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We investigate the magnetic response of nematic superconductors, presenting a new approach to find
vortex and skyrmion structures beyond symmetry-constraining Ansätze. Using this approach we show
that nematic superconductors form distinctive skyrmion stripes. Our approach lends itself to accurate
determination of the field distribution for muon spin rotation probes. We use this to show that the skyrmion
structure manifests as a double peak in the field distribution, markedly different from the signal of standard
vortex lattices.
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Understanding nematicity in superconducting states is
currently one of the central questions of the field [1–13].
Various indications of nematicity have been observed in a
broad range of materials including cuprates [14,15], heavy
fermion materials [16,17], and iron based superconductors
[18–22]. One particular example of a material that has
been the target of intense experimental study is the doped
topological insulator Bi2Se3 [23–25]. Superconducting
candidate materials of interest include CuxBi2Se3,
SrxBi2Se3 [26–31], and NbxBi2Se3 [32]. One of the inter-
esting properties of nematic superconductors is that the flux
carrying objects could be skyrmions [5,33,34], which are
fundamentally distinct from the vortices that normally
appear in superconductivity.
The appearance of skyrmions raises two questions: how

do the skyrmions affect the magnetic response of the
material, and what unique experimental signatures does
this produce? The first question is technically nontrivial,
since the interskyrmion interactions are complicated and
anisotropic, driven by mode mixing in general multi-
component anisotropic models [33,35–38], which dictates
the appearance of multiple scales in the interskyrmion
forces. This anisotropic behavior cannot be captured by a
simple Ansatz, thus it is challenging to approximate the
resulting lattice with any certainty. Using brute-force
numerics, on the other hand, would require simulating

complicated Ginzburg-Landau (GL) models at large system
sizes, with boundaries that may affect structure formation.
In this Letter and in the companion extended paper [33]

we study this magnetic response by developing and
applying a new method that can determine vortex lattice
structure for any model. We find that nematic super-
conductors exhibit an unusual magnetic response in the
form of skyrmion stripes.
Since surface probes visualize vortex structures at

limited scales and structure formation may be affected
by pinning, strain, inhomogeneities, and surface effects, the
most reliable method to detect these structures is muon spin
rotation (μSR) experiments. These fire muons into the
sample, detecting the orientation of positrons emitted when
the muons decay. These data can then be used to calculate
the statistical distribution of the magnetic field in the bulk
of a superconductor [39].
We will demonstrate that for nematic superconductors,

this magnetic field distribution exhibits a double peak
structure. We posit that the number of peaks in the
distribution correlates with the number of length scales
in the lattice. For a nematic superconductor this is two, the
separation between chains and the interskyrmion separation
along the chain, which we will call the chain link length.
The model we consider in this Letter is derived from the

proposal that certain topological insulators, such as elec-
tron-doped nematic superconductors (e.g., CuxBi2Se3) are
described by a two-component order parameter [1,23–25].
This order parameter breaks rotational symmetry in the
basal plane to a mixed symmetry, combining the phase
difference of the order parameter and spatial rotations [33].
This matches the observed twofold rotational symmetry of
specific heat and upper critical field [40]. The associated
Ginzburg-Landau Gibbs free energy for such a nematic
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superconductor was microscopically derived in [5]. In
dimensionless units, it reads

G ¼
Z
Ω

�
1

2
Qαβ

ij DiψαDjψβ þ
1

2
jB−Hj2 þFpðjψαj; θαβÞ

�
;

ð1Þ

where ψα ¼ ραeiφα are two complex superconducting order
parameters α ∈ f1; 2g. Note that Greek indices will always
be used for superconducting components, Latin indices will
be used for spatial directions and repeated indices imply
summation. Fp denotes the collected potential terms and
varies between models, but we will use the standard form,

Fp¼
η2

2

�
−jψ1j2− jψ2j2þ

1

2
ðjψ1j4þjψ2j4Þþγjψ1j2jψ2j2

�
;

ð2Þ

where γ is a microscopically derived parameter [5] related
to the nematic nature of the system. It directly determines
the ground state value for the condensates and is set to
γ ¼ 1=3 according to [5]. The parameter η scales the
potential and hence the ratio of critical fields Hc2=Hc1 .
Note that for η ≪ 1 the system starts to act like a type-I
superconductor and skyrmions do not form.
The constant matrices Qαβ define the anisotropy in the

system and must obey the symmetry Qαβ
ij ¼ Qβα

ji , ensuring
that the energy is real. Di ¼ ∂i − iAi is the covariant
derivative, where A is the vector potential corresponding
to a Uð1Þ gauge field, with corresponding magnetic field
B ¼ ∇ × A. For a nematic superconductor the anisotropy
matrices take the form

