.org/10.1515/nanoph-2020-0310
https://doi.org/10.1002/lpor.202000215
https://doi.org/10.3390/ma11122380
https://doi.org/10.1016/j.apsusc.2018.11.106
https://doi.org/10.1016/j.apsusc.2018.11.106
https://doi.org/10.1039/C9NR09625F
https://doi.org/10.1021/acs.nanolett.1c01310
https://doi.org/10.1103/PhysRevLett.105.145501
https://doi.org/10.1007/s00339-011-6472-3
https://doi.org/10.1007/s00339-011-6472-3
https://doi.org/10.1103/PhysRevLett.68.3024
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/PhysRevLett.73.648
https://doi.org/10.1103/PhysRevLett.73.648
https://doi.org/10.1103/PhysRevLett.84.4838
https://doi.org/10.1103/PhysRevLett.84.4838
https://doi.org/10.1038/nmat4202
https://doi.org/10.1038/nmat4202
https://doi.org/10.1103/PhysRevA.15.319
https://doi.org/10.1103/PhysRevA.15.319
https://doi.org/10.1137/1.9780898717921
https://doi.org/10.1002/wcc.535
https://doi.org/10.1002/wcc.535


[33] M. C. Kennedy and A. O’Hagan, Bayesian calibration
of computer models, J. R. Stat. Soc. Ser. B 63, 425
(2001).

[34] F. A. Viana and A. K. Subramaniyan, A survey of Bayesian
calibration and physics-informed neural networks in scien-
tific modeling, Arch. Comput. Methods Eng. 28, 3801
(2021).

[35] Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed, N.
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