Q11¼Q22¼

0
B@
1 0 0

0 1 0

0 0 βz

1
CA; Q12¼ β⊥

0
B@
1 i 0

i −1 0

0 0 0

1
CA; ð3Þ

where βz and β⊥ are positive, we will follow [5] with the
choice βz ¼ 4=3 and β⊥ ¼ 1=3. The β⊥ term drives sky-
rmion formation or fractional vortex splitting. This can be
seen by considering co-centered fractional vortices where
the term integrates to zero. Hence, by splitting the fractional
vortices this term can become negative, thus if β⊥ is
sufficiently large it is energetically favorable to have
fractional vortex splitting. The field equations in the bulk
of the superconductor can then be found by varying the
Gibbs free energy with respect to the fields ψα and Ai. Note
that the resulting equations are independent of βz which
will have no effect on our results.
Solutions for isolated flux-carrying objects show that in

nematic superconductors these are skyrmions, that have the
form of spatially separated half-quantum vortices [5,33,34].
These solutions were found by simulating the field

equations on a plane (Ω ¼ R2), however, to find a lattice
solution, we must solve them over the unit cell of a lattice
with periodic boundary conditions (up to gauge). While it is
often assumed that the unit cell has hexagonal symmetry,
there is no reason to expect this for skyrmions in an
anisotropic model. Hence, we take a new approach,
considering a general unit cell, which takes the form of
a parallelogram that is periodic (up to gauge), as shown in
Fig. 1. A lattice solution is then given by the unit cell and
field configuration that minimizes G=A, where A is the
area of the unit cell. Hence, numerically, we seek mini-
mizers ofG=A with respect to the fields and with respect to
the geometry of the unit cell itself, represented as the two
vectors V1 and V2 in Fig. 1 (note that this will also control
the area A). The full technical detail of the procedure we
propose is given in a companion paper [33] (along with a
generalization that is not of use in this Letter). A brief
account is also presented in Appendix A.
By tessellating the solution on the periodic unit cell, we

find a solution that covers the plane with a vortex lattice.
Hence, in applying the above method we find the field
configuration that minimizes G=A in the bulk of a super-
conductor with no boundary effects. In addition, as we
know the shape of the unit cell, we know the symmetry of
the lattice.
Applying the above approach for the basal plane of a

nematic system gives the results in Fig. 2, where we see that
for low and medium strength external field H, the unit cell
is rectangular (α ¼ π=2), containing four half-quantum
vortices (totalling winding two) in each cell, forming a
skyrmion chain. The lattice vectors lie parallel to the chain
and perpendicular to the chain. Hence, we can understand
such a nematic unit cell by considering two lengths:
(i) jV1j, chain link length and (ii) jV2j, the distance between
the chains.
We can see how these values change in relation to an

increasing external field strength in Fig. 2. As the strength
of the external field H is initially increased, the density of
chains increases and jV2j decreases. Then we see that jV1j
also decreases as the chain segments are squashed.
Eventually when the external field H becomes large and
approaches Hc2 , the vortices are forced together and form
the familiar tightly packed triangular lattice. Note that V1 is
related to the fractional vortex separation of the model
which is driven by β⊥, and both V1 and V2 will

FIG. 1. Diagram of the geometry of a general unit cell for a
vortex lattice, defined by the two vectors V1 and V2 with angle α.

PHYSICAL REVIEW LETTERS 130, 226002 (2023)

226002-2



approximately scale inversely with η (the exact relation is
nonlinear). We have also shown this behaviour is similar for
other η ≫ 1 [31].
Theoretically in clean samples these skyrmion structures

should be visible on the surface using scanning SQUID or
scanning Hall probes. However, flux structure near the
surface can be affected by surface physics and it is difficult
to probe large areas. Hence, one of the most powerful tools
to identify skyrmions is the muon spin relaxation tech-
nique, which gives statistical information regarding the flux
distribution in the bulk of the system. To compare the lattice
configurations in Fig. 2 with the μSR experiment, we must
convert the numerical field configuration for a given unit
cell to a probability density distribution pðBÞ. Our method

is ideal for this as it produces the field configuration on a
single unit cell, with no boundary effects and no deforma-
tions. We will use a standard kernel density estimation [41]
to approximate a continuous distribution from our discrete
field configuration. Namely, our numerical algorithm
produces a discrete configuration, where the field distri-
bution is a set of normalized delta functions. We choose
to smooth these delta functions by replacing them with
localized Gaussians and taking the normalized sum. Hence,
the probability density of field strength B in the unit cell is

pðBÞ ¼ 1

n1n2h

Xn1
i¼1

Xn2
j¼1

1ffiffiffiffiffiffi
2π

p e−
1
2
ðB−Bijh Þ2 ; ð4Þ

FIG. 2. Contour plots of the lattice solutions (skyrmion chains) for the model Eq. (1) in the basal plane, with η ¼ 3 and increasing
external field H. The fields plotted are the order parameter magnitudes jψ1j and jψ2j, the phase difference between the two complex
order parameters θ12 ¼ φ1 − φ2 and the local magnetic field strength B. The lattice consists of skyrmion chains, formed by rectangular
unit cells (marked with black lines) containing four half-quantum vortices or winding two. As the external field increases the skyrmion
chains squash together. Then near Hc2 a transition occurs and the vortices are forced into the conventional triangular lattice with unit
cells of winding one. Note that there is no simple symmetry between jψ1j and jψ2j as the symmetry is broken to a mixed symmetry with
spatial rotations [33].
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where Bij is the local magnetic field at lattice site ði; jÞwith
i ∈ ½1; n1� and j ∈ ½1; n2�. The parameter h determines the
amount of smoothing and should be set relative to the
number of grid points used to simulate the lattice. We used
h ¼ 0.01 throughout.
We used the above method to construct the field

distribution pðBÞ for a nematic superconductor and a
standard single component superconductor for comparison.
The latter’s parameters were chosen so that Hc1 and Hc2
match those of the nematic model for η ¼ 3. This process
and the parameters are described in Appendix B. We have
plotted the nematic field distribution for field strengths
nearerHc1 thanHc2 in Fig. 3, and also compared the results
to the standard GL model. There is a clear difference, with
the nematic superconductor exhibiting a double peak
structure as opposed to the well known single peak of
the standard GL model. It is also different from the μSR
signature of a system that phase separates into vortex
clusters and domains of Meissner states [42,43].
Consider the single component Ginzburg-Landau model.

Here, the neighboring vortex separation is determined by a
single parameter, the Ginzburg-Landau parameter κ. While
this parameter is all that is needed to describe the lattice
solution, it is actually the ratio of two length scales. The
form of the magnetic field distribution is determined by
how the magnetic field decays between neighboring vor-
tices, hence as there is a single defining parameter, there is a
single corresponding peak in the field distribution. In
contrast, multicomponent anisotropic models have a con-
tinuous set of coupled length scales that are directionally

dependent [33,38]. However, given the rectangular nematic
unit cell shown in Fig. 2, we can describe the vortex
separation in the unit cell using just two length scales, jV1j
and jV2j. Hence, the decay of the magnetic field between
two neighboring vortices depends on whether they are in
the same chain or neighboring chains. If the vortices are in
the same chain the decay is determined by jV1j, if they are
in different chains the decay is determined by jV2j. Hence,
each of these neighboring decay possibilities, or length
scales, contributes a different peak to the field distribution
pðBÞ. This can be seen in Fig. 4, where we have compared
the probability density distribution pðBÞ with the corre-
sponding magnetic field plot BðxÞ forH ¼ 2. It can be seen
in this figure that the first sharp peak corresponds to chain
separation, and the second peak corresponds to the chain
link length.
The two peaks for low fields start far apart, due to the

large chain separation jV2j. Then as the field strength
increases, the chains are packed in much tighter and jV2j
decreases, causing the two peaks to get closer. Then as the
external field strength is increased further, both jV1j and
jV2j shrink. This explains why the peaks begin far apart for
particularly low fields. Hence, we ultimately end up with a
very distinctive double peak structure for nematic skyrmion
lattices. We expect that in the presence of weak pinning the
statistics of the magnetic fields in the bulk will still retain
these features.
While the above analysis holds for low and medium

strength external fields, once the external field is increased
to be near Hc2, the vortices are forced into a tightly packed
triangular lattice. This triangular structure leads to the most
efficient packing for the vortices, hence it is natural that the
increased pressure will eventually force a triangular lattice
to be lower in energy. The vortex separation for the nematic
superconductor is now described by a single length scale
and forms a single peak, similar to that of the single
component model. This can be seen for strong external

FIG. 3. Magnetic field distribution for a skyrmion state in
nematic superconductor (top) and vortex lattice in single com-
ponent superconductor (bottom) for external fields closer to Hc1
than Hc2. The nematic superconductor is described in Eq. (1)
with η ¼ 3. The structure of the field distribution is markedly
different for the skyrmion state in the nematic superconductor
with a double peak, rather than the familiar single peak for the
standard GL model.

FIG. 4. Comparing the field distribution pðBÞ of a nematic
superconductor in the lower plot with the areas of the local
magnetic field configuration BðxÞ each peak corresponds to for
external field strength H ¼ 2.
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fields in Fig. 5, where we have again compared the nematic
and single component results.
Note that Fig. 3 has a low field peak separation of about

0.5 which is approximately 0.13Hc2 (where Hc2 is calcu-
lated in [33]). Modern muon spectroscopy techniques are
capable of resolving peak separations far lower than this in
various materials. Experiments often exhibit a background
peak atH0 from muons that overshoot the sample. This can
be resolved from the single type-2 peak despite being far
closer than 10% of Hc2 [39].
In conclusion, we have shown that the magnetic response

of nematic superconductors takes the form of skyrmion
stripes, which is markedly different from the standard
vortex lattice. As the field is increased, these skyrmion
stripes decrease their separation. Eventually the magneti-
zation process compresses the skyrmion stripes themselves,
forming the conventional triangular vortex lattice close to
upper critical field Hc2. We also find that skyrmion stripes
give qualitatively distinct signatures in muon spin rotation
experiments. In particular, we observe a distinctive two
peak structure, where the second peak changes relative to
the first as the external field strength is increased. These
findings can be used to experimentally confirm (i) nematic
superconducting states and (ii) that flux-carrying objects in
superconductors take the form of skyrmions. We have also
presented new numerical tools, to find unit cells of any
symmetry, that can be used to analyse the signals of other
unconventional materials.

We thank Vadim Grinenko and Andrew Huxley for
useful discussions. E. B. was supported by the Swedish

Research Council Grants No. 2016-06122, No. 2018-
03659, 2022-04763 and Olle Engkvists Stiftelse. M. S.
and T.W. were supported by the UK Engineering and
Physical Sciences Research Council, through Grant
No. EP/P024688/1. T. W. was also supported by an
academic development fellowship, awarded by the
University of Leeds, where he was based for the majority
of the work. The numerical work of this Letter was
performed using the code library SOLITON SOLVER, devel-
oped by one of the authors, and was undertaken on ARC4,
part of the High Performance Computing facilities at the
University of Leeds.

Appendix A: Finding vortex lattice solutions.—In this
Appendix we give a brief account of the new method used
to find vortex lattice solutions of arbitrary complexity in the
presence of an external field H. Detailed discussion of the
method is presented in the companion paper [33]. Namely,
we find the unit cell of the periodic vortex solution in the
bulk, with external field strength Hc1 < H0 < Hc2 . The
standard approach for a Ginzburg-Landau model is to
consider a unit cell of degree n ¼ 1 with either triangular
(α ¼ π=3) or square (α ¼ π=2) symmetry. However, as the
nematic system we are considering is anisotropic, there is
no reason to expect that a lattice with such high symmetry
will be the global minimizer. Hence, the correct approach is
to minimize energy, not just with respect to the periodic
fields, but also with respect to the geometry of the unit cell
itself. We present here a general method to find the optimal
unit cell, without assuming the symmetry of the underlying
lattice, based upon the method first presented in [33].
We first assume that far from the boundary of the system

(deep in the bulk), the gauge invariant quantities
ðρα; θ12; BÞ are periodic on the unit cell. We also note that
we can represent a general periodic structure as a tessella-
tion of a general parallelogram (unit cell), as seen in Fig. 1,
formed by two vectors V1 and V2 with angle α.
We then seek local minimizers of the Gibbs free energy

in Eq. (1) with respect to the fields ψαðxÞ, AiðxÞ, now
defined on a general flat periodic 2-torus T2

Λ ¼ R2=Λ,
where the period lattice Λ is spanned by vectors V1, V2 in
Fig. 1,

Λ ¼ fn1V1 þ n2V2jn1; n2 ∈ Z; V1; V2 ∈ R2g: ðA1Þ

The unit cell has periodic boundary conditions, up to
gauge, so that the fields have boundary conditions,

ψαðxþ ViÞ ¼ ψαðxÞeifi ;
Ajðxþ ViÞ ¼ AjðxÞ þ ∂jfi: ðA2Þ

Note that while the fields are not purely periodic, the above
boundary conditions do leave all physical quantities peri-
odic as desired,

FIG. 5. Magnetic field distribution for a nematic superconduc-
tor (top) and single component superconductor (bottom) for
external fields Hc2 ≈H ≫ Hc1. The nematic superconductor is
described in Eq. (1) with η ¼ 3. As one approaches Hc2, the
structure of the field distribution for the nematic superconductor
becomes similar to the single peak structure of the familiar single
peak for the standard GL model. This corresponds with the lattice
becoming a triangular lattice for external fields near Hc2.
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Bðxþ ViÞ ¼ BðxÞ; Jðxþ ViÞ ¼ JðxÞ;
jψðxþ ViÞj ¼ jψðxÞj: ðA3Þ

To simulate the fields on the unit cell, we will simplify
the above formulation by transforming to a more conven-
ient coordinate system in the x, y plane. Let us define X1,
X2 so that ðx; yÞ ¼ X1V1 þ X2V2. The unit cell spanned by
V1, V2 is now covered by ðX1; X2Þ ∈ ½0; 1� × ½0; 1�. Let L
be the matrix with columns V1, V2. Note that detL ¼ A,
the area of the unit cell. Now define the unimodular matrix
M ¼ ffiffiffiffi

A
p

L−1 such that Xi ¼ ðMij=
ffiffiffiffi
A

p Þxj. Then

FðM;A;ψα; AÞ ¼
Z
½0;1�2

�
1

2
ðMQαβMTÞijDiψαDjψβ

þ 1

2A
½ð∂1A2 − ∂2A1Þ2� þAFpðψαÞ

�

× dX1dX2;

leading in turn to the Gibbs free energy,

GðM;A;ψα; AÞ ¼ F −
Z
½0;1�2

H0ð∂1A2 − ∂2A1ÞdX1dX2

¼ F − 2nπH0; ðA4Þ

where n is the winding number of the field configuration.
Note that this is only valid in the basal plane, as otherwise
one must consider nonzero A3 in the free energy. This
would allow in-plane spontaneous fields and magnetic field
twisting, which occurs away from the basal plane due to the
coupled length scales [33]. Models that exhibit such fields
have been studied in [33,44,45].
If we exclude boundary effects, the optimal lattice

solution is the one that minimizes the total Gibbs free
energy of the system. If the system area is Asys, this can be
calculated from the unit cell as Gsys ¼ AsysG=A. Hence,
we seek minimizers of G=A or Gibbs free energy per unit
area, with respect to the fields, geometry of the unit cell M
and area A. Note that the degree or winding number of a
given unit cell n is fixed and strictly speaking we must
the find the global minimizer of all Gn=A, where Gn is the
Gibbs free energy of a unit cell of degree n and then find the
infimum of this set.
In practice, it is sufficient to find minima of Gn=A until

we get a repeated minimizer, that is, until we find a
minimizer of Gn=A whose cell and field configuration is
two cells of the Gn=2=A minimizer joined together.
Numerical method: To find minimizers of

GðM;A;ψα; AÞ we discretize the standard square unit cell
on an n1 × n2 regular grid. We utilize an arrested Newton
flow algorithm subject to the periodic boundary conditions,

ψα½xþ ð1; 0Þ� ¼ ψαðxÞein2πnx2 ;
ψα½xþ ð0; 1Þ� ¼ ψαðxÞ;
A2½xþ ð1; 0Þ� ¼ A1ðxÞ þ 2πn;

Ai½xþ ð1; 0Þ� ¼ A2ðxÞ i ≠ 2;

Ai½xþ ð0; 1Þ� ¼ AiðxÞ; ðA5Þ

where n is the winding number of the unit cell. We set the
fields ϕ ¼ ðψ ; AÞ on the unit square torus and the geometry
of the unit cell ðM;AÞ to be some initial condition. Fixing
the unit cell ðM;AÞ, we find a local minimum with
respect to the collected fields ϕ, using arrested Newton
flow for a notional particle subject to the potential ϕ̈ ¼
−gradGdisðM;A;ϕÞ. A more detailed description of
arrested Newton flow is given in [46]. This is continued
until the discretized function is minimized with respect to
some tolerance. We then fix the field configuration ϕ and
area A, and minimize GdisðM;A;ϕÞ=A with respect to
M ∈ SLð2;RÞ, where we note that only the gradient term
of the energy is dependent on this matrix. This can be done
exactly using linear algebra, described below in the section
on finding the minimal geometry. Finally, we fix the fields
ϕ and the lattice shape M and minimize the free energy
with respect to A, by solving the algebraic equation in A
with coefficients given by the integrals of the different
energy terms.
Finding the minimal geometry: We can find the min-

imal geometry of a unit cell with a given configuration
ðψα; AÞ explicitly. We first note that the only term that is
dependent on the geometry M is the gradient term of the
free energy. Hence, we write the gradient energy as a 4 × 4
complex matrix,

Pc
ik;jl ≔

Z
½0;1�2

Qαβ
kl DiψαDjψβ; ðA6Þ

where we take each index pair ði; kÞ; ðj; lÞ to range over the
values fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þg. Because of the sym-

metry Qαβ
ij ¼ Qβα

ji we know Pc is Hermitian. Hence, if we
split it into its real and imaginary parts Pc ¼ Pþ iPI we
know that the real part P is symmetric and the imaginary
part PI is skew. If we then consider the vector,

X ≔ ðM11M12M21M22ÞT; ðA7Þ

we can rewrite the gradient part of the free energy as

FgradðXÞ ¼
1

2
XTPcX ¼ 1

2
XTPX: ðA8Þ

Hence, we must minimize the quadratic form XTPX subject
to the constraint that detM ¼ 1 [or M ∈ SLð2;RÞ], which
can be written
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1

2
XTJX ¼ 1; J ≔

0
BBB@

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

1
CCCA: ðA9Þ

Hence, we seek critical points of Fgrad∶ SLð2;RÞ → R,
which are X ∈ R4 with XTJX ¼ 1 and,

PX ¼ λðX4;−X3;−X2; X1ÞT ¼ λJX; ðA10Þ

for some λ ∈ R. We can see that J2 ¼ I4 is the identity
matrix, hence Eq. (A10) becomes

JPX ¼ λX: ðA11Þ

In other words, X is an eigenvector of JP.
This allows us to minimize Fgrad with respect to M

explicitly by constructing JP and finding its 4 eigenvectors
Y. We discard any complex solutions and any such that
YTJY ≤ 0. We compute the solution we seek X ¼
Y=

ffiffiffiffiffiffiffiffiffiffiffi
YTJY

p
such that

Fgrad ¼
1

2
XTPX ¼ 1

2
XTλJX ¼ λ: ðA12Þ

We can then read off the new period lattice as

L ¼
ffiffiffiffi
A

p
M−1; M ¼

�
X1 X2

X3 X4

�
: ðA13Þ

The period lattice is spanned by the columns of L, named
V1, V2.

Appendix B: Single component field distribution.—It is
instructive to compare the results for nematic systems to a
standard single component Ginzburg-Landau model. We
will consider the following model,

G ¼
Z
R2

�
1

2
DiψDiψ þ 1

2
jB −Hj2 þ Fpðjψ jÞ

�
; ðB1Þ

where there is a single order parameter ψ, and

Fpðjψ jÞ ¼ −ajψ j2 þ b
2
jψ j4: ðB2Þ

To effectively compare this model to the results for the
nematic model, we will select the parameters a, b so that
Hc1 and Hc2 equal those of the nematic model. By a
standard computation, for example, see Tinkham [47],

Hc2 ¼ 2a; ðB3Þ

while, by definition, Hc1 is the value of external field
strength H for which the Gibbs energy of a vortex solution

equals that of the superconducting ground state,
yielding

Hc1 ¼
Fvortex − Fground

2π
: ðB4Þ

The right hand side of Eq. (B4) depends implicitly on a, b.
We find that a ¼ 5.70, b ¼ 2.21 produces Hc1 ¼ 1.18 and
Hc2 ¼ 11.41, matching the nematic model with η ¼ 3.
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